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Abstract Investigating a data set containing different sounds of several in-
struments suggests that local modelling may be a promising approach to take
into account different timbre characteristics of different instruments. For this
reason, some basic ideas towards a local modelling are realized in this report
yielding a framework for further studies.

1 Introduction

Sound characteristics of orchestra instruments derived from spectra are cur-
rently a very important research topic (see, e.g., Reuter (1996, 2002)). The
sound characterization of voices has, however, many more facets than for
instruments because of the sound variation in dependence of technical level
and emotional expression (see, e.g., Kleber (2002)).

During a former analysis of singing performances (cp. Weihs and Ligges
(2003)) it appeared that register can be identified from the spectrum even af-
ter elimination of pitch information. In this paper this observation is assessed
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by means of a systematic analysis not only based on singing performances
but also on corresponding tones of high and low pitched instruments.

The aim of this report is to investigate some basic ideas of local modelling
towards achieving the goal of classification of the register by timbre, i.e. by
the spectrum after pitch information is eliminated. To this end, pitch in-
dependent characteristics of spectral densities of instruments and voices are
generated.

Similar to the voice prints introduced in Weihs and Ligges (2003) we use
masses and widths of peaks of the first 13 partials, i.e. of the fundamental
and the first 12 overtones. These characteristics are computed for represen-
tatives of all tones involved in the classical song “Tochter Zion” composed by
G.F. Händel. For the singing performances the first representative of each
note was chosen, for the instruments the representatives were chosen from
the “McGill University Master Samples” (Opolko and Wapnick (1987), see
also Section 2). A global classification analysis is performed in Section 3. In
Section 4 these models are extended towards local modelling of the different
instruments and singers.

2 Data

The analyses of this paper are based on time series data from an experiment
with 17 singers performing the classical song “Tochter Zion” (Händel) to a
standardized piano accompaniment played back by headphones (cp. Weihs
et al. (2001)). The singers could choose between two accompaniment ver-
sions transposed by a third in order to take into account the different voice
types (Soprano and Tenor vs. Alto and Bass). Voice and piano were recorded
at different channels in CD quality, i.e. the amplitude of the corresponding
vibrations was recorded with constant sampling rate 44100 hertz in 16-bit
format. The audio data sets were transformed by means of a computer pro-
gram into wave data sets. For time series analysis the waves were reduced
to 11025 Hz (in order to restrict the number of data), and standardized to
the interval [−1, 1]. Since the volume of recording was already controlled in-
dividually, a comparison of the absolute loudness of the different recordings
was not sensible anyway. Therefore, by our standardization no additional
information was lost.

Since our analyses are based on characteristics derived from tones corre-
sponding to single notes, we used a suitable segmentation procedure (Ligges
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et al. (2002), Weihs and Ligges (2005)) in order to get data of segmented
tones corresponding to notes. The periodograms (cp. Brockwell and Davis
(1991)) used for the analyses described in this paper were calculated from
overlapping sections of 2048 observations, overlap starting in the middle of
the preceding section. This way, we get roughly 11(= 2 · (11025/2048)) pe-
riodograms per second of sound, whereas the duration of the whole song
is roughly 60 seconds. These periodograms are classified to notes, and the
notes are smoothed by means of double median smoothing. Based on the
smoothed series of notes, begin and end of sung notes are decided upon. For
further analysis the first representative of the notes with identical pitch in
the song was chosen. This leads to 9 different representatives per voice in
“Tochter Zion”.

The notes involved in the analyzed song were also identified in the “McGill
University Master Samples” either in the Alto or in the Bass version for the
following instruments:

Alto version (McGill notation, referred to as ‘A’): aflute-vib, bells, cello-
bv, clari-bfl, clari-efl, elecguitar1, elecguitar4, enghorn, flute-flu, flute-vib,
frehorn, frehorn-m, marimba, oboe, piano-ld, piano-pl, piano-sft, sax-alt,
tromb-ten, trump-ba, trump-c, trump-csto, vibra-bow, vibra-hm, viola-bv, viola-
mv, violin-bv, violin-mv.

Bass version (referred to as ‘B’): bassoon, bflute-flu, bflute-vib, cello-bv,
elecbass1, elecbass5, elecbass6, elecguitar1, elecguitar2, elecguitar4, frehorn,
frehorn-m, marimba, piano-ld, piano-pl, piano-sft, tromb-ten, tromb-tenm,
tuba, viola-mv.
Thus, 28 high instruments and 20 low instruments were chosen together with
10 high female singers and 7 male.

From the periodogram corresponding to each tone corresponding to an
identified note voice characteristics are derived (cp. Weihs and Ligges (2003)).
For our purpose we only use the size and the shape corresponding to the first
13 partials, i.e. to the fundamental frequency and the first 12 overtones, in a
pitch independent periodogram.
In order to measure the size of the peaks in the spectrum, the mass (weight)
of the peaks of the partials are determined as the sum of the percentage
shares of those parts of the corresponding peak in the spectrum which are
higher than a pre-specified threshold. The shape of a peak cannot easily
be described. Therefore, we only use one simple characteristic of the shape,
namely the width of the peak of the partials. The width of a peak is mea-
sured by the range (i.e. maximum - minimum) of the Fourier frequencies (in
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Figure 1: Widths of peaks measured in (a) halftones and (b) frequency.

Hertz) of the peak with a spectral height above a pre-specified threshold.
A former idea for measuring the width of peaks in voiceprints was to

use a unit of halftones (as described in Weihs et al. (2005b)). It was our
intuition that this measure would be independent of frequency and hence
appropriate for our analyses. Unfortunately, it turned out that this measure
is not independent of the frequency. Instead, the width measured by the
number of Fourier frequencies (or proportionally just by the difference of
frequencies) appears to be much more appropriate.

Figure 1 shows the two widths (measured in halftones and in difference
of frequencies, respectively) of the fundamental frequency of a simulated
combined sine wave consisting of two partials. The first partial is weighted
by 0.6 and the second by 0.4. This was simulated for all integer frequencies
between 1 and 1000 Hertz using a sampling rate of 11025 Hertz. Measures
are based on a periodogram consisting of 2048 observations. Therefore, the
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Figure 2: Voice print of professional bass singer.

distance between two Fourier frequencies is 5.38 Hertz.
Overall, every tone is characterized by the above 26 characteristics which

are used as a basis for classification. For details on the computation of the
measures see Güttner (2001). Mass is measured as a percentage (%), whereas
width is measured in Hertz.

Figure 2 illustrates the voice print corresponding to the whole song “Toch-
ter Zion” for a particular singer. For masses and widths boxplots are indicat-
ing variation over the involved tones. For the analyses of this paper we ignore
halftone distance and formant intensity (cp. Weihs and Ligges (2003)), and
use the other characteristics of the voice print for individual tones, as well
as averaged characteristics over all involved tones, leading to only one value
for each characteristic per harmonic and singer or instrument.

3 Global modelling

Classification of the register of different instruments and singers is performed
using two very common techniques: the classical linear discriminant analysis
[LDA] (Fisher (1936)) as well as Classification trees (more specifically the
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rpart by Therneau and Atkinson (1997)). All error rates are estimates using
ten-fold cross validation. In the analysis of the following two subsections
every note is used once. The variables are generated both for every note
separately and averaged over all notes which yields one single value of mass
and width per harmonic and singer/instrument. In the following, LDA and
rpart are compared. Only the result of the better method is shown.

3.1 Mass and width not averaged over different notes

3.1.1 Analyzing singers only

A first analysis includes only singers. Performing classification based on all
variables shows best results for LDA (error: 0.222, see table 1).

Voice high low error
Soprano 35 1 0.028
Alto 45 9 0.167
Tenor 14 13 0.519
Bass 10 26 0.278

Table 1: Classification of voices on all variables (masses and widths for all
harmonics) shows best results for LDA.

Classification with rpart using only mass of the fundamental slightly im-
proves the error rates to 0.216 (table 2).

Voice high low error
Soprano 35 1 0.028
Alto 43 11 0.204
Tenor 12 15 0.444
Bass 9 27 0.250

Table 2: Classification of voices with rpart using only mass of the fundamen-
tal.

Taking the mass and width of the fundamental and the first harmonic
into the model further improves the missclassification-rate to 0.157 using
LDA (table 3).
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Voice high low error
Soprano 35 1 0.028
Alto 43 11 0.204
Tenor 9 18 0.333
Bass 3 33 0.083

Table 3: Misclassification rates using LDA on first two harmonics.

Generally, the female voices were easier to classify into the high register
than those of the male singers into the low register. The most confusing are
the lower female and the higher male voices.
As can be seen, the reduction of the model enables a more correct classifi-
cation of the male voices while classification-rates of the female voices stay
at the same level. A final approach is dedicated towards finding an optimal
variable subset. A variable selection is performed using stepclass algorithm
(see Weihs et al. (2005a)). Variables are added stepwise to the model until
the Leave one out cross validated error rate [L1o] can not be improved by
more than 1%.
Best results are obtained keeping mass of the fundamental and the first har-
monics as well as width of the first and forth harmonic in the model when
using Linear Discriminant Analysis. The total error rate was 0.144 (table 4).

Voice high low error
Soprano 35 1 0.028
Alto 44 10 0.185
Tenor 8 19 0.296
Bass 3 33 0.083

Table 4: Variable selection by stepclass using LDA.

3.1.2 Taking instruments into the analysis

The analysis is now re-done also taking the instruments into the study. This
leads to a strongly increased error rate, for the all-variables-model there is
an error rate of 0.352 for LDA (see table 5).
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instrument high low error
A.bells 7 2 0.222
A.cello 7 2 0.222
A.clarinet 16 2 0.111
A.elecguitar 13 5 0.278
A.flute 19 8 0.296
A.frenchhorn 18 0 0.000
A.marimba 9 0 0.000
A.oboe-enghorn 11 7 0.389
A.piano 26 1 0.037
A.saxophone 5 4 0.444
A.trombone 6 3 0.333
A.trumpet 12 6 0.333
A.trumpet-csto 6 3 0.333
A.vibraphone 18 0 0.000
A.violin-viola 31 5 0.139
Alto 43 11 0.204
Soprano 25 11 0.306
B.bassoon 1 8 0.111
B.cello 4 5 0.444
B.elecbass 16 11 0.593
B.elecguitar 12 6 0.667
B.elecguitar-dist 9 0 1.000
B.flute 13 5 0.722
B.frenchhorn 3 15 0.167
B.marimba 9 0 1.000
B.piano 14 13 0.519
B.trombone 6 12 0.333
B.tuba 4 5 0.444
B.violin-viola 7 2 0.778
Bass 20 16 0.556
Tenor 18 9 0.667

Table 5: Misclassification rates of LDA for both instruments and voices using
all variables.

Reducing to only the values of mass and width of the fundamental and
the first harmonic could not further improve the classification errors as in
the previous section when only classifying singers. The error rates of some
instruments, e.g. bells or the trumpet strongly grow using less variables while
for example the low piano sounds or the tenor voices can be classified better
into their register. The register of some instruments like electric guitars are
identifiable in none of the attempts. The results of both LDA (total error
rate: 0.451) and rpart (total error rate: 0.344) are shown in table 6.
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LDA rpart
instrument high low error high low error
A.bells 1 8 0.889 1 8 0.889
A.cello 8 1 0.111 2 7 0.778
A.clarinet 17 1 0.056 12 6 0.333
A.elecguitar 13 5 0.278 3 15 0.833
A.flute 24 3 0.111 12 15 0.556
A.frenchhorn 17 1 0.056 4 14 0.778
A.marimba 9 0 0.000 9 0 0.000
A.oboe-enghorn 11 7 0.389 5 13 0.722
A.piano 24 3 0.111 22 5 0.185
A.saxophone 8 1 0.111 5 4 0.444
A.trombone 6 3 0.333 2 7 0.778
A.trumpet 8 10 0.556 1 17 0.944
A.trumpet-csto 8 1 0.111 3 6 0.667
A.vibraphone 12 6 0.333 16 2 0.111
A.violin-viola 30 6 0.167 23 13 0.361
Alto 36 18 0.333 22 32 0.593
Soprano 25 11 0.306 18 18 0.500
B.bassoon 2 7 0.222 2 7 0.222
B.cello 8 1 0.889 4 5 0.444
B.elecbass 15 12 0.556 16 11 0.593
B.elecguitar 12 6 0.667 9 9 0.500
B.elecguitar-dist 7 2 0.778 9 0 1.000
B.flute 10 8 0.556 9 9 0.500
B.frenchhorn 2 16 0.111 2 16 0.111
B.marimba 5 4 0.556 6 3 0.667
B.piano 10 17 0.370 7 20 0.259
B.trombone 5 13 0.278 1 17 0.056
B.tuba 7 2 0.778 4 5 0.444
B.violin-viola 5 4 0.556 5 4 0.556
Bass 13 23 0.361 5 31 0.139
Tenor 15 12 0.556 3 24 0.111

Table 6: Classification error of LDA and rpart using only fundamental and
first harmonic.

3.2 Mass and width averaged over different notes

The analysis in this section differs from the preceding section in the calcula-
tion of the variables. Here, the values of mass and width for the harmonics
are averaged over all different notes leading to two values (mean mass and
mean width) for each harmonic. By averaging, the number of different ob-
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all variables only mass fund. fund. and 1st harm.
instrument high low error high low error high low error
Soprano 2 2 0.500 4 0 0.000 2 2 0.500
Alto 5 1 0.167 3 3 0.500 3 3 0.500
A 21 7 0.250 13 15 0.536 15 13 0.464
Tenor 1 2 0.333 0 3 0.000 0 3 0.000
Bass 1 3 0.250 0 4 0.000 1 3 0.250
B 9 11 0.450 9 11 0.450 7 13 0.350

Table 7: Classification error of LDA averaging over different notes.

jects to classify is reduced. The number of different singers’ objects reduces
to only 17. For this reason the detailed results for singers only are omitted
here. LDA shows best results for the classification of both singers and in-
struments together. The analysis is performed using all variables (error rate
using leave-one-out cross validation: 0.323), only the mass of the fundamen-
tal (0.415) and both mass and width of fundamental and the first harmonic
(0.4). The register classification of the instruments still shows unsatisfying
results. The best overall-error is obtained using all variables. All variables
appear to contain some information for the classification of at least some of
the instruments, while one can state that the voices can be classified into
register quite well using only the mass of the fundamental. The classification
rule for singers when only using the fundamental mass assigns to low register
if the mass is below 0.1072. All results are shown in table 7, where A denotes
alto (high register) and B denotes bass (low register) for the instruments.

3.3 Summarizing the results

Timbre characteristics mass and width of the fundamental and the first up
to the 12th harmonics enables to classify voices into register. Female voices
seem to be easier classified than male voices. The most confounding are low
female voices (alto) and high male voices (tenor).
When taking instruments into the analysis the classification error rate in-
creases dramatically. Also variable selection cannot improve the results to
an acceptable magnitude. This may be due to different timbre characteris-
tics that characterize the register of different instruments. For this reason,
in the following section, local models for each of the instruments (or voices)
are built.
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instrument selected variables # cases L1o error
cello mass02 + mass05 18 0.056
elecguitar mass02 + mass03 + 36 0.111

mass04 + width02
flute mass06 + width04 45 0.200
frenchhorn mass08 36 0.056
marimba width01 18 0.111
piano mass01 + mass07 54 0.148
singer width01 153 0.209
trombone mass01 27 0.074
violin, viola mass13 45 0.111
weighted L1o error 432 0.150

Table 8: Best performing local models using LDA for each instrument group.

4 Local modelling

In this section, local models are built for all instruments separately (indexed
by l, where {1, . . . , L} represent all instruments). For each instrument a local
classification rule for the register is developed, returning posterior probabil-
ities pl(k|x) given the instrument l and an observed tone with masses and
widths x to belong to either high or low register, denoted as class k.
Since the goal consists in classification of any observed note to the correct
register, the instrument (or voice) playing this note can not assumed to be
known in advance. For this reason, the problem consists in finding a classi-
fication rule out of all L local classification models.
All local models are generated on variable subsets, found by the stepclass-
algorithm using LDA (see Weihs et al. (2005a)). Variables are added stepwise
to the data set until the L1o cross validated error rate can not be improved
by more than 1%.
How classification rules may be constructed out of all local (classification)
models l, l = 1, . . . , L, will be explained in the following subsections.
For each local model l parameters are estimated and all observations of the
complete data set were predicted with all local models. Of course, only those
instruments are used in the analysis for local modelling that have both reg-
ister classes, namely: cello, elecguitar, flute, frenchhorn, marimba, piano,
singer, trombone, violin-viola.

Table 8 shows an example of LDA based local models for various instru-
ments. For each model a variable selection was performed by stepclass as
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mentioned above. Selected variables are shown in the table where mass01
denotes the mass of the first partial (fundamental frequency) and width02
the width of the second partial. Moreover, the number of cases used for
L1o cross validation is shown as well as the L1o error rate. The L1o error
weighted by the number of observations falling in the different local models
is 0.15. This is a lower error bound for the error rate that would be possible
in case of a perfect choice of the correct local models for a new observation
of an unknown instrument.

instrument # cases L1o error
cello 18 0.333
elecguitar 36 0.278
flute 45 0.222
frenchhorn 36 0.139
marimba 18 0.111
piano 54 0.241
singer 153 0.150
trombone 27 0.222
violin, viola 45 0.200
weighted L1o error 432 0.194

Table 9: Best model depending on variables mass01, mass02, width01, and
width02 while each local model fitted separately using LDA.

In a second idealized step, let us assume that the correct instrument of
a new observation is still known, but we do want a global variable selection
used for all local models. In this case, stepclass variable selection results in
a model including the variables mass01, mass02, width01, and width02, i.e.
the four measures of the first two partials. The corresponding L1o error rate
is 0.194 (see table 9).

4.1 Comparing posterior probabilities

A first straightforward intuition consists in comparing the posterior probabil-
ities of the different local models. This is possible by classifying an object to
the class k̂ with the highest posterior probability (maximum-posterior rule)
of all local models l

k̂ = arg max
k

( max
l

pl(k|x)) (1)
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chosen local models
instrument cel. el.guit. flute french. marim. piano sing. tromb. viol.

cello 0 5 0 1 11 0 0 1 0
elecguitar 8 0 0 0 25 0 0 3 0

flute 4 1 0 0 21 0 0 19 0
frenchhorn 0 0 4 0 32 0 0 0 0

marimba 0 0 0 0 0 0 0 18 0
piano 1 1 0 0 32 0 0 20 0
singer 30 16 11 1 64 1 0 25 5

trombone 2 0 0 0 23 0 0 2 0
violin-viola 2 9 1 0 23 1 0 9 0

Table 10: Frequency of chosen local models when using the maximum-
posterior-rule.

or to that class k̂ possessing the largest average posterior probability aver-
aged over all local models (average-posterior rule).

k̂ = arg max
k

∑
l

pl(k|x) (2)

A third competitor is majority voting of the local classification rules

k̂ = arg max
k

∑
l

I[pl(k|x)>pl(j|x) ∀ j 6= k](k) (3)

The variable subset selection is performed for every local model separately,
leading to possibly different variable subsets of the different local models (=
instruments).
Using the ‘maximum-posterior’ classification rule (equation 1) results in an
error rate of 0.479. Both averaging the local posterior probabilities and
majority voting lead to an improvement of the total error rate to the same
value of 0.391. Table 10 indicates, how often each of the local models is
chosen, when using the ‘maximum-posterior’-rule.

Surprisingly, using the maximum-posterior classification rule (see equa-
tion 1) more than 50% of the chosen local models are of class ‘marimba’.
On the other hand, the singer’s local model is never chosen. Ignoring the
possibly misleading local marimba models for the analysis can slightly but
not dramatically improve the total error rates up to 0.42 (0.365 for averaging
and 0.388 for majority voting).
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4.2 Comparing densities

In some situation an observation may have a large posterior probability of
class k close to one in some local model l even if its density fl(x|k) given this
class (here: the register) and the instrument is very small.
Assume for simplicity equal prior probabilities pl(k) = pl(1) ∀ k, l. Then,

pl(k|x) =
fl(k|x)∑
k fl(k|x)

=
fl(x, k)

fl(x)pl(1)

pl(1)fl(x)∑
k fl(x, k)

=
fl(x|k)∑
k fl(x|k)

. (4)

This means pl(k|x) ∼ 1 if fl(x|k) >> fl(x|j), ∀ j 6= k. For some other class
j1 6= k both inequalities fm(x|j1) >> fl(x|k) and fm(x|j1) > fm(x|k) may
still hold for a different local model m 6= l even if the posterior probability
of this class in model m is smaller than those of class k in model l.
For this reason, densities may be better to be compared rather than posterior
probabilities.
Classification rules may then be derived from (maximum-density rule)

k̂ = arg max
k

( max
l

fl(x|k)) (5)

or (average-density rule)

k̂ = arg max
k

∑
l

fl(x|k). (6)

Comparing the densities of the different local models is questionable if they
are built on different variables. Therefore in this situation the variable selec-
tion has to be performed simultaneously for all local models in common.
Classifying according to the local model with maximum density (see equa-
tion 5) yields a total L1o error rate of 0.354 (see table 11). Averaging over
all local model densities results in an error rate of 0.301.

Note that comparing posteriors and densities yields in identical results
in the case of known subclasses, hence we refer to table 9 for lower error
bounds.

Classifying on the whole data set of all 26 variables without any variable
selection here leads to error rates of 0.368 (maximum-density rule, equation 5)
or 0.366 (averaging, equation 6).

4.3 Global weighting of local models

Simply comparing posterior probabilities or densities of local models may
work well if all instruments have the same probability π(l) to appear. But
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chosen local models
instrument cel. el.guit. flute french. marim. piano sing. tromb. viol.

cello 0 0 2 0 0 1 2 2 11
elecguitar 0 3 9 0 0 2 7 7 8

flute 1 3 14 0 1 6 8 0 12
frenchhorn 0 2 4 0 0 0 0 16 14

marimba 3 2 6 0 6 1 0 0 0
piano 0 4 17 1 0 3 4 6 19
singer 1 6 40 4 0 21 29 24 28

trombone 0 1 5 0 0 2 2 6 11
violin-viola 0 0 11 0 1 0 4 5 24

Table 11: Frequency of chosen local models at maximum-density rule.

these measures do not take into account that on the other hand the proba-
bility of an observed object to belong to this local partition (corresponding
to a certain local model) of the population can be very small. Therefore a
weighting of the posterior probabilities is done in this attempt by performing
a double classification. Besides predicting by the local models, a global step
is added that classifies an observation into one of the local models, returning
posterior probabilities π(l) that the observed tone comes from instrument l.
The result can be used to choose the local model (global model choice rule):

k̂ = arg max
k

pl̂(k|x), (7)

l̂ = arg max
l

π(l). (8)

The local results (in form of local posterior probabilities) also can be weighted
according to the posterior probabilities of the global modelling step (global
model weighting rule):

k̂ = arg max
k

∑
l

pl(k|x)π(l). (9)

Since again posteriors and not densities are compared in this section, the
variable selection can be performed for every local model separately. Also
the variables used for calculating the π(l) in the global step must not be the
same as in any of the local models.
When choosing the local model by LDA and variable selection in the global
step (width02, mass01 ) as in the local step (as used in table 9: mass01,
mass02, width01, and width02 ) this led to an overall error rate of 0.285. But
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the error in choosing the right local model is 0.564. Weighting the local
posteriors by the global posteriors reduces the error to be 0.269.

5 Summary

Classification of register in music is performed using timbre characteristics
of the first 13 harmonics. Especially global classification rules are replaced
by several local ones. Different aspects are shown, how this can be used for
classification, yielding ameliorations of the misclassification rate.
The presented proceeding can be understood as some basis for future work
allowing a more comprehensible and more effective classification of musical
data by issues of local modelling. One topic of further research may take
into account that variable subsets of different local models may differ. At
the moment, comparison of such local models is difficult.
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Research Center ‘Reduction of Complexity in Multivariate Data Structures’
(SFB 475) of the German Research Foundation (DFG).
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