
Hardware/Software Partitioning in Verilog *

Qin Shengchao1
, He Jifeng2**, Qiu Zongyan1

, and Zhang Naixiao1

1 School of Mathematical Sciences
Peking University, Beijing, 100871, China

qinshc@pubms.pku.edu.cn, {zyqiu, naixiao}@pku.edu.cn
2 United Nations University

International Institute for Software Technology
UNU/IIST, P.O.Box 3058, Macau

hjf@iist.unu.edu

Abstract. We propose in this paper an algebraic approach to hard­
ware/software partitioning in Verilog HDL. We explore a collection of
algebraic laws for Verilog programs, from which we design a set of syntax­
based algebraic rules to conduct hardware/software partitioning. The co­
specification language and the target hardware and software description
languages are specific subsets of Verilog, which brings forth our success­
ful verification for the correctness of the partitioning process by algebra
of Verilog. Facilitated by Verilog's rich features, we have also successfully
studied hw/sw partitioning for environment-driven systems.

Keywords. Verilog, algebraic laws, hardware/software co-design, hard­
ware/software partitioning

1 Introduction

The design of a complex software product like a nuclear reactor control system
is ideally decomposed into a progression of related phases. It starts with an
investigation of the properties and behaviours of the process evolving within its
environment, and an analysis of requirement for its safety performance. From
these is derived a specification of the electronic or program-centred components
of the system. The project then may go through a series of design phases, ending
in a program expressed in a high level language. After translation into a machine
code of the chosen computer, it is executed at high speed by electronic circuity.
In order to achieve the time performance required by the customer, additional
application-specific hardware devices may be needed to embed the computer into
the system which it controls.

With chip size reaching one million transistors, the complexity of VLSI al­
gorithms is approaching that of software algorithms. However, the design meth­
ods for circuits resemble the low level machine language programming methods.
Selecting individual gates and registers in a circuit like selecting individual ma­
chine instruction in a program. State transition diagrams are like flowcharts.

* Partially supported by NNSFC No. 60173003
** On leave from Software Engineering Institute of East China Normal University

These methods may have been adequate for small circuit design when they were
introduced, but they are not adequate for circuits that perform complicated al­
gorithms. Industry interest in the formal verification of embedded systems is
gaining ground since an error in a widely used hardware device can have signif­
icant repercussions on the stock value of the company concerned. In principle,
proof of correctness of a digital device can always be achieved by making a
comparison of the behavioural description of the circuit with its specification.
But for a large system this would be impossiblly laborious. What we need is a
useful collection of proven equations and other theorems, which can be used to
calculate, manipulate and transform the specification formulae to the product.

Hardware/software co-design is a design technique which delivers computer
systems comprising hardware and software components. A critical phase of the
co-design process is to partition a specification into hardware and software. This
paper proposes a partitioning method whose correctness is verified using al­
gebraic laws developed for the Verilog hardware description language. One of
advantages of this approach lies in that it ensures the correctness of the parti­
tioning process. Moreover, it optimises the underlying target architecture, and
facilitates the reuse of hardware devices.

The algebraic approach advocated in this paper to verify the correctness of
the partitioning process has been successfully employed in the ProCoS project
on "Provably Correct systems". The original ProCoS project [5] concentrated
almost exclusively on the verification of standard compiler of a high-level pro­
gramming language based on Occam down to a microprocessor based on Trans­
puter [4]. Sampaio showed how to reduce the compiler design task to one of
program transformation; his formal framework is a procedural language and its
algebraic laws [13]. Towards the end of the first phase of the project, Ian Page
et al made rapid advance in the development of hardware compilation technique
using an Occam-like language targeted towards Field Programmable Gate Ar­
rays [10] , and He Jifeng et al provided a formal verification of the hardware
compilation scheme within the algebra of Occam programs [3].

Recently, some works have suggested the use of formal methods for the par­
titioning process [14,12]. In [14], Silva et al provide a formal strategy for car­
rying out the splitting phase automatically, and present an algebraic proof for
its correctness. However, the splitting phase delivers a large number of simple
processes, and leaves the hard task of clustering these processes into hardware
and software components to the clustering phase and the joining phase. Further­
more, additional channels and local variables introduced in the splitting phase
to accommodate huge number of parallel processes actually increase the data
flow between the hardware and software components. In [12], Qin et al propose
an algebraic approach to partition a specification into hardware and software
in one step and as well verify the correctness of their partition process. How­
ever, their approach is based on algebraic laws of the high level communicating
language Occam, which leaves rather a long way to pass in hardware/software
co-synthesis phase, since the partition results also enjoy a high level form. In this

paper. the above-mentioned long way has been shortened by adopting Verilog
as our partition language.

The remainder of this paper is organised as follows. Section 2 introduces Ver­
ilog HDL and explores some useful algebraic laws. Section 3 describes our parti­
tioning strategy. We propose our co-specification language and target hardware
and software architectures in section 4. Afterwards, we investigate our partition
process in detail in section 5 by designing a collection of proved syntax-based
partitioning rules. A simple conclusion is followed in section 6.

2 Verilog and Its Algebraic Laws

Modern hardware design typically uses a hardware description language (HDL)
to express designs at various levels of abstraction. A HDL is a high level pro­
gramming language with usual programming constructs, such as assignments,
conditionals and iterations, and appropriate extensions for real-time, concur­
rency and data structures suitable for modelling hardware.

Verilog is a HDL that has been standardized and widely used in industry
([8]). Verilog programs can exhibit a rich variety of behaviours, including event­
driven computation and shared-variable concurrency. In our hardware/software
partitioning process, the non-trivial subset of Verilog we adopt contains the
following categories of syntactic elements.

1. A Verilog program can be a sequential process or a program paralleled by
several sequential processes, with or without local variable declaration.

P ::= SIP II P I var x • P

2. A sequential process in Verilog can be any of the forms as follows.

S ::= PC (primitive command) I S; S (sequential composition)
I if bS else S (conditional) I while bS (iteration)
I (g S) ~ ... ~ (g S) (guarded choice) I always S (infinite loop)
I case (e) (pt S) ... (pt S) (switch statement)

where

chaos I -+ 1]v I v := cg e
eg (event control) I -+1]v (output event)

PC ::= v := e I skip
9 ::= #iJ. (time delay)
cg ::= #iJ. I eg
eg ::= @(1]v) I eg or eg I eg and eg I eg and -,eg
1]v ::= '" v (value change) I t v (value rising) I .j,. v (value falling)

To facilitate algebraic reasoning, the language is enriched with

- assignment event @(v := e)
- general guarded choice construct (gl Pd ~ ... ~ (gn Pn)
- non-deterministic choice P n Q

Although it is reported that Verilog has been much more widely used in
industry than VHDL([I]), the formal semantics of Verilog has not been fully
studied. He and Zhu ([6,17]) explore an operational and a denotational seman­
tics for Verilog and investigate some algebraic laws from them. Zhu, Bowen and
He ([15,16]) establish formal consistency between above-mentioned two presen­
tations. Iyoda and He ([9]) successfully apply simple algebraic laws of Verilog to
hardware synthesis process. Recently, He has explored a collection of algebraic
laws for Verilog, by which a well-formed Verilog program can be transformed
into head normal forms ([2]). In the following, we investigate some algebraic
laws for Verilog, which will playa fundamental role in our hardware/software
partitioning process.

Before presenting algebraic laws, we define a triggering predicate as follows.

Definition 1. Given an event control eg, we define those simple events that
enable eg as follows.

E(eg) =df

{t x}, if eg = @(t x)
Ux}, ifeg=@(+x)
{tx,.j,.x}, ifeg=@("'x)
E(egd U E(eg2), if eg = egl or eg2
E(egd n E(eg2), if eg = egl and eg2
E(egd \ E(eg2), if eg = egl and -,eg2

Given an output event -+ 'T], and an event control eg, we adopt a triggering
predicate, denoted as 'T] --v+ eg, to describe the condition under which the former
enables the later.

'T] --v+ eg =df E(@('T])) ~ E(eg)

and adopt the predicate, 'T] "Y+ eg, to denote the condition when the former cannot
trigger the later.

'T] "Y+ eg =df E(@('T])) n E(eg) = 0

D

By this definition, now we can define the well-formedness of guarded choice
constructs.

Definition 2. A guarded choice ~iEJ gi Pi is well-formed iff all its input guards
are disjoint, i. e., for any input guards gk, gl from {gi liE I}, if E(gk) n E(gL) =I­
0, then gk = gl, and Pk and Il are exactly the same process. D

All guarded choice constructs are well-formed in later discussions.
Now, we explore a collection of useful algebraic laws for Verilog programs.

Successive assignments to the same variable can be combined to a single one.
(assgn-l) v := e; v := f = v := f[e/v]

In an assignment to a list of variables, the order of variables is irrelative.
(assgn-2) u, v := e, f = v, u := f, e

Variables not occured on the left side of an assignment remain unchanged during
the assignment.
(assgn-3) u := e = u, v := e, v

skip does not change the value of any variable.
(assgn-4) skip = v:= v

Sequential composition is associative, and has left zero chaos. It distributes back­
ward over conditional, internal and external choices.
(seq-i) (P;Q);R = P;(Q;R)

(seq-2) chaos; P = chaos

(seq-3) (pnQ);R = (p;R)n(Q;R)

(seq-4) (ifbPelseQ);R = ifb(P;R)else(Q;R)

(seq-5) (~iEI(giQi));R = ~iEI(gdQi;R))

By the following law, we can transform a sequential composition of an output
event and a guarded choice into a guarded process (g P), where output guard g
will no longer fire guards of P.
(seq-6) Let S = ~iEI (gi Pi), and g is the disjunction of all input guards of S.

(1) -+ 'S = {-+7]S if 7] '"'Y7g;
. 7], -+ 7] Pk if 7] "-+ gk for some k E I.

(2). (x < fh; @(x := 1); S =

{
(x<fh;@(x:=1)S if tX'"'Y7g;
(x < fh; @(x := 1) Pk if t x "-+ gk for some k E I.

(3). (x> fh; @(x := 1); S =

{
(X>fh;@(X:=f)S if tX'"'Y7g;
(x > fh; @(x := 1) Pk if t X"-+ gk for some k E I.

(4). (x = fh; @(x := 1); S = (x = fh; @(x := x) S

where b.L is an assertion defined as if b skip else chaos ([7]).

For a general guarded choice G, we can also transform it by this law into a
guarded choice ~iEI (gi Pi), where no output guard in {gi liE I} will enable any
guards of the process following it. Without loss of generality, from now on, we
assume all guarded choices meet this property.

Assignment distributes forward over conditional.
(cond-i) v:= e;(ifb(v)PelseQ) = ifb(e)(v := e;P) else (v := e;Q)

Iteration is subject to the fixed point theorem.
(iter-i) while bP = if b (P; while bP) else skip

Non-deterministic choice is idempotent, symmetric and associative.
(nand-i) P n P = P

(nond-2) P n Q = Q n P

(nond-3)pn(QnR) = (pnQ)nR

Parallel operator is symmetric and associative, and has chaos as zero.

(par-i) P II Q = Q II P

(par-2) P II (Q II R) = (P II Q) II R

(par-3) chaos II P = chaos

Local variable declaration enjoys the following laws.
(lvar-i) var x e (x := e) = skip

(lvar-2) var x e (P <J b l> Q) = (var x e P) <J b l> (var x e Q), provided x is not
free in b.

(lvar-3) If x is not free in Q, then
(1) var x e Q = Q
(2) (varxeP);Q = varxe(P;Q)
(3) Q; (var x e P) = var x e (Q; P)
(4) (varxeP)IIQ = varxe(PIIQ)

(lvar-4) var v e (---+ 7]v P) = var v e (skip; P)

(lvar-5) varu e (varve P) = varve (varu e P)

We will denote var x e var y e ... e var z as var x, y, ... ,z.

The following is a set of expansion laws which enables us to convert a parallel
process into a guarded choice. We assume that

G1 = ~iEI(giQi) G2 = ~jEJ(hjRj)

G3 = ~kEK(eVk Pk) G4 = ~IEL(eUI 11)
where all gi and hj are input guards (like @(7])); all eVk and eUI are respectively
output events with respect to variables Vk and Ul (like ---+7] or @(x := f)).

(par-4) (x := e; Gd II (y := f; G2) = (@(x:= e) (G 1 II (y := f; G2))) ~

(@(y := f) ((x := e; Gd II G2))

(par-5) G1 II (y := f; G2) = (@(y:= f)(G 1 II G2)) ~ ~iEI gi (Qi II (y := f; G2))

(par-6) Let 9 =df oriEl gi, h =df orjEJ hj, then
(G 1 ~ G3) II (G2 ~ G4) = ~iEI ((gi and -,h) (Qi II (G2 ~ G4)) ~

~jEJ ((h j and -,g) ((GdG3) II R j)) ~

~iEI,jEJ ((gi and hj) (Qi II R j)) ~

~kEK,jEJ,evk"--'hj (eVk (Pk II R j)) ~

~kEK,eVk""'h (eVk (Pk II (G2 ~G4))) ~

~iEI,IEL,eUl"--'9i (eUI (Qi II Td) ~

~IEL,eUl""'9 (eUI ((G 1 ~ G3) II Td)

(par-1) An assignment thread is involved.
(1) (x := e) II (y := f) = (@(x:= e) (y := f)) ~ (@(y := f) (x := e))

(2) (x := e) II G2 = (@(x:= e) G2) ~ ~jEJ (h j ((x := e) II R j))

The parallel operator is disjunctive.
(par-B) (P n Q) II R = (P II R) n (Q II R)

In some special case, the parallel operator distributes over conditional.
(par-g) var V1, ... ,Vn e ((if b51 else 52) II G) =

var VI, ... , Vn e (if b (31 II G) else (32 II G)),
provided guards in G are either event controls with respect to variables in
{VI, ... , vn } or time-delay guards.

Time-delay guards are involved in the following law.
(par-10) Let ,11 > ,12 > 0, ,1 > O.

(1). (#,1 3HG3 = G3

(2). (Gd #,11 3) II (G2 ~ #,12 T)
~iEI «gi and -,h)(Qi II (Gd #,12 T)) ~

~jEJ «hj and -,g) «G1 ~ #,11 3) II R j)) ~

~iEI,jEJ ((gi and hj) (Qi II R j)) ~

~ #,12 «#(,11 - ,12) 3) liT)
(3). (G1 ~ #,13) II (G2 ~ #,1T) =

~iEI ((giand-'h)(Qi II (Gd#,1T)) ~

~jEJ «hj and -,g) «G1 ~ #,1 3) II R j)) ~

~iEI,jEJ «gi and hj) (Qi II R j)) ~
~ #,1 (3 liT)

The guarded choice is idempotent, symmetric and associative.
(guard-1) G1 ~ G1 = G1

(guard-2) G1 ~ G2 = G2 ~ G1

(guard-3) (glQd ~ «g2Q2) ~ (g3Q3)) = «glQd ~ (g2Q2)) ~ (g3Q3)

(guard-4) varv e «@(1]v)PHGd = varv e G 1

The construct always 3 executes 3 forever.
(always-1) always 3 = 3; always 3

From the operational semantics of Verilog ([6]), we know the fact that skip is
not a left zero of sequential composition in general cases, because it might filter
some signal. Hereby, the following inequation is obvious.

@ t V =I- skip; @ tv
The following definition will capture those cases where skip is a left zero of
sequential composition.

Definition 3 (Event control insensitive).
A process P is event control insensitive if

skip;P = P.

Theorem 1. The following processes are event control insensitive.

- x := e, skip, chaos, or #(t);
- @(x := e), -+1]v;
- ifbPelseQ, whilebQ, case(e)(pt1 3d ... (ptn 3 n);

- ~iEI (gi Qi), v := 9 e, where no guards are event controls;
- PI; P2, where PI is event control insensitive;
- PI n P2, PI II P2, where both PI and P2 are event control insensitive;
- always 3, where 3 is event control insensitive;

D

varv1,··· ,vn • (51 II··· II 5 n), where each 5i is either event control insen­
sitive, or only guarded by events with respect to variables in {V1,"" vn } .

D

From those basic algebraic laws mentioned above, we investigate the following
lemma, which will be very useful in later discussions.

Lemma 1. Let

suppose sequential programs P1, P2 , Q1 are event control insensitive, and vari­
ables u, v do not occur in P1 or Q1, then

(1). varu,v. (P II Q)

(2). varu, v. (P II (Q1; Q)) = varu, v. (Q1; (P II Q))

(3). varu,v. ((H;P) II (Q1;Q)) = varu,v. ((H II Qd; (P II Q))

D

Proof. The proof is presented in [11].

We introduce an ordering relation between programs before further investigation.

Definition 4 (Refinement).
Let P, Q be Verilog processes employing the same set of variables, we say Q

is a refinement of P, denoted as P ~ Q, if P n Q = P is algebraically provable.
D

3 Partitioning Strategy

This section is devoted to introduce our hardware/software partitioning strategy,
which can be described in four steps, see Fig. 1.

- Before conducting the partitioning process, the programmer codes the kernel
specifcation for the system to be designed in our co-specification language,
which is a sequential subset of Verilog and will be detailedly explained in
next section.

- Then, assisted by program analysis techniques ([12]), the programmer carries
out the hardware/software allocation task, i.e., marks out those parts that
should be implemented by hardware and divides the variables employed by
the kernel specification into two disjoint sets.

- Our hardware/software partitioning algorithm will take such a marked pro­
gram as input, and deliver as output the corresponding hardware and soft­
ware kernel specifications. In this step, we design and prove a collection of
syntax-based splitting rules, which ensure the correctness of the partitioning
process and make computer automatic partitioning possible.

K e r n e l S p e c i f i c a t i o n

H a r d w a r e / S o f t w a r e A l l o c a t i o n

M a r k e d S p e c i f i c a t i o n

H a r d w a r e / S o f t w a r e P a r t i t i o n i n g f o r
K e r n e l S p e c i f i c a t i o n

K e r n e l S w
S p e c i f i c a t i o n

K e r n e l H w
S p e c i f i c a t i o n

H a r d w a r e / S o f t w a r e P a r t i t i o n i n g f o r t h e
W h o l e E n v i r o n m e n t - D r i v e n S y s t e m

S o f t w a r e S p e c i f i c a t i o n H a r d w a r e S p e c i f i c a t i o n

a c o l l e c t i o n o f p r o v e d
p a r t i t i o n r u l e s :

c o r r e c t n e s s - p r e s e r v i n g

 p a r t i t i o n r u l e :
c o r r e c t n e s s
p r e s e r v i n g

where

AC ::= v := e I ----t1]v I @1]v I #11 I chaos
I (v:= e)n (timing assignment) I (5) (specific block)

1]v :: = '" v I t v I +v

The assignment statement with time constraint (v := e)n doesn't appear explic­
itly in Verilog's syntax introduced in section 2, but it is in fact a well-formed
Verilog program since

(v := e)n = nO::;k::;n (v:= #ke)

Moreover, the block notation in (5) has no semantical meanings.
From the customer's requirements, the programmer can describe the kernel

specification for the system to be designed in this co-specification language.
After appropriate hardware/software marking and allocation, a marked source
program is passed to the partitioning process.

The underlying target hardware and software components from the kernel
specification will own specially-chosen forms. We adopt an event-trigger mech­
anism to synchronise behaviours between hardware and software, and use a
shared-variable mechanism to cope with interactions between hardware and soft­
ware.

The kernel part of the software specification is a member of CP(r, a), a subset
of sequential Verilog programs, which is constructed by the following inductive
rules.

(1). An event control insenstive sequential process not containing variable r or
a;
(2). ----t1]r; C; @1]a, where C is a member of CP(r, a) not mentioning r or a;
(3). C1 ; C2 , or if bC1 else C2 , or C1 nC2 , or (gl Cd ~ (g2 C2), where C1 , C2 , gl, g2 E

CP(r, a);
(4). while bC, where C E CP(r, a).

We introduce another set CPE(r, a) which comprises those processes in CP(r, a)
not mentioning variable c.

As mentioned in last section, our splitting task is divided to two steps. Firstly,
we design a collection of algebraic rules to refine any source program 5 (the kernel
specification for the system) to its hardware/software decomposition

CO II Do

where the software component Co is of the form (C; ----t 1]E), C is a member of
CPE(r, a), the special event ----t 1]E is adopted for the purpose of synchronisation
between hardware and software, and the hardware component Do is subject to
the following equation:

where M =df case (id) (Pi Md ... (Pn M n) is a case construct not containing
r,a,c.

{(seq-3))}
{(par-l0) }

{hypothesis}

We denote as D Po (r, a) the set of processes with the same form as Do.
To avoid any possible loss of signals at the moment when the fixed point

construct (equation) is expanded, we naturally claim that an abstract event
only takes place at the moment when there's no other active events at all.

Secondly, for kernel specification 5, rather than consider the hardware/software
partitioning for 5, we deal with the decomposition for the whole system's spec­
ification

which is driven by the environmental process:

and derive the partitioning of tJtJ(5) under the environment Env as

tJtJ(C) IIEnv D

where P IIEnv Q =df P II Env II Q,
and the software component enjoys the form

where C is a process from CP(r, a),

and the hardware component D is of the form:

D =df always (@7]r M ;-+7]a)

We denote as DP(r, a) the set of processes of the same form as D.
The following theorem ensures the synchronized termination between the

kernel hardware and software specifications.

Theorem 2. (C1 ;C2 ;-+7]0) II Do = ((C1 ;-+7]0) II Do); ((C2 ;-+7]0) II Do)
for any C1 ,C2 in CPo(r,a) and Do in DPo(r,a). D

Proof. By structural induction on C1 .

case 1 C1 is event control insensitive and does not mention r or a.
(1.1) C1 is an atomic command.
C1 = chaos, the proof is trivial.
C1 = tg, where tg is @(x := e) or -+7]x or #11,

LH5 {(seq-6) , (par-6) , (guard-4)}
tg((C2 ;-+7]0) II Do) {Theorem I}
tg (skip; ((C2 ; -+7]0) II Do)) {(par-6) , (lvar-4)}
tg ((-+7]0 II Do); ((C2 ; -+7]0) II Do)) {(seq-6), (par-6) , (guard-4)}
RH5
(1.2) C1 = 51 n 52

LH5
((51 ;C2 ;-+7]0) n (52 ;C2 ;-+7]0)) II Do

= ((51; C2 ; -+7]0:) II Do) n ((52; C2 ; -+7]0:) II Do)

= (((S1; -t7]E) II Do) n ((S2; -t7]E) II Do)); ((c2;-t7]E) II Do)
(((S1; -t 7]E) n (S2; -t7]E)) II Do); ((c2;-t 7]E) II Do)
RHS

(1.3) C1 = if bS1else S2·
LHS {(seq-4)}
(if b (S1; C2;-t7]E) else (S2; C2;-t7]E)) II Do {(par-9)}

= if b ((S1; C2;-t7]E) II Do) else ((S2; C2;-t7]E) II Do) {hypothesis, (seq-4)}
= ifb((S1;-t7]E) II Do) else ((S2;-t7]E) II Do); ((C2;-t7]E) II Do)

{(par-g), (seq-4)}

= (((S1; -t7]E) II Do); ((c2;-t7]E) II Do)) n (((S2; -t7]E) II Do); (c2;-t7]E) II Do))
{(seq-3)}

{(par-l0) }
{(seq-3)}

{(par-6) , (guard-4)}
{hypothesis}

{(seq-6) , (par-6) , (guard-4)}

{(seq-5)}
{(par-6) , (guard-4)}

{hypothesis}
{(seq-5)}

{(par-6), (guard-4) , (seq-5))}

{(par- 6), (lvar-4), Theorem I}
{Lemma I}

{(par-6) , (lvar-4)}
{(par- 6), (lvar-4)}

RHS

(1.4) C1 = ~iEI (gi Sd·
LHS
(~iEI (gi (Si; C2;-t7]E))) II Do
~iEI (gi ((Si; C2;-t7]E) II Do))
~iEI (gi (((Si; -t7]E) II Do); ((C2;-t7]E) II Do)))

= ~iEI (gd(Si; -t7]E) II Do)); ((C2;-t7]E) II Do)
= RHS

(1.5) C1 = while bS
Let F(X) =df if b (S; X) else skip, and define

FO(chaos) =df chaos, and Fn+1(chaos) =df F(Fn(chaos)), for n 2': o.
Then

LHS {; is continuous}
(Un>o (Fn(chaos);C2;-t7]E)) II Do {II is continuous}

= Un;o ((Fn(chaos); C2;-t7]E) II Do) {hypothesis}
= Un;o (((Fn(chaos); -t7]E) II Do); ((C2;-t7]E) II Do)) {II and; are continuous}
= RH-S

(1.6) C1 = S1; S2·
(1.6.1) S1 is a non-deterministic choice or conditional or guarded choice

construct, we can respectively convert C1 to a non-deterministic choice, or con­
ditional or a guarded choice construct by Laws (seq-3), (seq-5) and (seq-4), which
are the cases we have dealt with in (1.2), (1.3) and (1.4).

(1.6.2) S1 is an atomic command. It's trivial when S1 is chaos. We only
demonstrate the proof when S1 is a timing guard tg.

LHS
tg ((S2; C2;-t7]E) II Do)

= tg (((S2; -t7]E) II Do); ((C2;-t7]E) II Do))
= RHS

(1.6.3)S1 = whilebS. Similar to (1.5).
case 2 C1 = -t7]r; C; @7]a·

LHS
(C;@7Ja;C2;-t7]E) II (M; -t7]a; Do)
(C II M); ((@7]a;C2;-t7]E) II (-t7]a; Do))

= (C II M); (skip; ((C2;-t7]E) II Do))

(C II M); (-'tr1E II Do); «C2 ; -'tr7E) II Do) {(par-6), (lvar-4) ,
(C II M); «©Jr7a; -t 7]E) II (-t 7]a; Do)); « C2 ; -t 7]E) II Do)
«C;@7]a; -t7]E) II (M; -t7]a; Do)); «C2 ; -t7]E) II Do)

{(par- 6), (lvar-4),
RHS
case 3 C1 is a composite construct.
(3.1) C1 Co; C 1 , similar to (1.6).
(3.2) C1 CO n C1 , similar to (1.2).
(3.3) C1 if bCO else C 1

, analogous to (1.3).
(3.4) C1 ~iEI (gi Ci), similar to (1.4).
(3.5) C1 while bC, analogous to (1.5).

The following corollary is directly from theorem 2.

Corollary 1. Given C E CPE(r,a) and Do E DPE(r,a), we have

(while bC; -t 7]E) II Do = while b«C; -t 7]E) II Do)

5 Hardware/Software Partitioning

Theorem 1}
{Lemma 1}

Theorem 1}

D

D

This section specifies our hardware/software partitioning process in detail. As
mentioned in section 3, the task is divided to two steps: hardware/software par­
titioning for kernel specification; decomposition of the whole system's specifica­
tion. The process will be detailedly investigated in the following two subsections.

5.1 Syntax-Based Splitting Rules for Kernel Specification

This subsection is meant to design program partitioning rules. We explore a set
of splitting rules which demonstrate how to construct hardware and software
parts of a program construct from those of its constituents. Meanwhile, we show
how to split atomic commands.

We introduce a predicate Split which plays a vital role in formalising the
splitting rules.

Definition 5 (Split). Let V = {r, a, c, id}. Given a program S in the co­
specification language, its hardware/software partition «C; -t 7]E), DO) is speci­
fied by the following predicate:

Splitv(S, C, DO) =df
S ~ (C; -t7]E) II DO 1\

C E CPE(r, a) 1\ DO E DPE(r, a) 1\

V ~ Var(C; -t7]E) n Var(DO) 1\

V n Occ Var(S) = 0
where Occ Var(P) denotes the set of variables occured in the program P. D

We design two set of syntax-based splitting rules in two different styles: the
bottom-up style and the top-down style. The progammer can choose either of
them to conduct hardware/software partitioning.

The Bottom-Up Splitting Rules

The bottom-up approach builds the hardware component from a marked pro­
gram in one step before partitioning, i.e., all services the hardware should provide
are integrated at the begining. However, it constructs the software component
from those of its constituents using the following rules.

Bottom-Up Rule for Sequential Composition

5plitv(5i , Ci, DO), i = 1,2
Var(5d = Var(52)

Proof. 51; 52
~ ((C1;-+1'0 II Do); ((C2;-+1'0 II Do)
= (C1; C2;-+1'0 II Do

Bottom-Up Rule for Conditional

5plitv(5i, Ci , DO), i = 1,2
Var(5d = Var(52)

Proof. if b51 else 52
~ ifb((C1;-+'fJ,J II Do)else((C2;-+'fJE) II Do)
= (if b (C1;-+'fJE) else (C2;-+'fJE)) II Do
= ((if bC1else C2); -+'fJE) II Do

{; is monotonic}
{theorem 2}

D

{conditional is mono.}
{(par-g) }
{(seq-4)}

D

Bottom-Up Rule for Non-Deterministic Choice

5plitv(5i, Ci , DO), i = 1,2
Var(5d = Var(52)

Proof. 51 n 52
~ ((C1;-+'fJE) II Do) n ((C2;-+'fJE) II Do)
= ((C1;-+'fJE) n (C2;-+'fJE)) II Do
= ((C1 n C2); -+'fJE) II Do

Bottom-Up Rule for Guarded Choice

5plitv(5i, Ci , DO), i = 1,2
Var(5d = Var(52)

5plitv((91 51) ~ (9252), (91 Cd ~ (92 C2), DO)

Proof. (91 5dH92 52)
~ (91 ((C1;-+'fJE) II Do))~(92 ((C2;-+'fJE) II Do))

((91 (C1;-+'fJE))~(92 (C2;-+'fJE))) II Do
= (((91 C1)~(92 C2)); -+'fJE) II Do

{n is mono.}
{(par-B) }
{(seq-3)}

D

{~ is mono.}
{(par-6) , (guard-4)}

{(seq-5)}
D

Bottom-Up Rule for Iteration

Splitv(S, G, DO)
Splitv (while bS, while bG, DO)

Proof. while bS
c:: while b ((G; ----'t 7]E) II Do)
= (while bG; ----'t7]E) II Do

{loop operator is mono.}
{corollary I}

D

The Top-Down Splitting Rules

In the top-down style, both the hardware and software components of the source
program are integrated from those of its constituents.

Before investigating the top-down splitting rules, we introduce the notion of
mergable on hardware components from DPE(r, a).

Definition 6. LetDi =df j.lXe((@7]rMi;----'t7]a;XH(@7]Eskip)),
where Mi =df case (id) (pi MI) ... (p~ M~J, for i = 1,2.
D 1 and D2 are said to be mergable, denoted by mergable(D1

, D2), if
Var(D 1

) = Var(D2), and
(p} = p;) implies Ml = M], for 1 ~ i ~ nl, 1 ~ j ~ n2·

In such a case, we define
D = int(Dl, D2) =df j.lX e ((@7]r M; ----'t7]a; X) ~ (@7]E skip)),

whereM =df case(id)(tl Md···(tr Mr),
and {tl, , tr} = {pt, ... ,p;" } u {pi, ... ,P;'2}'
and {M1 , ,Mr} = {Mt, ... ,M~,} U {Ml,··· ,M~2}' D

First of all, we present a basic rule for hardware augmentation, from which
and the bottom-up rules in the former section we directly obtain the correspond­
ing top-down rules in all cases.

Rule for Hardware Augmentation

Splitv(S, G, D)
mergable(D, D')

Splitv(S, G, int(D, D'))

Proof. The proof can be reached in [11].

Top-Down Rule for Sequential Composition

Splitv(Si, Gi , Di)
Var(Sl) = Var(S2)
mergable(D1 , D2)

Splitv(Sl;S2, G1 ;G2, int(D1 ,D2))

Top-Down Rule for Conditional

Splitv(Si, Gi , Di)
Var(Sd = Var(S2)
mergable(D1 , D2)

D

Top-Down Rule for Non-Deterministic Choice

Splitv(Si, Gi , D i)
Var(Sd = Var(Sz)
mergable(D1 , Dz)

Top-Down Rule for Guarded Choice

Splitv(Si, Gi , D i)
Var(Sd = Var(Sz)
mergable(D1 , Dz)

The top-down rule for iteration enjoys the exact form with its bottom-up
rule.

Splitting Atomic Commands

The details for specific blocks' partitioning are similar to discussions in [12].
For the timed assignment (v := f (x, c))n, we only concentrate on the cases

where both the hardware and software participate in the update of v.
Case 1: f is a busy function, and x is allocated to hardware.

SplitB(S = ((v:= f(x,c))n), G, D), where
G =df ((id:= 1)0; -+'fIr; @'fJa; (v := ly)o), and
D =df J.1,x. ((@'fJr case (id) (1 (ly := f(x, c))n); -+ 'fJa; X) ~ (@'fJE skip)).

Case 2: f is a busy function, but x is allocated to software.
SplitB(S = ((v:= f(x,c))n), G, D), where
G =df ((id:= 1)0; (lx := x)o; -+'fJr; @'fJa; (v := ly)o), and
D =df J.1,x. ((@'fJr case (id) (1 (ly := f(lx, c))n); -+ 'fJa; XH (@'fJE skip)).

Case 3: f is not a busy function, but x is allocated to hardware.
SplitB(S = ((v:= f(x,c))n), G, D), where
G =df ((id:= 1)0; -+'fJr; @'fJa; (v := f(lx, c))n), and
D =df J.1,x. ((@'fJr case (id) (1 (lx:= x)o); -+TJa; X) ~ (@'fJE skip)).

5.2 Deriving Hw/Sw Partition for an Environment-Driven System

Now we investigate hardware/software partitioning for the whole system. The
partitioning process is illustrated in Fig. 2.

As discussed in section 4, suppose the whole system's specification is de­
scribed by

which is driven by environment process

Env =df always (-+ 'fJs; @'fJf)

Environment System
)(Ss

fEnv

start

s

finish

f

start

s

f

SW
)(Cs

f

HW
req

ack

Environment
Env finish

r

a

)(Mr
a

Proof. We define {always n(Sn as follows, for all n 2': 0:

always o(S) =df chaos
always nH (S) =df S; always n(S)

then by law (always-i), we have

always S = U always n(S)
n20

Now by continuity of the parallel operator and law (seq-2) , we only need to
prove, for all n 2': 0,

where

tPJ(P)n =df always n(@1]8 P ;-+ru)
Envn =df always n(-+1]8; @1]f)

By mathematical induction on n.

(1). Basic step (n = 0).
tPJ(S)o II Envo

~ (chaos; -+1]0) II chaos
= (tPJ(C)o; -+1]0) II D II Envo

(2). Inductive step (n -+ n + 1).
We first prove, for all n 2': 0,

{(seq-2n
{(par-3), (par-in

(tPJ(C)n; -+1]0) II Envn = always n(C); -+1]0

(lvar-4) , Theorem I}
{Lemma I}

(lvar-4) , Theorem I}
{hypothesis}

{(seq-in

{(par- 6), (lvar-4), Theorem I}
{Lemma I}

{(par-6), (lvar-4) , Theorem I}
{precondition, ; is mono.}

{hypothesis}

Htn
{Theorem 2}

{(tn
D

By an induction on n.
n = O. It's straightforward by law (par-3) and (seq-2).
n-+n+1.

(tPJ(C)nH; -+1]0) II EnvnH {(par-6),
(C; -+ 1]f; tPJ(C)n; -+ 1]0) II (@1]f; Envn)
C; ((-+ 1]f; tPJ(C)n; -+ 1]0) II (@1]f; Envn)) {(par-6),
C; ((tPJ(C)n; -+1]0) II Envn)
C; (always n(C); -+1]0)
always n+dC); -+1]0

Then, we have
tPJ(S)n+l II EnvnH
(S; -+1]f; tPJ(S)n) II (@1]f;Envn)
S; ((-+1]f; tPJ(S)n) II (@1]f;Envn))
S; (tPJ(S)n II Envn)

C ((C; -+1]0) II D); (tPJ(S)n II Envn)
C ((C; -+1]0) II D); ((tPJ(C)n; -+1]0) II D II Envn)

((C; -+1]0) II D); ((always n(C); -+1]0) II D)
(always n+dC); -+1]0) II D
(tPJ(C)n+l; -+1]0) II D II EnvnH

6 Conclusion and Future Work

This paper proposes an algebraic approach to hardware/software partitioning
in Verilog algebra. Verilog HDL is a hardware description language widely used
by industry. Due to its plentiful language features, Verilog can be either used to
capture system specification or adopted to specify subsequent designs of distinct
levels of abstraction, including RTL design.

We adopt a sequential imperative subset of Verilog as our co-specification
language, and allow it to contain time constraints, so as to describe timing spec­
ification. We confine target hardware and software specifications in specially
chosen subsets of Verilog, and use Verilog's event-trigger mechanism to synchro­
nise behaviours between them. Whereas, communications between hardware and
software is based on Verilog's shared variable mechanism, which will facilitate
the subsequent hardware/software co-synthesis, and make it possible to adopt
bus techniques to implement interactions between hardware and software.

The partitioning process in this paper is rather different from our former
approach in [12], where we only dealt with partitioning for a sequential source
program. However, this paper not only developes a collection of splitting rules to
partition a source program into hardware and software components, but also dis­
cuss hardware/software partitioning for the whole system which takes the source
program as its kernel specification. The system is specified by Verilog's always
constructs and its execution is driven by an environment process. Such systems
widely exist in our daily life, embedded systems are of this kind. Developing
a partitioning rule for such systmems will be very helpful for us to investigate
correctness-preserved design of embedded systems.

As parts of future work, we need to consider optimization and reconfiguration
of the hardware specification we generate before hardware synthesis. Meanwhile,
in order to introduce this algebraic approach to hardware synthesis, we will
have to investigate more helpful algebraic laws for Verilog. He et al have made
noticeable progress ([2,9]).

References

1. Mike Gordon, "The Semantic Challenge of VERILOG HDL", In Tenth Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press, 136-145,
1995. Revised version (April 11, 1996) of the paper published in the proceeding.

2. He Jifeng, "An Algebraic Approach to the Verilog Programming", will appear in
the proceedings of Lisbon Workshop, 2002.

3. He Jifeng, I. Page and J. Bowen, "A Provable Hardware Implementation of Occam",
Lecture Notes in Computer Science 711, 693-703, (1993).

4. He Jifeng and J. Bowen, "Specification, Verification and Prototyping of an Opti­
mised Compiler", Formal Aspect of Computing 6, 643-658, (1994).

5. He Jifeng et ai, "Provably Correct Systems", Lecture Notes in Computer Science
863, 288-335, (1994).

6. He Jifeng and Zhu Huibiao, "Formalising Verilog", in the proceedings of 7th IEEE
International Conference on Electronics, Circuits and Systems (ICECS 2000), IEEE
Computer Society Press, pp 412-415, Lebanon, December 2000.

7. C.A.R. Hoare and He Jifeng, Unifying Theories of Programming, Prentice Hall,
1998.

8. IEEE Computer Society, IEEE Standard Hardware Description Language Based on
the VERILOG Hardware Description Language(IEEE std 1364-1995), 1995.

9. Juliano Iyoda and He Jifeng, "Towards an Algebraic Synthesis of Verilog", Tech­
nical Report 218, UNU/IIST, P.O. Box 3058, Macau, April 2001, appeared in the
proceedings of the 2001 International Conference on Engineering of Reconfigurable
systems and algorithms (ERSA '2001), Las Vegas, USA, (2001).

10. Ian Page and Wayne Luk, "Compiling Occam into FPGAs", in FPGAs, eds., Will
Moore and Wayne Luk, 271-283, Abingdon EE&CS books, (1991).

11. Qin Shengchao, "An Algebraic Approach to Hardware/Software Partitioning in
Hardware/Software Co-Design", Ph.D thesis, School of Mathematical Sciences,
Peking University, March, 2002.

12. Shengchao Qin and Jifeng He, "Partitioning Program into Hardware and Soft­
ware", in the proceedings of Eighth Asia-Pacific Software Engineering Conference
(APSEC 2001), IEEE Computer Society Press, pp 309-316, Macau, 4-7 December,
2001.

13. Augusto Sampaio, "An Algebraic Approach to Compiler Design", World Scientific,
(1997).

14. L. Silva, A. Sampaio and E. Barros, "A Normal Form Reduction Strategy for
Hardware/software Partitioning", Formal Methods Europe (FME) 97, LNCS, 1313,
624-643, (1997).

15. Zhu Huibiao, Jonathan P. Bowen and He Jifeng, "From Operational Semantics
to Denotational Semantics for Verilog", in the proceedings of 11th Advanced Re­
search Working Conference on Correct Hardware Design and Verification Meth­
ods (CHARME 2001), Livingston, Scotland, 4-7 September, 2001, Lecture Notes in
Computer Science 2144, pp 449-464, Springer-Verlag.

16. Zhu Huibiao, Jonathan P. Bowen and He Jifeng, "Deriving Operational Semantics
from Denotational Semantics for Verilog", in the proceedings of Eighth Asia-Pacific
Software Engineering Conference (APSEC 2001), IEEE Computer Society Press,
pp 177-184, Macau, 4-7 December, 2001.

17. Zhu Huibiao and He Jifeng, "A DC-based Semantics for Verilog", in the proceedings
of the International Conference on Software: Theory and Practice (ICS2000), pp
421-432, Beijing, August 21-24, 2000.

