
An Overview of Mobile Object-Z

Kenji Taguchi1 and Jin Song Dong2

1 Department of Information Science, Uppsala University,
Kenji.Taguchi@dis.uu.se

2 Computer Science Department, National University of Singapore,
dongis@comp.nus.edu.sg

Abstract. Mobile Object-Z (MobiOZ) is an extended notation of Object-Z with
mobile and communication primitives required for mobile agent applications.
In this paper, we will give an overview of the MobiOZ language features and
present its semantic foundation. We also demonstrate expressiveness of the nota-
tion through a number of examples.

1 Introduction

Recently, the notion of themobile agenthas been proposed in order to capture the new
form of computation in communication networks. A mobile agent is a computing entity
which canmove around different hosts on the network, carrying its state and procedures.
To support this new computation paradigm, many programming languages and systems
have been developed, i.e., Telescript [16], Obliq [2] and Aglets [9]. However these
languages and systems are not suitable to be applied at the specification and design
level for mobile agents development because they are too involved with implementation
details. Much higher level formalisms such as theπ-calculus [11], Mobile Ambients [4]
and,Dπ [13] have been proposed. Although these formalismsare elegant and can capture
the semantics of mobile agent behaviours, they generally cannot scale up for modelling
complex mobile agent systems which often have complex data and state properties.

In this paper, we will give an overview of an extension of Object-Z [7,14] for mo-
bile agent applications (called MobiOZ), and present its semantic foundation based
on labelled transition systems. MobiOZ includes mobile primitives inspired by Tele-
script [16], and communication primitives in process algebras. The design principle of
the language has its source in the integrations of state-based and behavioural formalisms
in Timed-CSP and Object-Z (TCOZ) [10], and CCS and Z [15].

The notion of locality is a key concept in mobile agent languages and systems. That
is, agents can only directly communicate with each other at a common location. Our
key idea in designing MobiOZ is to add alocality dimension to the Object-Z language
with various mobile primitives (i.e.go, send,hereetc) for capturing agent mobility. In
an analogous fashion, many real-time modelling languages add atimedimension to the
un-timed languages with explicit timing operators (i.e.wait, timeout,deadlineetc) for
capturing timing properties directly. With the support of the new MobiOZ primitives,
many complex behaviours of mobile agents can be effectively modelled.

MobiOZ is based on the Agent-Place model advocated in Telescript, which has two
essential entities,agentsandplaces. The main difference in the roles of these entities

C. George and H. Miao (Eds.): ICFEM 2002, LNCS 2495, pp. 144–155, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

An Overview of Mobile Object-Z 145

is that agents can move around the network, while places cannot. Agents are to bring
information and exchange it with other agents at places. An agent needs tomove to some
place to meet and interact with other agents. Places are stationary entities which host
mobile agents and can be regarded as physical hosts or logical entities (domains in the
communication network).

The agent-place model has an intuitive metaphor of distributed computation and
simplifies the specification of mobile applications such as electronic commerce. The
specification technique in MobiOZ is to specify a mobile agent as an Object-Z class
together with its behaviour as process formulae, which include a special process for an
entry point of execution. Process formulae are semantically interpreted at a place, which
is a holder of processes with an explicit address.

This paper is organised as follows: the next section illustrates the basic syntax of
MobiOZ and Section 3 presents its operational semantics. Some example specifications
are given in Section 4. Section 5 discusses the language features of MobiOZ and finally
section 6 compares related work and concludes this paper.

2 Syntax

In this section the syntax ofMobiOZ is explained.Weassume that the readers are familiar
with Object-Z [7,14].

A basic typeAddressis preserved, which designates the unique address in the net-
work.

[Address]

The communication model adopted by MobiOZ is based on the following doctrine
[3], which is slightly different from the one adopted in Telescript1.

– Local communication is synchronous
– Remote communication is asynchronous

All communication is written in a manner similar to that found in process algebras,
and polyadic communication in which a channel may have more than one parameter,
is allowed. The most important difference between channels in process algebras and
MobiOZ is that channels in process algebras are constants, whereas channels inMobiOZ
are declared as state variables in a class which may be assigned concrete channel names
later. Letcom1, com2 be state variables declared as channels of the same type in different
classes, then an input channelcom1 and an output channelcom2 can communicate each
other, provided they refer to the same channel name.

Remote communication is achieved by associating the destination address together
with the channel name in the form ofaddr :: com. Again address may be denoted by a
statevariable.Hence thechannel nameand theaddressused in the remotecommunication
can be changed by aπ-calculus [11] style of communication.

1 In Telescript, only local communication was implemented. However the model [16] supports
connectionwhich is a remote communication between agents residing at different places.

146 Kenji Taguchi and Jin Song Dong

The syntax of the channel is outlined below:

x, x1, . . . variable name
V,V1, . . . constant name
f function name
com input channel name
com output channel name
l ,m, l1, . . . address name

e ::= x | V | l
expr ::= e | f (e, . . . ,e)
input action ::= com(x, . . . , x)
output action ::= com〈expr, . . . ,expr〉 |

l :: com〈expr, . . . ,expr〉

A channel is declared in the state schema of an agent with its types by using the
keywordchan,which is thepre-defined type for channels.Both input andoutput channels
are declared in the same manner, but when they are used in process formulae, output
channels must have a line over the symbol. In order to support the polyadic channel, the
notation is strengthened by the use of parameterised types.com : chan[T] declares a
channelcomwith typeT.

A mobile agent in MobiOZ has the following primitives:

go(l) moves to the address
send(< l , . . . , l >) sends multiple copies to the addresses
here(x) obtains the current address
kill () kills itself

The primitivego(l) will move the subsequent process to the designated address and
start its execution at that address. The primitivesend(〈l1, . . . , ln〉) takes a sequence of
addresses and creates multiple instances with unique new identities. The subsequent
processes will start to execute at those addresses. It has a different semantics from the
one in Telescript and will be discussed later in section 5. The primitivehere(x) returns
the current address of the place, i.e., the variablex is instantiated by the current address.
Finally, The primitivekill () simply kills itself, i.e., its state and execution thread.

These primitives may be used in process formulae, and their semantic interpretation
will be given in section 3.

Process formulae are defined at two different levels (agent and place). We will only
show the syntax for agent level in this section:

Op(x1, . . . , xn) Parametric operation schema name
; sequential operator
✷ choice operator
P(x1, . . . , xn) process constant
0 null process
G state guard

Guard Expr ::= G •Op(x1, . . . , xn) |
G • input action→ Op(x1, . . . , xn) |
G • output action→ Op(x1, . . . , xn)

An Overview of Mobile Object-Z 147

Mobile Op ::= go(l) |
send(〈l , . . . , l〉) |
kill () |
here(x)

Proc ::= 0 |
P(x1, . . . , xn) |
Guard Expr |
Mobile Op |
Proc ; Proc |
Proc✷ Proc

The syntax of operation schema in Object-Z is modified to have substituent param-
eters, which excludes input/output annotation ‘?’/‘!’ of variables (as various forms of
channels indicate the input and output). The semantics of operation schemas are remined
as atomic actions.

The defining equation which associates a process constantP(x1, . . . , xn) with a pro-
cess expressionProc is denoted byP(x1, . . . , xn) =̂ Proc.

As the syntax indicates, inter-class concurrency is avoided in MobiOZ.
An agent is a class which represents a computing entity that can move around the

network. An agent is specified as an Object-Z class with process definitions. An agent
class is given in the following form:

MozClassAgent
OZ Definition
ProcessDefinition

whereOZ Definition is an Object-Z class definition which includes axiomatic defini-
tions, state schema, initial schema, operation schemas, but excludes Object-Z operators:
parallel composition, nondeterministic choice and sequential composition. Those oper-
ators are replaced by process formulae previously defined.ProcessDefinitionis a set of
defining equations.

Wewill not introduceabasic type for theunique identity of agents, since the reference
semantics of Object-Z implicitly supports the unique identity of objects of a class which
can also assure the unique identity of agents in MobiOZ.

Each agent with process definitions must have a particular process constantBeh,
which designates an entry point of its execution.

3 Operational Semantics

In this section, we will present the operational semantics of MobiOZ based on labelled
transition systems. In order to interpret mobile primitives in process formulae and sub-
sequent state changes, we need to incorporate an explicit notion of locations and states
with identity in the semantics.

Addressdenotes the set of all addresses,State, the set of all states, andID the set of
all implicit identities of Object-Z classes.

We will use the following symbols for this purpose:

σ, σ′, . . . semantic function for state
a,b, . . . class identity

148 Kenji Taguchi and Jin Song Dong

We first lift up the syntax of process formulae by assigning an address, a state and
its identity.

[[·]] : Proc−→ Proc× Address× State× ID

The state and location of each agent may be different from each other so that each
semantic functionwhichmodels the state of anagent is subscriptedby its implicit identity
and a process formula is associated with an address. We will use the notationl [[P]]σa to
denote the lifted process formulaPwith its stateσawith an object identityaat an address
l , wherel is the address of a place where the process runs.

We will now define process formulae with explicit location and state with identity
as below:

P,Q,P ′, . . . ::= 0 | l [[P]]σa | P || P
where|| is the parallel composition of explicitly located process formulae.

Mobile agents residing at the same address can be easily distinguished by this no-
tation. For instance,l [[P]]σa || l [[Q]]σb, wherea andb stand for agent identifiers,σa and
σb for their agent states andP andQ are process formulae owned by different agents.
Each mobile agent class has its unique entry point of execution that is designated by the
process constantBehso that the execution of each mobile agent starts at some address
l [[Beh]]σa.

The semantics of Object-Z classes is often given using a state transition model in
which operations make an old (before) state evolve to a new (after) state. We use the
convention for semantics functions in whichσ stands for an old state andσ′ for a new
state, and the state evolution caused by an operationOpwill be denoted by the following
notation:

σ, σ′ |= Op(V1, . . . ,Vn)

which reads that an operationOp(V1, . . . ,Vn) is valid underσ, σ′. A guard expression
G is evaluated under a single state so that

σ |= G

In case of parametric operationOp(x1, . . . , xn) which takes n arguments, we as-
sume that all parametersx1, . . . , xn appear inOp, and the result of all values taken in
Op(V1, . . . ,Vn) is the replacement of all variables by corresponding values.

We will only deal with monadic communication in the semantics for sake of brevity.
Given the following actions:

α, β ::= τ | go(l) | send(〈l1, . . . , ln〉) | here(l) | kill () | com(V) |
com〈V〉 | l :: com〈V〉 | Op(V1, . . . ,Vn)

we can now define the labelled transition semantics< P, { α−→| α ∈ A} >, whereA is
the set of all actions defined above.

The operational semantics of MobiOZ is given by derivation rules and congruence
relations.

An Overview of Mobile Object-Z 149

Some primitives take their arguments from state variables defined in a class in the
derivation rules. Thismakes the following derivation rules different from ones in process
algebras in which only parameters are passed to process formulae.

We will introduce the following symbol for addresses in order to simplify rules for
mobile primitives:

addr,addr1, . . . ::= x | l

[Go Primitive]
σa(addr) = m

l [[go(addr) ; P]]σa
go(m)−→ m[[P]]σa

If addr in go(addr) is a state variable de-
fined in that agent with the ida, then it
enables the subsequent process to move
to the address it denotes by the semantic
functionσa.

Note thatσa(addr) = addr, if addr is a constant.
[Send Primitive]

σa(addr1) = k1, . . . , σa(addrn) = kn

l [[send(〈addr1, . . . ,addrn〉) ; P]]σa
send(〈k1,...,kn〉)−→ k1[[P]]σb1 || . . . || kn[[P]]σbn

If addr1, . . . ,addrn in send(〈addr1, . . . ,addrn〉) are state variables defined in that
agent with its identitya, the subsequent process will migrate to the addresses denoted by
the semantic functionσa. The subsequent processes are interpreted by the same semantic
function with newly created identitiesb1, . . . ,bn.

[Here Primitive]
σ′
a = σa ⊕ {x �→ l}

l [[here(x) ; P]]σa
here(l)−→ l [[P]]σ′

a

Thehereprimitive obtains the current ad-
dress. If thex in here(x) is a state vari-
able defined in a class with an identitya,
it causes a state change.

⊕ is the function overriding symbol in Z. Henceσ′
a = σa ⊕ {x �→ l} means thatσ′

a
is the same asσa except an assignment of valuel to a variablex.

[Kill Primitive]

l [[kill (); P]]σa
kill ()−→ l [[0]]∅

Thekill makes the agent’s state empty and
all subsequent processes are ignored.

We will denote substitution of variablesx1, . . . , xn by V1, . . . ,Vn in a processP by
P{x1/V1, . . . , xn/Vn}.
[Object-Z Operation]

σa � G, σa, σ
′
a � Op(V1, . . . ,Vn)

l [[G •Op(x1, . . . , xn) ; P]]σa
Op(V1,...,Vn)−→ l [[P{x1/V1, . . . , xn/Vn}]]σ′

a

[Input Prefix]

σ′
a = σa ⊕ {x �→ V}, σ′

a |= G, σ′
a, σ

′′
a |= Op(V)

l [[G • com(x) → Op(x) ; P]]σa
com(V)−→ l [[P{x/V}]]σ′′

a

150 Kenji Taguchi and Jin Song Dong

Input channel receives a value, which causes a state change as well as instantiating
a value to the subsequent process.
[Output Prefix]

σa |= G, σa(expr) = V, σa, σ
′
a |= Op

l [[G • com〈expr〉 → Op ; P]]σa
com〈V〉−→ l [[P]]σ′

a

Output channel may take some expressionexprwhich will be evaluated under the
semantic functionσa.
[Asynchronous Output Prefix]

l [[com〈V〉]]∅ com〈V〉−→ l [[0]]∅

Asynchronous communication of MobiOZ is based on asynchronousπ-calculus in
whichonly abareoutput channelwithout subsequent process is allowed. This bare output
channel is only produced by the next rule which describes behaviour of asynchronous
remote communication.
[Asynchronous Remote Communication Prefix]

σa |= G, σa(expr) = V, σa, σ
′
a |= Op

l [[G • k :: com〈expr〉 → Op ; P]]σa
k::com〈V〉−→ k[[com〈V〉]]∅ || l [[P]]σ′

a

Once an agent sends a bare output channel to a designated address, the subsequent
process remains at the sameaddress. Thebare output channel only carries a valuewithout
a state.
[Synchronisation]

l [[P]]σa
com(V)−→ l [[P′]]σ′

a
l [[Q]]σb

com〈V〉−→ l [[Q′]]σb
l [[P]]σa || l [[Q]]σb

τ−→ l [[P′]]σ′
a
|| l [[Q′]]σb

As the rule describes, two agents which communicate with each other must reside
at the same place.
[Process Definition]

l [[Proc{x1/V1, . . . , xn/Vn}]] α−→ P
l [[P(V1, . . . ,Vn)]]

α−→ P
P(x1, . . . , xn) =̂ Proc

[Interleaving]
P1

α−→ P ′
1

P1 || P2
α−→ P ′

1 || P2

[Congruence]
P ≡ P ′ P α−→ Q Q ≡ Q′

P ′ α−→ Q′

There are two kinds of congruence relations, one at the process level and another at
the place level. For anyl ∈ Address, anyσ ∈ Statesand anya ∈ ID,

An Overview of Mobile Object-Z 151

l [[0]]∅ ≡ 0
l [[P✷Q]]σa ≡ l [[Q✷P]]σa

l [[(P✷Q)✷R]]σa ≡ l [[P✷(Q✷R)]]σa
l [[(0; P)]]σa ≡ l [[P]]σa
l [[(P; 0)]]σa ≡ l [[P]]σa

P || 0 ≡ P
P1 || P2 ≡ P2 || P1

(P1 || P2) || P3 ≡ P1 || (P2 || P3)

It must be noted thatl [[0]]∅ andl [[0]]σa have significantly different meanings, which
will be discussed in the section 5.

4 Examples

In this section, we will show a number of examples of how mobile agent applications
can be specified in MobiOZ. The given types for those examples include:

[Data,Name]

4.1 Forwarding

Travelling is the basic functionality of mobile agents. In this first example, we present a
simple scheme which describes how travelling agents is informed the next destination
from a stationary agent at a place. This scheme is calledforwarding.

Firstly a basic agent consists of three attributesdest(next location),home(original
location) andcom(communication channel). A forward agent is defined by inheriting the
BasicAgentand will move to the next destination, once it receives an addressnext dest
from a channelcom.

BasicAgent

dest: Address
home: Address
com: chan[Address]

FAgent

BasicAgent

SetDest(next dest: Address)
∆(dest)

dest′ = next dest

Beh=̂ go(dest) ; com(next dest) →
SetDest(next dest) ; Beh

4.2 Tracking

In this example, we will specify a simple scheme calledRegistrationin [9]. This scheme
consistsof twoagents,Finderwhichplaysa roleasasearcherandTravellerasa travelling
agent, and a stationary agentDBAgentplaying a role as a database, which keeps track
of travelling agents. The travelling agent will report the current address to the database
whenever it travels to someother place and the searcherwill make a query to the database
to find out the current location of the traveller.

152 Kenji Taguchi and Jin Song Dong

Itinerary. A simple itinerary may be used by a travelling agent.

SimpleItinerary

itinerary : seqAddress

Del
∆(itinerary)

itinerary′ = tail itinerary

SimpleTraveller

BasicAgent,SimpleItinerary

NewDest
∆(dest); Del

dest′ = head itinerary

Beh=̂ here(home) ; Beh1
Beh1 =̂ go(dest) ; Do Task;

([itinerary�=〈 〉] • NewDest; Beh1
✷ [itinerary= 〈 〉] • go(home))
Do Task=̂ 0

In SimpTravellerclass, an empty process definitionDo Task is introduced, which
may be overridden by the specific subclasses ofSimpTraveller.

Traveller

SimpleTraveller[redef Beh1]

report : chan[Name,Address]
unreg: chan[Name]
db addr : Address
name: Name

Beh1 =̂
db addr :: report〈name,dest〉 ;
go(dest) ; Do Task;
([itinerary�=〈 〉] • NewDest; Beh1

✷

[itinerary= 〈 〉]•
db addr::unreg〈name〉; go(home))

Finder

BasicAgent

traveller addr,db addr : Address
traveller name: Name
query: chan[Name,Address]
answer: chan[Address]

Get Address(addr : Address)
∆(traveller addr)

traveller addr′ = addr

Beh=̂
db addr::query〈traveller name,home〉;
answer(addr) → Get Address(addr)

TheTravellerwill be specified as a general subclass of the simple traveller.Traveller
will use two remote communications to report the current address, and to notify that the
traveller will no longer exist and the registry can be deleted.db addr designates the
address of the place whereDBAgentwill reside.nameis the key of mobile agents on the
database.

DBAgent

db : Name �→ Address
report,query: chan [Name,Address]
unreg: chan [Name]; answer: chan [Address]

An Overview of Mobile Object-Z 153

Register(n : Name, current addr : Address)
∆(db)

db′ = db⊕ {n �→ current addr}

Unregister(n : Name) =̂ [∆(db) | db′ = {n} −� db]
Beh=̂ (report(n, current addr) → Register(n, current addr)✷

query(n,home) → [n ∈ domdb] • home:: answer〈db(n)〉✷
unreg(n) → Unregister(n)) ; Beh

Finderwill useachannelquerytomakequerieson the current addressof the traveller,
answerto receive the address.

FinallyDBAgentwill use a channelqueryto receive queries on the current address
of the traveller, andanswerto notify the address of the enquired mobile agent.

5 Language Features

MobiOZ can be best described as asingle-threadedmulti-agent withstrong mobility. In
this section, we discuss some of the language features of MobiOZ.

As was previously mentioned in the syntax section, MobiOZ does not allow inter-
class concurrency as agents are single-threaded. In this sense, MobiOZ is a formal
specification language for single-threadedmulti-agent systems. However, from a system
point of view, it is multi-threaded.

The weak and strong mobility notions are used to describe the implementations of
agent systems [5] and greatly affect the syntax of mobile agent languages [1]. Mobile
agent systems and languages with weakmobility need to start execution at a remote host
at the initial point of execution. Java based implementations of mobile agent systems
such as Aglets [9] suffer this problem. Any statements followed by mobile primitives
such asgo(addr) will be ignored and re-start its execution at a specific entry point. In
this sense, MobiOZ has a strong mobility.

MobiOZ supports asynchronous remote communication, but unlike the standard
asynchronous communication which is characterised by unbounded FIFO queue of in-
comingmessages, as our semantics shows that the asynchronous remote communication
of MobiOZ behaves more non-deterministically.

It is easy to verify the following process formulae yields the same result by tracing
transitions:

here(x) ; go(m) ; com〈V〉 ; go(x) ; P
m :: com〈V〉 ; P

A natural question arises why MobiOZ provides only one of them, if those two
formulae will yield the same result. The main difference between the two comes into
play at implementation level, not at the specification level. Mobile agent computation
require very strict security and also consideration of the network load, which does not

154 Kenji Taguchi and Jin Song Dong

arise at the specification level. Remote communication is characterised as low security,
but less network load. On the other hand messenger agents have high security and more
network load.

Ouraimwas todesignawidespectrum formal specification language that canprovide
all necessary facilities for specifying of mobile agent applications. Hence we leave the
choice to the specifiers which construct they would choose depending on their needs and
requirements.

A mobile agent has its own thread of control and state so that the null process0
which appears in a process formula does not necessarily mean that the agent’s state is
demolished (garbage collected) together with its process. In order to explicitly specify
that its state as well as its process is abandoned, thekill () primitive is introduced in
MobiOZ.

6 Related Work and Conclusion

There are a number of stateless basic formalisms such as mobile calculi which model
several forms of mobility ranging from passing channel names in theπ-calculus [11], to
dynamic change of hierarchical structures inMobile Ambients[4]. Indeed, our mobile
and communication primitives, and their semantic interpretations are indebted to those
works.

However we regard MobiOZ as a stateful high-level formal specification language
in which mobile agents are stateful objects that carry their states and procedures while
they are travelling around the network. Stateful mobile agents require more elaborate
locking mechanisms for mobility than those stateless basic formalisms in order to avoid
a circumstance in which some process migrates to other host while the rest of processes
remain. This is why MobiOZ does not allow inter-object concurrency.

We have witnessed that the main trend of stateful high-level languages for mobile
agents is based on Linda which includes LLinda [6] and LIME [12]. LLinda enhances
the Lindamodel with distributed andmultiple tuple spaceswith access controls. LIME is
equipped with reactive programming primitives, in addition to location sensitive access
controls.

Another notable example is MobileUnity [8], which is an extension of Unity with
mobile and reactive primitives, and their associated proof methods. Mobility is achieved
by attaching a distinguished variable for location to each programand change of location
is mimicked by assigning a new location to that variable.

Even they are powerful enough to simulate mainmobile features of other formalism,
e.g., LLinda could simulate the private name passing and the scope extrusionmechanism
of theπ-calculus [6], they are not readily applicable for the development of mobile agent
systems due to the lack of corresponding mobile primitives and a different underlying
model for mobile agents.

This conceptual mismatch between those formalisms and existing programming
languages and systemsmakes themhard to be used to developmobile agent applications.

In this paper, we have given an overview of an integrated formal specification lan-
guage MobiOZ for mobile agent applications and presented its semantics which sepa-

An Overview of Mobile Object-Z 155

rates agent’s states with agent’s identifiers and captures state changes while the agent is
moving around the network.

There are many research issues that remain to be addressed, including enhancement
of language features bymore powerful communicationmechanismsuch as broadcasting,
and verification procedures based on the semantics presented in this paper. We are
planning to develop the verification method based on a version of Hennessy-Milner
logic based on labelled transition systems presented in this paper.

Acknowledgements

Wewould like to thankGabrielCiobanuandHughAnderson formanyhelpful comments.
This work is partially supported by the Academic Research grantIntegrated Formal
Methodsfrom National University of Singapore.

References

1. L. Bettini and R. De Nicola. Translating StrongMobility intoWeakMobility. InProceedings
of 5th International Conference on Mobile Agents (MA) 2001. IEEE, 2001.

2. L. Cardelli. A Language with Distributed Scope. InConference Record of POPL’95, pages
286–297. ACM Press, 1995.

3. L. Cardelli. Wide Area Computation.ICALP’99, pages 10–24. 1999.
4. L. Cardelli and A. Gordon. Mobile Ambients.Foundations of Software Science and Compu-
tational Structures, pages 140–155. Springer-Verlag, 1998.

5. G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. Analyzing Mobile Code Languages.Mobile
Object Systems - Towards the Programmable Internet, pages 93–111. 1997.

6. R. De Nicola, G. Ferrari, and R. Pugliese. Locality based Linda: programming with explicit
localities.TAPSOFT-FASE’97, pages 712-726. Springer-Verlag, 1997.

7. R. Duke and G. Rose.Formal Object Oriented Specification Using Object-Z. Cornerstones
of Computing. Macmillan, March 2000.

8. P. J. M. G.-C. Roman and J. Y. Plun. Mobile unity: reasoning and specification in mobile
computing.ACM Trans. Software Engineering and Methodology, 6(3):250–282, 1997.

9. D. Lange and M. Oshima.Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1999.

10. B. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An Introduction to TCOZ.
ICSE’98, pages 95–104. IEEE, 1998.

11. R.Milner.Communicating andmobile systems : theπ-calculus. CambridgeUniversity Press,
1999.

12. G. Picco, A. Murphy, and G.-C. Roman. LIME:Linda Meets Mobility.ICSE’99, pages
368–377, IEEE, 1999.

13. J. Riely and M. Hennessy. A typed language for distributed mobile processes (extended
abstract).POPL’98, pages 378–390, 1998.

14. G. Smith.The Object-Z Specification Language. Kluwer Academic Publishers, 2000.
15. K. Taguchi and K. Araki. The State-based CCS Semantics for Concurrent Z Specification.

ICFEM’97, pages 283–292. IEEE, 1997.
16. J. E. White. Mobile Agents. In J. Bradshaw, editor,Software Agents, pages 437–472. MIT

Press, 1996.

	1 Introduction
	2 Syntax
	3 Operational Semantics
	4 Examples
	4.1 Forwarding
	4.2 Tracking

	5 Language Features
	6 Related Work and Conclusion
	Acknowledgements
	References

