U.S. Department of Energy
[] Lawrence

Livermore

National

Laboratory

="

Preprint
UCRL-JC-144097

The Specifications of
Source-to-source
Transformations for the
Compile-time Optimization
of Parallel Object-oriented
Scientific Applications

D.J. Quinlan, and M. Kowarschik

This article was submitted to
14" Languages and Compilers Conference for Parallel Computing,
Cumberland Falls, KY, August 1 - 3, 2001

June 5, 2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http:/ /www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www lInl.gov/tid/Library.html

The Specification of Source-To-Source
Transformations for the Compile-Time
Optimization of Parallel Object-Oriented
Scientific Applications

Daniel J. Quinlan! and Markus Kowarschik?

! Center for Applied Scientific Computing
Lawrence Livermore National Laboratory, Livermore, CA, USA

% System Simulation Group
Department of Computer Science
University of Erlangen-Nuremberg, Germany

Abstract. The performance of object-oriented applications in scientific
computing often suffers from the inefficient use of high-level abstractions
provided by underlying libraries. Since these library abstractions are not
part of the programming language itself there is no compiler mechanism
to respect their semantics and thus to perform appropriate optimizations,
e.g., array semantics within object-oriented array class libraries which
permit parallel optimizations inconceivable to the serial compiler.

‘We have presented the ROSE infrastructure as a tool for automatically
generating library-specific preprocessors. These preprocessors can per-
form sematics-based source-to-source transformations of the application
in order to introduce high-level code optimizations.

In this paper we outline the design of ROSE and focus on the discus-
sion of various approaches for specifying and processing complex source
code transformations. These techniques are supposed to be as easy and
intuitive as possible for the ROSE users, i.e. for the designers of the
library-specific preprocessors.

1 Introduction

The future of scientific computing depends upon the development of more
sophisticated application codes. The original use of FORTRAN repre-
sented higher-level abstractions than the assembly instructions that pre-
ceded it, but exhibited performance problems that took years to overcome.
The abstractions represented in FORTRAN were at least standardized
within the language; today’s much higher-level object-oriented abstrac-
tions are more difficult to optimize because they are user-defined, which
complicates their optimization.

We present a solution that optimizes parallel object-oriented scientific
application codes using high-level abstractions. So far, our research has

focused on applications and libraries written in C++. However, our ap-
proach can be generalized to cover other languages, like FORTRAN 95
for example.

In contrast to compile-time optimization of basic language abstrac-
tions (loops, operators, etc.), the optimization of the use of library ab-
stractions within applications has received far less attention. Our ap-
proach for optimizing parallel scientific applications, which we call ROSE,
is conceptually simple and elegant. With ROSE, library developers can
define their own customized optimizations and build their own specialized
preprocessors. The use of source-to-source preprocessing provides an effi-
cient means to introduce the custom optimizations into the user’s appli-
cation. Significant improvements in performance associated with source-
to-source transformations have been demonstrated in recent work.

[[Statement/GridSize[5x5 [25x25]100x100]|
w=1 3.0] 1.8 1.3
w=u 3.0] 19 1.3
w=u*2+v*3+u |[13.0 5.0 24
indirect addressing |44.0(41.0 | 32.5
“where” statements|23.0| 5.0 3.0
9pt stencil 77.0| 14.0 5.6
Table 1. Speedups associated with optimizing source-to-source transformations of ab-
stractions within Overture applications.

Recent work in which we used a non-automated approach to intro-
duce source-to-source transformations has demonstrated significant im-
provements in performance. Table 1 shows some of these improvements
for the use of optimizing source-to-source transformations within Over-
ture[3]. Speedups are listed for several common types of statements, the
values are the ratios of execution times with and without the optimizing
source-to-source transformations. In each case the optimizing transforma-
tion results in better performance. The degree of improvement depends
upon the abstraction being optimized within the application code and
the problem size. For example, in the case of indirect addressing the per-
formance improvement for 100x100 size problems is 3250%, showing the
rich potential for indirect addressing optimizations generally. We can ex-
pect that ROSE will duplicate these results through the fully automated
introduction of such optimizing transformations into application codes.

The introduction of parallelism greatly exacerbates the compile-time
optimization problem. While serial languages serve well for parallel pro-
gramming, they know only the semantics of the serial language definition.
The serial compiler cannot introduce scalable parallel optimizations for
example. Significant potential for optimization of parallel applications is
lost as a result. There is a significant opportunity to capitalize upon the
parallel semantics of the object-oriented framework and drive significant
optimizations specific to both shared memory and distributed memory
applications.

Other work exists which is related to our own research. Internally
we have modified SAGE II[6] for our use, NESTORJ8] is a similar AST
restructuring tool for FORTRAN. So a part of ROSE is similar, but
NESTOR does not attempt to recognise and optimize high-level user-
defined abstractions. Work on MPC++{9,10] has led to the development
of a C++ tool which is also similar to SAGE, but adds some additional
capablities for optimization. Neither address the sophisticated scale of
abstractions that we target or the transformations we are attempting to
introduce. Related work on the optimization of libraries at RICE on Tele-
scoping Languages[7] significantly overlaps our own research, though our
approach is quite different.

The remainder of this paper is organized as follows. In section 2 we
give a survey on the ROSE infrastructure: we describe the process of
automatically generating library-specific preprocessors and explain their
source-to-source transformation mechanisms. The main focus of this pa-
per is on the specification of these source-to-source transformations by
the developer of the library. We will thus discuss our various specification
approaches in section 3. In section 4 we finally summarize our work.

2 ROSE Overview

To optimize libraries at compile-time we must construct what is essen-
tially a compiler that knows about both the library and the base language
in which the application is written . In our current case of a C++ library,
which is intended for use with C++ applications, we must construct a
compiler that knows about the C++ language. Such a compiler must also
know all the elements of the library (functions and objects; abstractions
provided to the applications developer by the library developer). With the
assumption that we build a specialized high-level library-specific compiler,

! Nothing fundamental in our approach requires the library to be written in the same
base language as that which the application is written.

all else follows naturally from this simple if not seemingly ambitious re-
quirement. We mention up front that almost all steps required to build
such a library-specific optimizing compiler can be automated.

A single compiler that would generate object code from application
source would not be practical since it would require us to address back-
end code generation issues. This would lead us toward platform-specific
details we wish to avoid. In order to simplify and focus the development of
our library-specific optimizing preprocessor, we therefore uses two phases:

1. Source-to-source preprocessing: We embed all library-specific issues
and the generation of optimized C++ code through source-to-source
transformations.

2. Back-end processing: We use the vendor-supplied C++ compiler to
build the object files from the optimized source code generated in the
first phase.

The advantages of our two-phase code optimization approach can be
summarized as follows:

— It makes the source-to-source processing phase optional, since any
application would have to alternatively be compiled without the use
of the library-specific optimizing preprocessor.

— Since use of the preprocessor is optional, applications using libraries
cannot rely upon the preprocessor to extend the base language, in our
case the C++ language. This feature of our approach strategically
separates the optimization of abstractions from the libraries that im-
plement them. This separation reduces the complexity of the library
and isolates software development issues, resulting in a superior soft-
ware engineering approach.

— Low-level optimizations done by the vendor’s C++ compiler are lever-
aged. While we present an approach to optimize application code we
do not discount the significant added value of the vendor’s compiler
in optimizing the semantics of the base language itself. Back-end pro-
cessing within the vendor’s compiler can be expected to best target
the details of the vendor’s computer architecture.

It is important to mention that no modification of the base language
is possible, since the application/library is expected to work indepen-
dently of the optional optimizing preprocessor. This is ultimately another
strength of our approach since it avoids any deviation from the C++
standard which would lead to portability problems for applications. It
also means that we can leverage a standard base language front-end for

the development of the preprocessor. This has led to our use of the Edi-
son Design Group[5] (EDG) C++ front-end and the SAGE II[6] source
code restructuring tool within our research work. Consequently, the base
level language’s grammar can be reused but modified using constraints to
automatically build higher-level grammars associated with the base level
language and library combination.

Internally the preprocessor’s optimization mechanism contains three
significant steps:

1. Recognition of abstractions within the user’s application code. To sim-
plify the optimization process, this step is automatic. Subsection 2.1
covers this step in more detail.

2. Specification of the transformation to optimize the performance of the
user’s application code. Library developers are expected to specify the
transformations that will be used to optimize the user’s application
code. This is the main focus of this paper. Section 3 concentrates on
this aspect.

3. Design of the preprocessor. In order to generate such preprocessors
this step should be as simple as possible. A goal has been to leverage
existing tools wherever possible. More detail is provided in subsection
2.2.

2.1 Recognition of Abstractions

We recognize abstractions within a user’s application much the same way
a compiler recognizes the syntax of its base language. Grammars are a
conventional form used to define the elements of a language. A grammar
consists of terminals, nonterminals, and product rules. Terminals repre-
sent the smallest units of the language specification. Terminals are often
strings and values, but in our case they are the lowest-level elements
of the base language’s grammar, e.g., for-loop statements, function dec-
laration statements, and variable declaration statements. Nonterminals
represent the result of product rules and are composed of terminals and
other nonterminals. For example, a nonterminal representing a declara-
tion statement might be built from a list of different types of declaration
statements including function declaration statements, variable declara-
tion statements, etc. Parsers go together with grammars and construct
an Abstract Syntaz Tree (AST) associated with an application using the
language described by a given grammar. To recognize high-level abstrac-
tions we build high-level grammars.

The high-level grammars we build are very similar to the base lan-
guage grammar (in our case a grammar for the C++ language), though

not as low-level. The high-level grammars are modified forms of the base
language grammar with added terminals and non-terminals associated
with the abstractions we want to recognize. The high-level grammars
cannot be modified in any way to introduce new keywords, or new syn-
tax, so clearly there are some restrictions. But with these restrictions we
can both add user-defined types, functions, etc. to the grammar and still
leverage the lower-level compiler infrastructure; the parser that builds
the base language AST. New terminals added to the base language gram-
mar might represent specific user-defined functions, data-structures, user-
defined types, etc.

ROSE is based on ROSETTA [1], which is a tool for simplifying the
construction of these grammars and automating the generation of AST
restructuring tools for each grammar. The AST restructuring tools con-
sist of C++ classes that represent elements of the base language’s gram-
mar and higher-level grammars. ROSETTA builds classes to represent
statements (declarations, while-loops, etc.), expressions (assignment, add,
etc.), types, symbols, etc. within ASTs specific to the each grammar. The
individual classes contain member functions to add/remove/modify the
statements, expressions, types that they represent within the AST. In
the case where ROSETTA generates an AST restructuring tool for C++,
the generated AST restructuring tool is essentially a modified version of
SAGE II.

To present a canonical example, we consider the case of a class X
defined in a C++ class library and a C++ application using objects of
type X. Two grammars will be defined using ROSETTA:

1. C++ Grammar: The C++ grammar is built independent of class X,
since X is not a part of the C++ language formally. The non-shaded
parts of figure 1 show a simplified class hierarchy representing the AST
restructuring tool associated with the C++ Grammar. This C++
AST restructuring tool is an automatically generated and modified
version of the SAGE II source code restructuring tool[6].

2. X Grammar: Figure 1 shows a simplified class hierarchy of the AST re-
structuring tool associated with a high-level grammar. The X grammar
is essentially a copy of the C++ grammar with additional terminals
and nonterminals. ROSETTA is used to define the higher-level gram-
mar and build the associated AST restructuring tool. The additional
terminals and nonterminals in the grammar include:

— a terminal representing a named class with the constraint that the
class name is “X”,
— a subtree of all possible expressions to be considered X expressions,

— a subtree of all possible statements to be considered X statements,
and

— a subtree of all possible types to be considered X types (pointer
types, reference types, etc.).

The class hierarchy representing the AST restructuring tool shown in
this figure is greatly simplified, the actual class hierarchy would include
hundreds of additional terminals for a language as complex as C++. This
grammar at first appears to be more complex since it duplicates numer-
ous terminals (X and non-X versions). However, this grammar is simpler in
one critical respect, it allows us to recognize the use of types, expressions,
and statements of type X. Additionally, this simplicity permits parsers,
which transform the C++ AST into the X AST, to be automatically
built. These parsers will automatically classify elements of the C++ AST
and recognize the use of X objects as used in all possible contexts within
the C++ language (expressions, statements, etc.). The use of higher-level
grammars in this way acts to filter the application of high-level abstrac-
tions. Thus our approach classifies high-level abstractions as expressions
and statements with the same precision as the base language compiler
(i.e. the C++ compiler). The output of the parsing of the C++ AST
using the X grammar is an X AST. With each high-level grammar there is
an associated AST and a parser that generates the high-level AST from
the lower-level AST. The parent of the X Grammar is the C++ Gram-
mar, more complex hierarchies are conceivable. The lowest-level grammar
within any such hierarchy of grammars is always the C++ grammar. In
the processing of an application code the C++ AST would be generated
internally by ROSE using the EDG and SAGE infrastructure.

Our approach trades the sizes of the grammars and the associated
AST restructuring tools for the simplicity of their generation. It also sim-
plifies the generation of supporting parsers and related tools for manip-
ulating the ASTs. Through this simplification these grammars and their
supporting infrastructure can be automatically generated from the files
that implement the libraries containing the abstractions.

Although we have merely focused on C++ as the base language so
far, our approach can be expected to be refined as part of our research to
define it in sufficient generality to support different languages like e.g., C
and FORTRAN 95.

It is inevitable to provide to the library designer a means of describing
the optimizing transformations in an intuitive manner. The specification
of these source-to-source transformations is the main focus of this pa-

wpst
-~
Root of -
Grammar @
h
nal

X posotes.type>
othr X tydes.
exprisplons
/by »etomite.
_________ $
,
T s> o> |\
\ \ \ X 5 IR function type table QB
| \ o
———"_ |\ = i
\\ S Ce o s

delete expression Z X AN - -
other statements other X statements -
other expressions yihe PEEsONS.

Fig. 1. A simplified graph of the class hierarchy of classes representing the AST restruc-
turing tool for the higher-level grammar associated with a user-defined X abstraction.

per. Our specification approaches will therefore be discussed in detail in
section 3.

2.2 Preprocessor Design

Figure 2 shows how a preprocessor, which has automatically been gen-
erated using ROSE, performs the specified source-to-source transforma-
tions. The following describes the specific steps:

1. The first step generates the EDG AST, this program tree has a pro-
prietary interface and is therefore parsed in the second step to form
the C++ Grammar’s AST.

2. The second step parses the EDG AST and builds the AST associ-
ated with the C++ grammar, as defined by ROSETTA. This step
correlates closely to the work done within SAGE II. In our case we
use ROSETTA to automatically generate an AST restructuring tool
equivalent to significant parts of SAGE II plus AST restructuring
tools associated with higher-level grammars. The AST is presented
in a form where it can be modified with a non-proprietary public
interface. At this second step the original EDG AST is deleted and
afterwards it is unavailable.

Recognition of High-Level Abstractions
Construction of Hierarchy of ASTs

FAOSETTA G4+ High-Level AST Restructuring Tool

Preprocessor Built Using ROSE

Fig. 2. Source-to-source C++ transformation with preprocessors using the ROSE in-
frastructure.

3. In the third step the C++ Grammar’s AST is parsed into higher-level
ASTs using higher-level grammars. These higher-level grammars are
constructed by adding new nonterminals to the base level C++ gram-
mar. Each parent AST parses itself into all of its child ASTs so that
the hierarchy of ASTs is associated with a corresponding hierarchy of
grammars (one for each AST).

4. In the forth step transformations are applied and modify the par-
ent AST recursively until the AST associated with the original C++
grammar is modified. At the end of this forth step all transformations
have been applied.

5. The fifth step is simply to unparse the AST associated with the C++
AST to generate optimized C++ source code. This completes the
source-to-source preprocessing.

An obvious next and final step is to compile the resulting optimized
C++ source code using the vendor’s C++ compiler.

3 Specification of Transformations

Transformation
L Specific Input .
Application Transformation
Specific Input Specific input
Compiler Front-End
AST Fragment Gelr:1erates /:‘ST Instructions for
to be ragments Assembly of
Transformed AST Fragments
v
Analysis of
AST Fragment

Transformation’s AST

Fig. 3. An overview of approaches to the specification of transformations.

This paper is primarily about the specification of transformations for
use within ROSE. The purpose of the transformation is to locally rewrite
a statements or a collection of statements (what we will call the target)
using the semantics of the high-level abstraction being optimized and the
context of its use within the application. Within ROSE we have used two
approaches previously and are presently developing an improved mecha-
nism. The final paper will report on all three approaches to the specifi-
cation of transformations. We are particularly interested in cache-based
transformations. Such transformations can be hundreds of lines of code
and quite complex. Thus we require an approach that can be expected to
scale to large transformations. Additionally, since we intend our users to

be library developers, we can expect a reasonable degree of sophistication,
but no significant depth of knowledge about compilers.

Figure 2 shows the individual phases associated with the introduction
of source-to-source transformations. The block representing the process-
ing of the AST, AST Transformation, is divided into additional detail in
figure 3.

All transformations share a common set of requirements. Internally
the application has been parsed to build the AST using either the C++
grammar or a higher-level grammar, this forms the starting point for inter-
nal processing of the AST. The ending point is the modified AST, which
is subsequently unparsed to form the optimized code within our source-
to-source preprocessing mechanism. We rely upon the recognition of the
high-level abstractions to drive the introduction of the transformations.
Thus no qualification is required as a preprocessing step to determine if
transformations should be done. The process is simple and automatic by
definition.

The definition of the interface for the specification of transformations
is relatively simple within ROSE. Inputs are fragments of the applica-
tion’s AST (using the C++ grammar) representing C++ code that will
be optimized. Outputs are the AST fragments representing the transfor-
mation to be edited (substituted) into the application’s AST to replace
the fragment of the AST representing a part of the application being op-
timized. It is the responsibility of the transformation to reproduce the
semantics of the statement or collection of statements being substituted.
Ultimately, it is the responsibility of the library developer to correctly
specify the transformation which represents the semantics of the high-
level abstraction being optimized.

3.1 Direct Construction of the AST Representing the
Transformation

Figure 4 represents our most manual approach using the low-level SAGE
objects to construct the AST representing the transformation directly.
This approach leverages the user interface represented with the AST
restructuring tools (essentially SAGE). The classes are defined within
SAGE and built by ROSETTA, representing the numerous different ex-
pressions, statements, types, etc. defined within the C++ language. These
elements are used to represent the AST internally, and can, in an admit-
tedly tedious fashion, be used to construct AST fragments directly. The
process is extremely low level and in practice only marginally useful for
the construction of transformations.

AST Fragment to
be Transformed

- C++ Code to build
Transformation’s AST
Using SAGE Objects
Directly

Transformation’s AST

Fig. 4. A direct approach to the construction of the transformation’s AST using SAGE
objects.

3.2 Source Code Based Specification of Transformations
Without Interpretation

Beyond the approach to building the AST directly, we have developed
alternative approaches that use the C-++ compiler infrastructure to build
the AST in predefined pieces that can be assembled into the final transfor-
mation with some additional knowledge about the code being optimized.
Figure 5 represents this approach which is far more scalable since pieces
of any size may be represented as C++ code and the required AST can be
generated automatically. This approach uses the specification of code as
a mechanism to specify the AST tree fragments indirectly, but contains
no information about how to assemble the AST fragments into the ASTs
representing the final transformations.

AST Fragment to
be Transformed

User-Specified
Source Code Fragments |.
of Transformation

-

Compiler Front-End
Generates AST
Fragments

Transformation’s AST

Fig. 5. Approach using source code fragments processed into AST fragments without
interpretation.

3.3 Source Code Based Specification of Transformations
With Interpretation

This approach, presented in figure 6, is similar to the previous approach,
but adds interpretation of the AST fragments. The interpretation permits
control structures in the AST to modify the assembly of the AST frag-
ments to form the final AST representing the transformation. As a result
of this interpretation this approach is more programmable, permitting a
greater level of generality in what transformations can be expressed.

3.4 Transformation Source Code Assembly via String Based
Manipulation

Within this approach significantly more detail can be expressed about how
the AST tree fragments are to be assembled into the final transformation
into the specification. This specification consists of strings representing
AST fragments and C++ code to assemble the final transformation repre-
sented as a string. The final AST form of the transformation is obtained

AST Fragment to User-Specified
be Transformed {:4Source Code Fragments:
of Transformation

-

Compiler Front-End
Generates AST
Fragments

Analysis and
Interpretation

Transformation’s AST

Fig. 6. Approach using source code fragments processed into AST fragments with
interpretation.

by parsing (using ROSE infrastructure). This mechanism leverages the
C++ compiler to define an executable that generates the transformation,
thus it is fully programmable. The specification is the program that gener-
ates the Transformation (a C++ application). This approach requires no
special knowledge, nor does it use any sophisticated library (just strings).

4 Conclusions

Figure 8 shows a comparison of the different approaches to the specifica-
tion of transformations. In this figure we compare the relative complexity
of specifying the transformations (a qualitative evaluation) vs. the ex-
pressability (programmability) of the approach. Clearly the lower right
corner of the plot is where the most disirable appraoch will be positioned;
both simple and able to handle any sort of transformation (expressive).
While we have experence with the first two appraoches our final paper
will present experiences with the additional appraoches and more de-
tailed comparisions of their advantages and disadvantages. Certainly the

AST Fragment to
be Transformed

User-Defined |
Source Code Generation |-

Analysis of | of Transformation
AST Fragment
9 ru
Compiler Front-End
Generates

Transformation’s AST

Transformation’s AST

Fig. 7. Approach using transformation source code assembly based on string manipu-
lation.

approaches attempted to date have been less than satisfactory, though
the more automated construction of the AST using code fragments was a
dramatic improvement over that of the first more direct approach to the
program-directed construction of the AST.

References

1. Quinlan, D., Philip, B. "ROSETTA: The Compile-Time Recognition Of Object-
Oriented Library Abstractions And Their Use Within Applications,” Proceedings
of the PDPTA’2001 Conference, Las Vegas, Nevada, June 24-27 2001

2. Quinlan, D. "ROSE: Compiler Support for Object-Oriented Frameworks” Parallel
Processing Letters, Vol. 10, Also presented at Conference on Parallel Compilers
(CPC2000), Aussois, France, January 2000.

3. Brown, D., Henshaw, W., Quinlan, D. "OVERTURE: A Framework for complex
geometries” Proceedings of the ISCOPE’99 Conference, San Francisco, CA, Dec
7-10 1999.

4, ATLAS homepage, http://www.netlib.org/atlas/.

5. Edison Design Group, http://www.edg.com.

Complex
A

Simple

Less General » More Generai

Fig. 8. The spectrum of complexity vs. generality. Clearly the best approach will ulti-
mately be both simple and expressible (more general).

6. F. Bodin et. al. ”Sage++: An object-oriented toolkit and class library for buildiing
fortran and C++ restructuring tools” Proceedings of the Second Annual Object-
Oriented Numerics Conference, 1994.

7. Bradley Broom, Keith Cooper, Jack Dongarra, Rob Fowler, Dennis Gannon,

Lennart Johnsson, Ken Kennedy, John Mellor-Crummey, and Linda Torczon,

"Telescoping Languages: A Strategy for Automatic Generation of Scientific

Problem-Solving Systems from Annotated Libraries,” Journal of Parallel and Dis-

tributed Computing, (2000).

Georges-Andre Silber, http://www.ens-1lyon.fr/~gsilber/nestor.

9. Ishkawa et. al. Design and Implementation of Metalevel Architecture in C++ -
MPC++ Approach -. In Proceeding of Reflection’96 Conference, April 1996 more
info available at: http://pdswww.rwcp.or.jp/mpc++/mpc++.html

10. Shigeru Chiba Macro Processing in Object-Oriented Languages In Proc.

of Technology of Object-Oriented Languages and Systems (TOOLS Pa-
cific '98), Australia, November, IEEE Press, 1998. more info available at:
http://www.hlla.is.tsukuba.ac.jp/~chiba/openc++.html

®

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405 -Eng-48.

