
Achieving the Promise of Reuse with Agent
Components

Martin L. Griss1 and Robert R. Kessler2

1 Computer Science Department 349BE, University of California, Santa Cruz
1156 High Street, Santa Cruz, CA 95064

griss@soe.ucsc.edu
http://www.soe.ucsc.edu/~griss

2 University of Utah, School of Computing, 50 S. Central Campus Dr. #3190,
Salt Lake City, UT USA 84112

kessler@cs.utah.edu

Abstract. Using software agents as next generation flexible components and
applying reuse technologies to rapidly construct agents and agent systems have
great promise to improve application and system construction. Whether built on
conventional distributed computing and application management platforms, on
a specialized agent platform, on web service technology or within a P2P
infrastructure, agents are a good match for independent development, for
scalable and robust systems and dynamic evolution of features, and for
autonomic self-managing systems. In this paper we describe the vision and
progress we have made towards developing a robust infrastructure, methods,
and tools for this goal.

1 Introduction

For some time now, component-based software engineering (CBSE) has promised,
and indeed delivered, significant improvements in software development [1]. Greater
reuse, improved agility and quality are accessible benefits. CBSE produces a set of
reusable assets (usually components) that can be combined to obtain a high-level of
reuse while developing members of a product-line or application family. Typically,
one first performs domain analysis to understand and model commonality and vari-
ability in the domains underlying the product-line, and then a layered modular archi-
tecture is defined, specifying layers and core components, key subsystems and
mechanisms. Finally, high-level specifications and interfaces are defined for plug-
gable or generated components. Implementation begins with the development or se-
lection of a framework that implements one or more layers of the architecture. Deliv-
ering the reuse potential as a well-designed domain-specific kit carefully allocates
variability to a combination of components, frameworks, problem-oriented languages,
generators and custom tools [2].

Once this is done, components can be (largely) independently developed, or in
closely related sets, doing detailed design and careful implementation of components
and generator templates. Sometimes, when defects are to be repaired or new features

http://www.soe.ucsc.edu/~griss

Martin L. Griss1 and Robert R. Kessler2

added, it is a simple matter of enhancing a component or developing a new conform-
ing component. However, at other times, the architecture has to be changed, new in-
terfaces must be defined, and change ripples to many components.

Software agents offer great promise to build loosely-coupled, dynamically adaptive
systems on increasingly pervasive message-based middleware, P2P and component
technology, Java, XML, SOAP and HTTP[3]. Agents are specialized kinds of dis-
tributed components, offering greater flexibility than traditional components. There
are many kinds of software agents, with differing characteristics such as mobility,
autonomy, collaboration, persistence, and intelligence. Research in our group, previ-
ously at Hewlett-Packard Laboratories [4],[5], and now at UC Santa Cruz in collabo-
ration with the University of Utah, is directed at the use of multi-agent systems in the
engineering of complex, adaptive software systems. An important step is to simplify
and improve the engineering and application of industrial-strength multi-agent sys-
tems and intelligent web-services to this problem. The research integrates several dif-
ferent areas, combining multi-agent systems, component-based software engineering,
model-driven software reuse, web-services, and intelligent software.

In this paper, we will highlight some of the issues and our progress involved in
making this step toward more robust, scalable and evolutionary systems using agent
components and reuse techniques.

2 Multi-agent systems

Multi-agent based systems have several characteristics that support the development
of flexible, evolving applications, such as those behind E-commerce and web-service
applications. Agents can dynamically discover and compose services and mediate in-
teractions. Agents can serve as delegates to handle routine affairs, monitor activities,
set up contracts, execute business processes, and find the best services [6]. Agents can
manage context- and location-aware notifications and pursue tasks. Agents can use
the latest web-based technologies, such as Java, XML and HTTP, UDDI, SOAP and
WSDL. These technologies are simple to use, ubiquitous, heterogeneous and platform
neutral. XML will become the standard language for agent-oriented interaction, to en-
code exchanged messages, documents, invoices, orders, service descriptions and other
information [7], [8]. HTTP, the dominant WWW protocol, provides many services,
such as robust and scalable web servers, firewall access and levels of security.

An overview of agent capabilities from a large-scale AOSE/CBSE perspective can
be found in books ([9],[10],[11]), papers ([6],[12],[13],[14],[15]) and web sites
(http://agents.umbc.edu/ , http://www.hpl.hp.com/reuse/agents).

While there are many definitions of agents, many people agree that: "an autono-
mous software agent is a component that interacts with its environment and with
other agents on a user's behalf." Some definitions emphasize one or another aspects
such as mobility, collaboration, intelligence or flexible user interaction. Organizations
such as FIPA (Foundation for Intelligent Physical Agents) are defining reference
models mechanisms and agent communication language standards [16].

There are several different kinds of agent system [17]; our work at Hewlett-
Packard Laboratories [4] focused on two types of agents:

http://agents.umbc.edu/
http://www.hpl.hp.com/reuse/agents

Achieving the Promise of Reuse with Agent Components 3

• Personal agents interact directly with the user, presenting some "personality" or
"social skills," perhaps as an anthropomorphic character, monitoring and adapting
to the user's activities, learning the user's style and preferences, and automating
or simplifying certain rote tasks. Examples include meeting scheduling agents,
mail agents, software development, etc.

• Collaborative agents communicate and interact in groups, representing users,
organizations and services. Multiple agents exchange messages to negotiate,
share information, etc. Examples include online auctions, planning, negotiation,
logistics and supply chain and telecom service provisioning.

In particular, in our prototyping we use personal agents as 24/7 user representatives
to find, organize and interact with a set of collaborating team and service agents for
meeting arrangers, e-commerce systems and email management [4],[5].

Many varieties of agent system and toolkits have been developed and described in
the literature or on the web. Recently, even numerous Java-based, FIPA compliant
systems are seeing use in the wider community. We have done most of our work us-
ing two Java-based toolkits: ZEUS [18] and JADE [19].

In the rest of the paper, we discuss agents as next-generation components and dis-
cuss some features and variants appropriate to the integration of reuse and agent tech-
nologies. We then discuss our research program and summarize the progress we have
made to date, with an emphasis on our latest results in model-driven agent behavior
choreography.

3 Agents as Next Generation Components

Multi-agent systems have a number of features that make them attractive for highly
dynamic, evolving applications, in which a multiplicity of external systems, services,
users, appliances and developers interact and change. These features are related to
those of components, web services, workflow, and rule-based systems, but in combi-
nation provide a distinct software engineering capability. Agent systems are described
with many different sets of features; the ones we find most compelling, and plan to
exploit and extend in our research are discussed in detail in [17],[20],[21] where we
provide a graphical model and discuss several of the characteristics of a typical agent
system. As indicated, the more of each of these attributes, the more agent-like the
component system becomes, and the more appropriate the use of an Agent-Oriented
Software Engineering (AOSE) approach. These characteristics are supported by
mechanisms and interfaces in the underlying infrastructure, as well as by models and
policies configured in each agent or group of agents.

The key aspects that make agents suitable as next generation components [3], [17],
include:

• Loosely coupled, message-oriented. The components conform to a message-
oriented rather than method-oriented framework. As components, they have a dy-
namic component lifecycle; as agents, they can introspect on their own state, lead-
ing to some degree of self-management, and negotiate with other agent-
components for services. The coupling is loose, similar to that obtained with a

Martin L. Griss1 and Robert R. Kessler2

software bus; typically agents are not built assuming the existence of other specific
components. Services are invoked by sending messages, and multiple agents can
respond to those messages, or an appropriate agent found by searching for them
dynamically, and have alternative strategies and exception handling for coping
with the absence of a needed agent service. Dynamic registration and discovery of
components by name and features, and the loose coupling are a much greater de-
gree of independent development. A new agent can be loaded and activated while
the system is running, and can be found on next lookup.

• Reactive and proactive autonomy – Agents pursue their own agendas of activi-
ties, and respond to and initiate asynchronous events. Typically they have explicit
representations of goals, tasks, priorities, plans, and so can make quite significant
adjustments in behaviors when exceptional conditions are discovered, if other
agents disappear, or if they refuse to respond. The key is to treat an agent as a col-
lection of reactive behaviors, not just a collection of methods. Agent communica-
tion languages and protocols provide a clear framework and expectation of errors,
timeouts and service refusals that are to be explicitly handled.

• Collaboration and coordination – Techniques and models to choreograph a
planned or ad hoc society of agents. These include workflow, and state machines,
sub-goal delegation and management. Most interesting is emergent behavior as
new agents are added, discover each other, and a growing capability.

• Adaptability and intelligence – Agents can learn from experience, and adjust
themselves to changing situations. We have explored a tasteful integration of ma-
chine learning, rule-based and information retrieval techniques, with a black-
board/event-bus style coordination of independent elements.

• Other salient attributes – Each agent can be responsible for autonomic self-
management, load balancing, etc. We can exploit component and reuse technolo-
gies such as frameworks, patterns, generators, and aspects to build individual
agents and compatible societies of agents. In particular, the decomposition of be-
haviors and corresponding protocols across members of a multi-agent society are
amenable to a natural aspect-oriented realization.

Agent-oriented software development extends conventional component development,
promising more flexible componentized systems, less design and implementation
time, and decreased coupling between the agents. In the same way that models, col-
laborations, interaction diagrams, patterns and aspect-oriented programming help
build more robust and flexible component and component systems, the same tech-
niques can be applied to agent components and agent systems
[10],[13],[14],[20],[22],[23]

Agent infrastructures provide services and mechanisms so that agents have fewer
yet richer interfaces, increasing opportunities for dynamic composition. Agent-
oriented programming (AOP) [15], and methods such as GAIA [14] decomposes
large complex distributed systems into relatively autonomous agents, each driven by a
set of beliefs, desires and intentions (BDI). An agent-oriented developer creates a set
of agents (with different beliefs and goals) that collaborate among themselves by ex-
changing carefully structured messages.

Achieving the Promise of Reuse with Agent Components 5

4 Progress Towards Reuse Engineering with Agent Components

Our vision is fairly ambitious, and thus we report on a work in progress so far. We do
not yet have a complete, coherent solution. Our research agenda towards the system-
atic integration of reuse and agent technology has two primary goals:

• Treating software agents as loosely-coupled next-generation components. This
yields components and frameworks that are more flexible, adaptable, robust and
self-managing, combining agents, workflow and services. We build on existing
agent systems, standards and infrastructure such as JADE, ZEUS, FIPA, JAS and
J2EE.

• Applying software reuse and model-driven development techniques to the rapid
and problem-specific construction of multi-agent systems. This exploits combina-
tions of technologies such as customizable components, patterns, micro-
frameworks, aspect-oriented composition, domain-specific kits, generators, visual-
builders and use of UML to generate multi-agent protocols and behaviors, and
complete agent systems.

Work so far has comprised several threads, and produced several results:

• Developing a robust, industrial-strength infrastructure for agent operations; this has
been done by delivering our agents as compatible services in a J2EE environment,
producing a system called BlueJADE [24],[25].

• Developing UML-based tools, and some UML extensions to model groups of
agents and the protocols between agents[22]. We will discuss this recent work in
more detail in the next section.

• We have analyzed the multi-agent architectures and behavior engines of several
agent platforms, notably ZEUS, JADE and FIPA-OS [26],[27] and are now ready
to embark on a refactoring and reengineering of these systems to make the basic
parts more reusable and composable. Some guidance is provided by the Java Agent
Specification (http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/jas/)

• We are developing a more complete reuse-based model-driven methodology, inte-
grating feature-oriented domain-analysis and use-case driven development to
model families of systems, followed by a combination of patterns for collabora-
tions, component-based and aspect-oriented generation of components [20]. This
leads to a highly incremental development model, which deals with both agent so-
cieties and individual agents.

5 Model-driven Agent Behavior Choreography

A key mechanism that makes multi-agent systems highly flexible, but initially more
complex, is the interaction between agents using structured messages. Instead of the
interaction between agent components being described by multiple, distinct interfaces
defined using an IDL, a standard agent communication language (ACL) is used
through a single interface.

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/jas/

Martin L. Griss1 and Robert R. Kessler2

A component-interface contains a syntactic description of each method, its parame-
ter names and types, return values, and possible exceptions; typically the semantics is
implicit, and must be understood from documentation. Instead of defining many inter-
faces and methods, the agent approach is to use a simple interface with more com-
plex, structured messages. These messages can be extended dynamically as the sys-
tem evolves, avoiding a costly re-design and re-implementation.

Of extreme interest in this message-based multi-agent setting is how to coordinate
the interactions in the form of message-exchange between multiple agents. While
some agents are used individually, groups of agents can collaborate to perform more
complex tasks. For example, to purchase books, a group of agents will exchange mes-
sages in a conversation to find the best deal, bid in an auction, arrange financing, se-
lect a shipper, and track the order. Other B2B interactions include service provision-
ing, supply chain, negotiation, and fulfillment. The grouping can be static or dynamic.
The conversation can be between people and agents, or between agent and agent, or a
mix. Groups can be statically or dynamically determined.

We need to coordinate the interactions between the agents to achieve a higher-level
task, such as requesting, offering and accepting a contract for some services. We call
this "choreography" or "conversation management.” An agent group will have a series
of stylized message exchanges to accomplish this task, perhaps by advertising and us-
ing a brokered service, bidding during an auction, responding to a call for proposals,
or negotiating a price.

There are several possible levels of choreography of the expected message se-
quences, depending on the need for a relatively "loose" or more "tight" control of al-
lowed interactions [17], ranging from built-in handling of certain conditions such as
time-outs and exceptions, to rule-based systems, and state-machines and workflow
for protocols. While earlier work combined workflow and agents [21],[28],[29], we
have most recently focused on combining rules and hierarchical state machines
• Rules - A set of rules can be defined for any agent, or community of agents. For

example, to determine how long to wait for a response, the number of other agents
an agent can talk to at one time, and what sort of responses to make to a specific
message from various types of agent. Not all request/response patterns are con-
strained by the rules; rules can be used where appropriate to select which messages
to respond to, and how to respond. A standard rule language can be used, such as
the forward chaining rule system provided by ZEUS [18], or our use of JessTM with
JADE.

• Conversation protocols - Often a group of agents must "lock-step" through a stan-
dard protocol of messages; if A says "x" then B says "y". For example, bidding
during an auction, or responding to a call for proposals. These protocols can be ex-
pressed as FIPA protocol diagrams, UML interaction diagrams, finite state ma-
chines, UML state charts or Petri-nets. Each participant can have the same or a
compatible model, stepped through explicitly to determine the action and response
any incoming message. Our work has used UML state charts [22].

Our current approach uses hierarchical state machines to define the detailed flow of
messages, rules to act as message filters, and a rule-based flexible action language for
the semantics. Rather than extending interaction diagrams, as done in AUML, we
have directly used hierarchical UML State Machines, embedding an event-driven

Achieving the Promise of Reuse with Agent Components 7

state machine engine within the JADE behavior mechanisms. We developed a visual
tool (using Visio) and a set of Java templates and libraries that allow us to completely
generate agent behavior code from a UML model [22]. One of the primary benefits of
full hierarchical state machines is that we can neatly factor typical exceptional and
common timeout behaviors into surrounding composite states, allowing the nested
state to focus on the main part of the protocol. We are now working on a way of gen-
erating a set of agents and a set of compatible protocol parts by hierarchically decom-
posing a single state machine describing the agent society into a set of independent
state machines. A reengineered version of this event-driven, state machine behavior
engine and generator will be released to the JADE community early in 2003.

6 Related Work

AUML [13] extends UML with enhanced interaction diagrams to make more explicit
some of the message and protocol handling. UML models of vocabularies, workflow,
role diagrams, patterns, and feature trees will drive aspect-oriented generators to cre-
ate highly customized agent systems [20],[23], The Iconic Modeling Tool [30] uses
visual techniques and UML to assemble and control mobile agent programs and itin-
erary, using a variant of interaction diagrams to show connections.

Agents and workflow can perform a range of simple or complex workflow- like
tasks, such as automatic notification via email of the availability of a report, sending a
reminder or re-scheduling a meeting [1], or negotiating on a users behalf [6]. Several
authors have explored workflow as an important part of the choreography of multiple
agents: a light-weight, dynamic agent infrastructure in Java ([29],[29]), supports "on
demand," dynamic loading of new classes to extend agents with domain-specific
XML interpreters, new vocabulary parsers or workflow. Agents can collaborate to
perform a workflow, e.g., telecom provisioning (BT), or service provisioning (HP).
Agents can represent the participants and resources, the society of agents collaborate
to enact the workflow[32]. Agent systems have been used to implement or augment
workflow systems ([10], [33], [34]).

Gschwind’s Agent Development Kit (ADK) provides an AgentBean model to al-
low some agents to be assembled from smaller Java-bean components [31]. ZEUS in-
cludes a visual generator of agent systems from role models [18]. Kendall uses agent
role models and patterns to feed an aspect-based implementation [23].

7 Conclusions

Multi-agent technologies will combine with web-service technologies to produce a
robust environment for constructing complex, adaptive systems. To help make this
adoption and mainstreaming of agent technologies happen soon, we need to produce
robust agent platforms, integrated with J2EE and web-service platforms, and create
powerful agent construction toolkits, model-driven generators, and visual builders to
quickly define and generate (large parts of) of individual agents and agent systems.

Martin L. Griss1 and Robert R. Kessler2

We expect UML, AUML, and workflow techniques to play a large role in the defini-
tion, generation and execution of choreographed multi-agent interactions.

Further research and experimentation is needed to make it easier to define and im-
plement different agent systems directly in terms of their features and capabilities. An
agent, or set of compatible agents, will be constructed by combining aspects and
components representing key capabilities.

References

1. Heineman, G., Councill, W.(eds): Component-Based Software Engineering, Addison-
Wesley (2001)

2. Griss, M., Wentzel, K.: Hybrid Domain-specific Kits, Journal of Systems and Soft-
ware, Sep (1995)

3. Griss, M., Pour, G.: Accelerating Development with Agent Components, IEEE Computer,
34(5): 37-43, May (2001)

4. Griss, M., Letsinger, R., Cowan, D., Sayers, C., VanHilst, M., Kessler, R.: CoolAgent: In-
telligent Digital Assistants for Mobile Professionals - Phase 1 Retrospective, HP Laborato-
ries report HPL-2002-55(R1) , July (2002)

5. Fonseca, S., Griss, M., Letsinger, R.: An Agent-Mediated E-Commerce Environment for
the Mobile Shopper, HPL-2001-157, June (2001)

6. Maes, P., Guttman, R., Moukas, A.: Agents that buy and sell, Communications of the
ACM, Vol.42, No.3, March (1999) 81-91

7. Glushko, R., Tenenbaum, J., Meltzer, B.: An XML framework for agent-based E-
commerce. Communications of the ACM, Vol.42, March (1999)

8. Meltzer, B., Glushko, R.: XML and Electronic Commerce, ACM SIGMOD. 27.4 Decem-
ber (1998)

9. Huhns, M., Singh, M.: Readings in Agents, Morgan-Kaufman, (1998)
10. Jennings, N., Wooldridge, M.: Agent Technology, Springer (1998)
11. Bradshaw, J.: Software Agents, MIT Press, (1997)
12. Genesereth, M., Ketchpel, S.: Software Agents, Communications of the Association for

Computing Machinery, July (1994), 48-53
13. O’Dell, J.: Objects and Agents Compared, Journal of Object Technology, Vol 1, Number

1, May, (2002); also http://www.auml.org/
14. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology For Agent-Oriented

Analysis And Design, AAMAS (2000)
15. Shoham, Y.: Agent-Oriented Programming, Artificial Intelligence, Vol. 60, No. 1, (1993),

139-159.
16. O’Brien, P., Nicol, R.: FIPA: Towards a standard for intelligent agents. BT Technical

Journal, 16(3), (1998); also http://www.fipa.org
17. Griss, M.: My Agent Will Call Your Agent, Software Development Magazine, Feb (2000)
18. Nwana, H., Nduma, D., Lee, L., Collis, J.: ZEUS: a toolkit for building distributed multi-

agent systems, in Artificial Intelligence Journal, Vol. 13, No. 1, (1999) 129-186; also
http://more.btexact.com/projects/agents/ZEUS

19. Bellifemine, F., Poggi, A., Rimassi, G.: JADE: A FIPA-Compliant agent framework, Proc.
Practical Applications of Intelligent Agents and Multi-Agents, April (1999), 97-108; also
http://sharon.cselt.it/projects/jade

20. Griss, M.: Implementing Product-Line Features By Composing Component Aspects, Pro-
ceedings of 1st International Software Product Line Conference, Denver, Colorado, Au-
gust (2000)

http://www.auml.org/
http://www.fipa.org/
http://more.btexact.com/projects/agents/ZEUS
http://sharon.cselt.it/projects/jade

Achieving the Promise of Reuse with Agent Components 9

21. Griss, M.: Software Agents as Next Generation Software Components, In Component-
Based Software Engineering, George T. Heineman & William Councill (eds), Addison-
Wesley, May (2001)

22. Griss, M., Fonseca, S., Cowan, D., Kessler, R.: Using UML State Machines Models for
More Precise and Flexible JADE Agent Behaviors, HPL 2002-298(R) and AAMAS
AOSE workshop, Bologna, Italy, July (2002)

23. Kendall, E.: Role Model Designs and Implementations with Aspect-oriented Program-
ming, in Proc. of OOPSLA 99, Denver, Co., ACM SIGPLAN, Oct, (1999) 353- 369

24. Cowan, D., Griss, M.: Making Software Agent Technology Available to Enterprise Appli-
cations, 1st International Workshop on Challenges in Open Agent Systems, AAMAS'02,
Bologna, Italy, July (2002)

25. Cowan, D., Griss, M., Kessler, R., Remick, B., Burg, B.: A Robust Environment for Agent
Deployment , AAMAS 2002 - Workshop on Challenges in Open Agent Environments,
Bologna, Italy, July (2002)

26. Fonseca, S., Griss, M., Letsinger, R.: Agent Behavior Architectures - A MAS Framework
Comparison, AAMAS 2002 - 1st International Conference on Multi-Agent Systems and
Applications; also, HPL-2001-332, Dec (2001)

27. Fonseca, S., Griss, M., Letsinger, R.: Evaluation of the ZEUS MAS Framework, HPL-
2001-154, June (2001)

28. Chen, Q., Chundi. P., Dayal, U., Hsu, M.: Dynamic Agents for Dynamic Service Provi-
sioning, Intl. Conf. on Cooperative Information Systems, August (1998)

29. Chen, Q., Hsu, M., Dayal, U., Griss, M.: Multi-Agent Cooperation, Dynamic Workflow
and XML for E-Commerce Automation, Autonomous Agents 2000, June (2000), Barce-
lona

30. Falchuk, B., Karmouch, A.: Visual Modeling for Agent-Based Applications. IEEE Com-
puter, Vol. 31, No. 12, December (1998), 31 - 37

31. Gschwind, T., Feridun, M., Pleisch, S.: ADK - Building Mobile Agents for Network and
Systems Management from Reusable Components, in Proc. of ASA/MA 99, Oct, Palm
Springs, CA, IEEE-CS, pp 13-21; also http://www.infosys.tuwien.ac.at/ADK/

32. Sutton Jr., S., Osterweil, L.: The design of a next generation process programming lan-
guage, Proceedings of ESAC-6 and FSE-5, Springer Verlag, (1997) 142-158

33. Kaiser, G., Stone, A., Dossick, S.: A Mobile Agent Approach to Light-Weight Process
Workflow, In Proc. International Process Technology Workshop, (1999)

34. Shepherdson, J., Thompson S., Odgers, B.: Cross organizational Workflow Coordinated
by Software Agents, WACC '99- Work Activity Coordination and Collaboration Work-
shop Paper, February (1999); also http://www.labs.bt.com/projects/agents/index.htm

http://www.infosys.tuwien.ac.at/ADK/
http://www.labs.bt.com/projects/agents/index.htm

