Skip to main content

Fuzzy Prolog: A Simple General Implementation Using (R)

  • Conference paper
  • First Online:
Book cover Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2002)

Abstract

We present a definition of a Fuzzy Prolog Language that models interval-valued Fuzzy Logic, and subsumes former approaches because it uses a truth value representation based on a union of intervals of real numbers and it is defined using general operators that can model different logics. We give the declarative and procedural semantics for Fuzzy Logic programs. In addition, we present the implementation of an interpreter for this language conceived using R. We have incorporated uncertainty into a Prolog system in a simple way thanks to this constraints system. The implementation is based on a syntactic expansion of the source code during the Prolog compilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Baldwin, T.P. Martin, and B.W. Pilsworth. Fril: Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, 1995.

    Google Scholar 

  2. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint logic programming: syntax and semantics. In ACM TOPLAS, volume 23, pages 1–29, 2001.

    Article  Google Scholar 

  3. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In International Conference on Computational Logic, CL2000, number 1861 in LNAI, pages 131–148. Springer-Verlag, July 2000.

    Google Scholar 

  4. D. Dubois and H. Prade. A review of fuzzy set aggregation connectives. Information Sciences, 36:85–121, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  5. Mitsuru Ishizuka and Naoki Kanai. Prolog-ELF incorporating fuzzy logic. In IJCAI 9, volume 2, pages 701–703, 1985.

    Google Scholar 

  6. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Symp. Principles of Programming Languages, pages 111–119. ACM, 1987.

    Google Scholar 

  7. J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The clp(r) language and system. ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

    Article  Google Scholar 

  8. Frank Klawonn and Rudolf Kruse. A Łukasiewicz logic based Prolog. Mathware & Soft Computing, 1(1):5–29, 1994.

    MathSciNet  Google Scholar 

  9. E.P. Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer Academic Publishers.

    Google Scholar 

  10. G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, 1995.

    Google Scholar 

  11. R.C.T. Lee. Fuzzy logic and the resolution principle. Journal of the Association for Computing Machinery, 19(1):119–129, 1972.

    Google Scholar 

  12. Deyi Li and Dongbo Liu. A Fuzzy Prolog Database System. John Wiley & Sons, New York, 1990.

    Google Scholar 

  13. H. T. Nguyen and E. A. Walker. A First Course in Fuzzy Logic. Chapman & Hall/Crc, Boca Raton, 2000.

    MATH  Google Scholar 

  14. A. Pradera. A contribution to the study of information aggregation in a fuzzy environment. PhD thesis, Technical University of Madrid, 1999.

    Google Scholar 

  15. Z. Shen, L. Ding, and M. Mukaidono. Fuzzy resolution principle. In Proc. of 18th International Symposium on Multiple-valued Logic, volume 5, 1989.

    Google Scholar 

  16. Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-based systems. In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages 529–532, Karlsruhe, West Germany, August 1983.

    Google Scholar 

  17. L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1):3–28, 1978.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaucheret, C., Guadarrama, S., Muñoz, S. (2002). Fuzzy Prolog: A Simple General Implementation Using (R). In: Baaz, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2002. Lecture Notes in Computer Science(), vol 2514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36078-6_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-36078-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00010-5

  • Online ISBN: 978-3-540-36078-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics