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Preface

This work represents the essence of nearly 16 years of work in scientific com-
puting for ocean and atmospheric modeling. This journey started at Alfred-
Wegener-Institute for Polar and Marine Research in Bremerhaven, Germany,
where — as a post graduate — I was assigned to optimize multi-grid solvers for
elliptic partial differential equations evolving from ocean modeling. I am lucky
and grateful that I had the chance to go all that way, to have the opportunity
to explore the subject from many different angles, to have wonderful teachers
and colleagues, and to have the chance to work and visit such exquisit places
as the National Center for Atmospheric Research in Boulder, Colorado, USA,
the Frontier Research System for Global Change at the Yokohama Institute
for Earth Science (Earth Simulator) in Yokohama, Japan, the Maz-Planck-
Institute for Meteorology in Hamburg, Germany, the aforementioned Alfred-
Wegener-Institute for Polar and Marine Research in Bremerhaven and Pots-
dam, Germany, the Technische Universitat Minchen in Garching, Germany,
the Fields Institute in Toronto, Canada, the Naval Research Laboratory in
Monterey, California, USA, the Department of Informatics at the University
of Bergen, Norway and the Centre for Mathematical Sciences at the University
of Cambridge, UK, to name only the most influential ones.

My own interest in adaptive methods arose from the exploration of finite
element methods. When comparing finite elements on simple model problems
with finite differences, the former method is often disregarded for computa-
tional efficiency and implementation complexity issues. However, finite ele-
ment methods are much more versatile and flexible when it comes to irregular
domains and locally refined meshes. Besides, finite elements are mathemat-
ically the more elegant approach. Being an aesthete, the wish for a method
that fully unfolds the beauty of finite element methods was created. That was
the start for the development of the adaptive semi-Lagrangian finite element
method, better to be called adaptive Lagrange-Galerkin method [34]. Since
then, my research was focused on adaptivity and the solution of geophysical
fluid dynamics problems with advanced adaptive numerical methods. This was
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during my PhD period at Alfred-Wegener-Institute (AWT), where a prototype
implementation of a shallow water solver was accomplished.

With a grant from the Federal Ministry of Education and Research
(BMBF), I started the development of a parallelizable adaptive mesh genera-
tion tool for oceanic and atmospheric applications in the mid 1990’s. At that
time there was no such tool available. This work was continued after funding
ran out by an internal grant from AWI, before I decided to enlarge my sci-
entific background by changing to Technische Universitat Miinchen (TUM).
The time at TUM was great in that it provided me with a lot of new knowl-
edge in numerical analysis. I owe my teacher Folkmar Bornemann a great
debt of gratitude for his patience and his clearly structured and precise way
of teaching.

By now, several groups have gained a lot of experience in adaptive mod-
eling. Yet in atmospheric sciences, the number is still limited. To fulfil my
requirements of a German Habilitation, I considered to just compose some of
my articles and reports for a short written document of my work in adaptive
atmospheric modeling. However, thinking again, I am now convinced that tak-
ing the chance of having to write a monograph, is the best excuse for doing
this a bit more carefully and summarizing what has been done in adaptive
atmospheric modeling so far. I am aware that this snapshot can only be in-
complete. However, the references and approaches mentioned may at least
give a good starting point for research in adaptive atmospheric modeling.
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