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Abstract. The presence of structure inside XML documents poses the
hard challenge of providing flexible query matching methods for effective
retrieval of results. In this paper we present an approach that faces this
issue in a twofold fashion: 1) it exploits new approximations on data
structure; 2) it provides a relevance ranking method that takes into ac-
count the degree of correctness and completeness of results with respect
to a given query, as well as the degree of cohesion of data retrieved.

1 Introduction and Motivation

The increasing availability of large digital libraries is raising XML to be the
new standard for data representation. Because of the heterogeneity of document
collections, querying blindly XML data requires a great deal of flexibility not to
fall into the trap of “empty results”, often caused by too strict constraints. In
fact, the presence of structure inside XML documents is double-faced: on one
hand, it helps to define the context where information has to be retrieved (for
instance, “Retrieve the director of the movie entitled Casablanca”), on the other,
it may be an obstacle to the retrieval of relevant information that slightly differs
in data organization.

For instance, consider a user looking for stores in New York city selling CD’s
authored by Elton John, and containing songs with “love” in the title. Among
the two stores listed in Docl of Fig. [l only the former fully satisfies query
requirements. This is because it is the only store in Docl that presents a city
attribute, thus making condition on “New York” checkable. But, it is evident
that also the second store is relevant to the query, and should be returned.

Thus, relaxation on query requirements is currently the scope of many pro-
posals [4I7[TOJT92002T]. These works deal with similarity queries that approxi-
mate results both on semantics and on structural conditions. However, most of
the above approaches do not recognize the second CD store of Docl as relevant.
Actually, except for ApproXQL [17], they do not cope with the problem of pro-
viding structurally incomplete results, i.e. results that only partially satisfy query
requirements on data organization. Further, although supposing that condition
on New York is checkable for the second CD store in Doc1, none of the above
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<cdstore>Artist Shop
< address street = “105 Broad Street”,
city = “New York” >

<musicstore name="CD Universe" >
<location>
<town>New York< /town>

<cd> < /location>
<title>One night only< /title> <warehouse>
<artist>Elton John</artist> <stock number ="157">
<tracklist> <cd>
<song> <title>Love songs< /title>
<title> <singer>Elton John< /singer>
Can you feel the love tonight <tracklist>
< /title> <song>
< /song> <title>
Can you feel the love tonight
< /tracklist> < /title>
</cd> < /song>
< /cdstore> < /tracklist>
<cdstore address ="Manhattan, New York” > </ed>
Music Store <cd>
<cd> <title>
<title> Disney solos for violin </title> Songs from the west coast
<tracklist> < /title>
<track> <singer>Elton John</singer>
<author> Elton John </author> <tracklist>
<title> <song>
Love of the common people <title>1 want love </title>
< /title> < /song>
< /track> e
. < /tracklist>
< /tracklist> </cd>
</cd> < /stock>
. < /warehouse>
< /cdstore> < /musicstore>

Doc1

Doc2

Fig. 1. Sample XML documents

method would recognize it as relevant, because of a slight difference on data or-
ganization. In fact, Elton John appears as a track author rather than as the CD
author, as specified by the query. This emphasizes the need of more flexibility
in the evaluation of structure conditions, most of all in absence of knowledge of
data organization.

As to relevance ranking, relaxations on both semantics and structure are
expected to affect the score of results. However, in many proposals [EI7/T0J20]
the use of wildcards flatten the score of the retrieved data, which is considered
relevant no matter how much “sparse” it is. Only in ApproXQL the number of
elements matching a wildcard contributes to the ranking of results. But none of
the above approaches takes into account neither the query rate satisfied by an
answer, i.e. the completeness of the answer, as well as its structural correctness,
nor the cohesion of results. In fact, also sparseness of data retrieved plays an
important role for relevance evaluation. For instance, consider the CD store in
Doc2. Although it satisfies the query conditions, note that the required CD’s
belong to the stock “157” of the store’s warehouse. This changes the context
where information is retrieved and, in this case, this may possibly mean that the
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CD’s are not currently available for sale. Then, this store contains two relevant
CD'’s, thus probably it is expected to score higher than others.

In this paper we provide a method to find the approzimate embeddings of a
user query in XML document collections. Our proposal captures the relaxations
described above, and provides a ranking measure that takes into account the
degree of correctness and completeness of results with respect to a given query,
as well as the degree of cohesion of data retrieved. Our proposal relies on tree
representation both for XML documents [3], and for queries. The outline is as
follows: In Section ] we discuss related work. In Section B we start from the
unordered tree inclusion problem [I2] to relate query and data trees through
embeddings; this is extended in two directions: 1) to capture also partial match-
ing on query structure, and 2) to assign a score to the retrieved embeddings.
In Section [ we define the SATES (Scored Approximate Tree Embedding Set)
function, to retrieve and score embeddings, and we give a flavour of the flexibility
and the effectiveness of the method through examples. However, we report its
formal definition in appendix. Section [Hl is devoted to relevance ranking compu-
tation. Properties of correctness and completeness of embeddings are presented.
We also compare our method with other related approaches. In Section B we
briefly discuss implementation and, finally, in Section [ we conclude and discuss
our planned future work.

2 Related Work

Several current proposals [4J6l7I8/T01TIT6/17/20l21] deal with similarity queries
on XML data. In XXL [20] similarity basically depends on document content,
through the evaluation of vague predicates, and information on structure is only
exploited to combine semantic similarity scores. Partial match on query structure
is not supported. XIRQL [10] introduces the concept of index object to specify
document units. Terms are weighted locally to these units, thus defining the
relevance of each term in the scope given by the node. Thus, structural conditions
act as filters to determine the context where information has to be searched
in. Partial match on query structure yet is not discussed. The latter feature is
neglected also in [7]. The ranking of scores depends on the context where data
is retrieved, and semantic similarity is not exploited.

Then, other approaches [4/T7] adopt tree-based retrieval models to captures
XML data relationships in a natural way. In fact, classical models (e.g. vector
space, probabilistic) lack the ability to handle structural information, although
some extensions have been proposed for them [18)21]. In [4] relevance rank-
ing is based on tree pattern relaxations. Nodes and edges in a query tree are
assigned pairs of weights that denote scores for exact and relaxed matching,
respectively. Sum is used to combine scores of each single node/edge match-
ing. Partial match on query structure is not supported. Only ApproXQL [17]
considers partial match on query structure.

Then, in all above-cited proposals cohesion of data retrieved is not consid-
ered for relevance. In [7] the length of paths connecting two matching nodes is
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neglected; In [20] wildcards are intentionally used, thus discarding the (negative)
contribution of intermediate nodes between matching data; In [I0] this issue is
not discussed. In [I7] similarity scores depend on the costs of basic transfor-
mations applied on the query tree. These costs do not depend on data. Thus,
semantic relationships, like synonymy, are not exploited.

Further, to our knowledge, for a given document, all proposed methods return
only the best (in some cases, approximate) matching. The set-oriented approach
used in the SATES function also captures the relevance given by multiple oc-
currences of the query pattern in the retrieved data.

Other related approaches deal with matching elements of data schemas, usu-
ally represented as graphs [T4]I5]. In [I4] trees are used as a starting point to
perform schema matching (for instance, to compare XML documents). Struc-
tural similarity is measured as the fraction of leaves appearing in the matching.
The notion of completeness is then limited to leaf coverage. Cohesion is not ex-
plicitly discussed, although it influences the final similarity of trees, through the
use of descreasing factors. In [I5] quality of results is measured in terms of the
effort the user needs to spend to obtain a perfect match from the automatically
generated one. This is accomplished through the addition/deletion of node pairs
in the mapping. This suggests a measure of incompleteness of results (when
nodes are to be added), but it does not provide any information on cohesion of
data retrieved.

3 Relaxing the Tree Embedding Problem

In a tree view of documents and queries, several proposals [AI7/10/17/20] rely on
tree/graph pattern matching techniques to decide if a document d is a possible
answer to a query q.

In most of these works, all query nodes must have a corresponding matching
node in the document tree, and each parent-child relationship should be guaran-
teed at least by an ancestor-descendant one in the data tree. This is also known
as the tree embedding problem [12]. Nevertheless, in many cases these conditions
are too restrictive, yet being not flexible enough to effectively deal with the struc-
tural heterogeneity of XML documents. In fact, in absence of knowledge of data
organization, documents often do not correspond completely to query require-
ments, yet being mostly relevant although in absence of some conditions. This
is the case, for instance of the second CD store of Docl, that does not present
any city element/attribute to be checked for the query condition on New York.
Further, frequently, documents do not ezactly fit the structural constraints pro-
vided in a user query. An example is Docl, where Elton John appears as track
author, instead of CD author as required in the sample query presented above.

Our work basically loosens the strictness of this approach, that often leads to
empty results because of minor differences in data organization. The key aspects
of our proposal are:
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1. the relaxation on the concept of total embedding of a query tree t, in a
document tree tg, in that we admit partial structural match of the query tree,
as well as approximations on structural relationships; further, the match is
relaxed to consider semantic similarity between nodes;

2. ranking of results with respect to the cohesion of data retrieved, to the
relazation of semantic and structural constraints, and to the coverage rate
of the query;

3. a set-oriented approach to results, that depending on different relaxations
on requirements, identifies possible alternatives that the user may be in-
terested in. This also strengthens the relevance of data presenting multiple
occurrences of query patterns.

Point 1) leads to the introduction of our interpretation of approzimate tree em-
bedding. First, we report the basic notation we will use throughout paper and
appendix. As to tree representation of XML documents, we follow the XML In-
formation Set standard [3] (with root and label as document element and local
name properties, respectively, and parent and children as the homonymous prop-
erties, denoting a parent-child relationship between argument nodes, and the set
of first level children of a given node, respectively). We also define some addi-
tional functions for nodes n, ny, and ny in a tree: leaf(n) iff children(n) = 0,
and ancestor(ny,ny) iff (parent(ni,ng) V I n € N s.t. (parent(ni,n) A ances-
tor(n,nz2)). We denote with 7 the set of such trees. Given a tree ¢ € T, nodes(t)
returns the set of all nodes of t. Then, given a node n in a tree t € T, we define
supp(n) the subtree of ¢ rooted at n, and we call it the support of n in t. Let
Tp C T be the set of all data trees, and 7o C 7 be the set of all query trees.

We intentionally neglect the presence of namespaces and links (IDREFS)
inside XML documents and we assume data is well-formed, but we do not require
validity with respect to a Document Type Definition (DTD).

Definition 1 (Approximate Tree Embedding (ATE)). Given a query tree
ty € To and a document tree tq € Tp, an approzimate tree embedding of t4 in tq
is a partial injective function €[ty, t4] : nodes(t,) -+ nodes(tq) such that Vg, ¢;
in the domain of é (dom(é)):

a). sim(label(q;),label(é(q;))) > 0, where sim is a similarity operator that returns
a score normalized in [0,1] stating the semantic similarity between the two
given labels

b). parent(g;,q;) = (ancestor(é(g;),e(q;)) V sibling(é(q;).€(g;)))

c). sibling(qi,q;) = (sibling(&(q:),€(q;)) V ancestor(é(g:)€(q;)))

Let & be the set of approximate tree embeddings.

Points b) and ¢) of Def. [ capture both the presence of intermediate nodes

between €(g;) and €(g;) (ancestorship), and additional approximations on struc-

tural conditions (sibling relationship), that we call structure unbalances, as shown
in the following example:

Ezample 1. Recall the sample query presented in the Introduction: Retrieve
stores in New York city selling CD’s authored by Elton John, and containing
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"Artist shop” "Music store"

NaN‘Y\or< o

tracklist | |/ O~ Tt --—-°
tracklist
7’
"105 Broad St." “New Y ork" -
- - hd
o tack » © title
"Elton..." "One night..." P

"Disney solos..." 7 "Elton John", “New York"

"Canyou fedl..." "Elton..." "Loveof..."

Fig. 2. Partial coverage and unbalance of query tree in Doc1

songs with “love” in the title. Consider Fig. 2] where a possible result is shaded
in the Docl tree. Note that t, is only partially covered in this solution, since
the city node does not have any correspondence in t4. Further, the emphasized
dashed lines show a structure unbalance.

As to point 2), in order to specify the ranking of results, embeddings are to be
assigned a score, according to a relevance ranking function p.

Because of the flexibility allowed in the retrieval of embeddings, different types
of relaxations are to be taken into account for relevance score computation. For
instance, partiality of the € function affects the completeness of results. Approx-
imations according to the a) point of Def. [l influence the semantic correctness
of the retrieved data. Relaxations like those allowed in b) and ¢) denote struc-
tural discrepancies as well as low cohesion of data since intermediate nodes are
allowed in the document tree. This latest relaxation is evident in Fig. [3 where
the shaded solution in the Doc2 tree presents a relevant CD in the stock “157”
of the store’s warehouse.

This denotes fragmentation of data retrieved, that contributes to lower the fi-
nal result score. Our ranking function takes into account all these features, as
detailed below.

Definition 2 (Relevance Ranking Function). We denote with p a ranking
function that, given a triple (t4,tq4, €[tq,tq]), returns a score o € S = [0, 1] such
that, with respect to the approximate embedding € of the query expressed by ¢,
in the document expressed by t4, o is obtained as a combination of the following
components:

— 71, that indicates how much e is semantically complete with respect to the
given query

— 79, which denotes semantic correctness of €, in that it states how well the
embedding satisfies semantic requirements
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location

/
,,,,,,, ’ tracklist

§ title
__ "Lovesongs' “Elton.." -

"Canyou feel..." "l want love"

Fig. 3. Partial coverage of query tree and low cohesion in Doc2

— 73, that represents the structural completeness of € with respect to the given
query; it denotes the structural coverage of the query

— 74, that expresses structural correctness of €, in that it is a measure of how
well constraints on structure are respected in the embedding

— 75, which specifies cohesion of €, by providing the grade of fragmentation of
the retrieved embedding

Thus, 0 = &(71,72,73,V4,75), With ¢ a combine function, states the overall
similarity score of the embedding é. Formally:

p:ToxTpxE—=S

As to the components of a score o, in Section B we will detail each ~;, when
discussing relevance computation. Now we are ready to introduce a scored ap-
proximate tree embedding.

Definition 3. (Scored Approximate Tree Embedding) A scored approzi-
mate tree embedding €, is an approximate tree embedding extended with a score
in S. Formally: €5 : S x £.

With regard to point 3), consider Fig.dl The CD store already retrieved through
the embedding of Fig. B presents a second relevant CD. Thus, we expect this
music store to be a high relevant answer to the user query, since requirements
on CD occur twice. On the other hand, Docl contains two relevant stores, as
shown in figures 2l and Bl This also increases the relevance of this document.

In order to capture these situations, our tree embedding method considers
the presence of multiple occurrences of query requirements, by providing a set-
oriented approach to results. This information is then exploited to strengthen
the score of dense results.
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name

"CD Univ..."

number

w57

"Lovesongs' "Elton..."

"Canyou feel..." "I want love"

Fig. 4. Further occurrence of query tree in Doc2

"Manhattan, New Y ork"

city artist tracklist

"105 Broad St.” “New York”

song .-~

"Disney solos..."

Tt -~ "Can you fesl.." "Elton..." “Loveof..."

Fig. 5. Full coverage of query tree in Docl

4 Approximate Embedding of Query Trees

The similarity function we propose for retrieval and scoring of embeddings of
a query tree in a document tree, is given by the SATES (Scored Approzimate
Tree Embedding Set) function.

Definition 4 (SATES Function). We define the Scored Approzimate Tree
Embedding Set Function as:

SATES :Tg x Tp — 25x€

Yty € Tg,Vta € Tp, SATES(t4,tq) returns a set of scored approximate tree
embeddings for ¢, in t4. The SATE'S function returns a result set, thus capturing
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the possibility of having more than one embedding between a query tree and a
document tree.

Intuitively, the SAT ES function states “how well” a data tree 4 fits a query tree
tq, also taking care of multiple fittings. To determine the scored embeddings, the
function is defined in a recursive fashion. In order to show the embedding process,
we follow an example-driven approach, and we provide the formal definition of
the SATES function in appendix.

We recall the example of Fig. ] and we try to find an embedding for ¢, in
tq. For simplicity, we start considering only the second branch of the t; tree,
i.e. the one relating to "Music store". We refer to it as the current t4, and we
denote it with ¢}. Then, we will show later how the final embedding of ¢, in t4
will include also the embedding for the "Artist shop" store, thus resulting in a
set of embeddings. Starting top-down, the method tries to find a match between
roots’ labels. If a match is possible, then the SAT ES function recursively applies
to children of ¢, and t};. This is made according to a bipartite graph matching!
between the children of ¢, and the children of ¢}, and we denote it with Mij .
In our example, since the labels of ¢,’s root and t}’s root match, we consider
the most promising matching Mﬁj between the pairs (address,,addressy),
and (cdq,cdq), where indices ¢ and d denote the belonging to query and data
trees, respectively. In fact, other possible matchings Mﬁj, involving for instance
the "Music store" node, do not produce relevant results. However, alterna-
tive matchings help in finding structural discrepancies, as we will show later in
this Section. Then, the embedding method proceeds recursively on the above-
mentioned pairs.

First, let us consider the pair (address,,addressq): We have that ¢; =
supp(address,) and t}; = supp(addressy), with t; the current t,. Since roots’
labels match, a Mﬁj is established between nodes city, and "Manhattan,..."4.
Then, recursion is applied again. However, in this case no similarity is found for
roots’ labels (at present, t} = supp(city,), and t;; = supp("Manhattan,..."s)).
Thus, the method considers two possible strategies:

1. (optimistic): it tries to find a complete embedding for ty at a deeper level in
t3. This means that the search context is changed to a more specific context;
2. (pessimistic): it intentionally gives up looking for a match of ¢;’s root
(thus accepting a partial match), and tries to satisfy the remaining query
conditions (t; = supp("New York",)), by proceeding either:
a) in the current data context, i.e. ¢} stays unchanged, or
b) changing the context, i.e. looking for a match at a deeper level in ¢}

In the current example, it is easy to notice that the only feasible strategy is 2al
In fact, since t}; is indeed a leaf, it is not possible to change any search context,

! Consider a graph G = (V, E). G is bipartite if there is a partition V = AU B of the
nodes of G such that every edge of G has one endpoint in A and one endpoint in
B. A matching is a subset of the edges no two of which share the same endpoint. In
our case A = children(root(tq)) and B = children(root(t})).
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thus making alternatives [1] and not applicable. Then recursion concludes for
this branch (i.e. for the pair (address,,addressg)), since the current trees are
actually two leaves, and a match is found for them.

Now, let us get back to the pair (cdg,cdq): We have that their labels match,
and two matchings Mﬁj are possible among their children:

1. Let consider first M’;Z = {(authory,titley),(song,,tracklisty)}. It is
easy to show that the former pair does not produce any result; on the
other hand, in the latter one we follow strategy [, and we recursively
compute SATES on the pair (song,,trackg). This time, labels are simi-
lar and the embedding process goes on, matching (title,titley), since
the pair (titleg,authory) does not return any result. Finally, the pair
("Love",,"Love of ...";) is added to the embedding.

2. As to the second possible matching Mi;l = {(song,,titley),
(author,,tracklisty)}, once again we neglect the former pair. In fact,
although an embedding is retrieved, i.e. { (titley,titley) }, the correspond-
ing leaves do not match, thus making the embedding not signiﬁcant With
regard to the second pair, the double application of strategy [d] allows for dis-
covering the embedding of (author,,authorgy), including the pair ("Elton
John",,"Elton John"y). On the other hand, similarly to the previous case,
the pair (author,,titley) leads to empty results.

Thus, in order to capture structural unbalances, the SATE'S function takes into
account all possible matchings ME;’ Finally, for the sake of completeness, re-
call that the starting embedding was SATES(t,,tq). The set-oriented approach
of our method allows for returning two possible solutions, through the double
application of strategy [} The former time to try the embedding of the pair
(cdstore,,cdstore/), and the latter one for the pair (cdstore,,cdstore!),
where the number of apices denotes the first and second CD store in Docl, re-
spectively. A further situation where the set-oriented approach contributes in
the retrieval of multiple occurrences of results is shown in figures 3 and [, where
the final embedding set is obtained by the union of the embeddings originated
by the pairs (cd,,cd)) and (cd,,cd))), respectively.

5 Relevance Computation

Most approaches [AZUTOJT7/20] score results with ranking values that, individu-
ally, do not provide information on the query rate satisfied by an answer. Assume,
for instance, to compare results coming from two different queries ¢; and go. Ac-
cording to most scoring methods [4/I7], it is possible that one document that
satisfies 1 condition (out of 2) of ¢; is assigned the same score of a document

2 This policy privileges embeddings with query leaves matching. This is to limit the
huge amount of results that satisfy structural constraints, but do not match content
conditions. From a strict structural point of view, the above pair should belong to
the embedding.
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that satisfies 9 conditions (out of 10) of the more complex query ¢o. Although re-
sults are incomparable, one would expect documents (exactly) satisfying a high
percentage of conditions to score higher than documents (exactly) satisfying a
lower rate. Thus, besides information on correctness of results, a measure of
completeness is desirable. As to XML documents, this information is somehow
made more complex by the presence of structure inside documents. This implies
that some knowledge on completeness is supposed to provide also information on
the matching rate of query structure. Then, apart from queries where the user
explicitly specifies not to take care of the depth where information may be found
in, also cohesion of data retrieved is an important element to be considered when
ranking results.

Here, we provide a scoring method that captures the above-mentioned fea-
tures. We start modelling a set of properties for each embedding é. Property
values are normalized in the interval [0, 1], where values close to 1 denote high
satisfaction. Properties are:

Semantic Completeness. It is a measure of how much the embedding is se-
mantically complete with respect to the given query. It is computed it as
the ratio between the number of query nodes in the embedding, ng, and the
total number of query nodes, ng:

QM

1=

3‘3

q

Semantic Correctness. It states how well the embedding satisfies semantic
requirements. It represents the overall semantic similarity captured by the
nodes in the embedding. This is computed as a combination of label similar-
ities of matching nodes, possibly lowered by type mismatchings (attribute
vs. element nodes):

Yo = /\ sim(label(q;), label(é(g;)))

q; € dom(E)

where A is a scoring function [9] the computes the conjunction of label simi-
larities. For instance, A could be a fuzzy t-norm [I3], such as the min function
or the product operator.

Structural Completeness. It represents the structural coverage of the query
tree. It is computed as the ratio between: 1) the number of node pairs in the
image of the embedding, hpg, that satisfy the same hierarchicald relationship
of the query node pairs which are related to, and 2) the total number of

hierarchy-related pairs in the query tree (hp,):
hp®

a
V3 =

hpq

Structural Correctness. It is a measure of how many nodes respect struc-
tural constraints. It is computed as the complement of the ratio between the

3 Either parent-child or ancestor-descendant relationship.
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number of structural penalties p (i.e. unbalances) and the total number of
hierarchy-related pairs in the data tree that also appear in the embedding:

p
hpy

Ya=1-

Cohesion of results. It represents the grade of fragmentation of the result-
ing embedding. It is computed as the complement of the ratio between the
number of intermediate data nodes ing among the nodes in the embedding,
and the total number of data nodes in the embedding, also including the
intermediate ones, ng: }

V5 = 1-— &
nq

These properties can be naturally partitioned in two sets: properties related
to semantics, and properties concerning structure. The combination of the first
two scores provides the overall information on semantic satisfaction. As to the
remaining properties, they all provide different perspectives for the evaluation
of structure similarity. A combination of them indicates a global measure, that
summarizes the structural satisfaction of the retrieved data. However, it is be-
yond the scope of this paper to evaluate which is the best function to be used
for combining these scores in the computation of the overall score o of an em-
bedding, as defined in Def. 2. Clearly, additional flexibility can be reached by
assigning weigths to each 7; to denote the different importance of each property.

5.1 Comparison with Related Approaches

Table[dshows a comparison of our ranking method with other similar approaches,
according to different relaxations on structure.

Table 1. Relaxations supported on structure

l Approach Hpartial match‘unbalance‘intermed. data nodes|multiple occurr.
XXL [20] no no yes no
XIRQL [10] no no yes no
Damiani et al. [7] no no yes no
Amer-Yahia et al. [4] no yes? yes no
ApproXQL [17] yes no yes no
SATES yes yes yes yes

All the discussed methods allow for intermediate data nodes in the results. How-
ever, all but ApproXQL do not consider the number of exceeding data nodes in
the computation of scores. In fact, all methods except ApproXQL would return

* Subtree Promotion in [4] captures the unbalances described in Def. [ point b). The
symmetric case, point ¢), is not discussed.
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the same score for the approximate tree embeddings of figures [4 and [, even
though the former embedding presents a higher fragmentation

However, consider the query embedding of Fig. [, where the current query
is simplified with respect to the sample we used throughout the paper, since it
does not require any constraint on CD store location.

name

"CD Univ..."
number

157 title

" “Elton John*”
title - —---""
"Lovesongs' "Elton..."

"Canyou fed..." "I want love"

Fig. 6. Embedding of the simplified sample query

Table[2 shows how ApproXQL and SATES evaluate the embeddings of figures M
and Bl For ApproXQL, the same score would be assigned in both cases, since the

Table 2. Different scoring in presence of different cohesion of data

l Approach HScore for embedding of Fig. @‘Score for embedding of Fig.
ApproXQL high high
SATES high medium

number of relaxations to meet data organization can be quantified in the same
number of intermediate nodes for both queries (3 nodes, indeed). Nevertheless,
the set of query requirements is different, and the number of exceeding nodes
is proportionally more heavy for the embedding of Fig.[B. SATES takes into
account this feature, and assigns two different scores to results, scoring higher
the embedding of Fig. @

5 For simplicity, we assume the matchings on labels to score the same for both em-
beddings, so that only evaluation on structure affects the ranking.
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6 Implementation

We implemented a prototype and experienced our similarity measure on a real
collection of XML documents. The dataset used is provided by the Astronomical
Data Center [I]. The prototype has been developed in Java2 v.1.3.1 and uses
the API for XML parsing, and Xerces 1.4.4 to parse documents. As to semantic
similarity, the system refers to the WordNet semantic network, [2] exploiting
relationships like synonymy, hyperonymy, and holonymy among terms, and ac-
cesses it through the Java WordNet Library (JWNL). As a similarity measure
we used an adaptation of the Sussna’s formula [5]. We plan to experience and
refine our method, in order to find the better rules to be used for our combine
and ranking functions, with the aim of representing results at the best of their
meaning.

7 Conclusions and Future Work

Most of the existing ranking approaches are inadequate when querying hetero-
geneous collections of XML documents. In fact, as to similarity on documents’
structure, they basically require all query conditions are somehow preserved in
the data retrieved. Also, they do not fully exploit relaxations on structure to
capture slightly different organization of data.

We presented an approach that widens the spectrum of relevant data, includ-
ing solutions that also partially satisfy query requirements, and that approximate
text organization inside documents, also capturing unbalances of structure and
multiple occurrences of query conditions. Then, we rank results according to a
set of properties of the retrieved data. These properties provide, besides correct-
ness, a measure of completeness of query satisfaction, as well as knowledge about
cohesion of results. In order to augment query flexibility we plan to allow the
user to express preferences on either the semantics or the structure of a query.
As to queries with conditions referring to ordered data, we intend to study con-
straints on our generic unordered tree embedding method. We are aware of the
problem of blindly querying XML data: Documents might be organized largely
differently from the user’s point of view. Thus, we plan to study new complex hi-
erarchical relaxations on data, and to make this process transparent to the user.
With regard to implementation, in order to cope with the possible hugeness of
approximate results returned, we plan to use threshold conditions, to keep only
the most relevant results.
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The SATES Function

For simplicity, let sim(tq,tq) be sim(label(root(t,)),label(root(ty))), and let
s(tqg,ta) = p(tg,ta, {root(ty), root(tqs)}). We use M in place of Mij The &,
and ©4 functions change the scores of a set of approximate tree embeddings,
according to a lowering factor. New scores capture the unsuccessful match of a
query node and a data node, respectively. The ® function generates a new score
from a set of n given scores in S.
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Vtq € Tg,ta € Tp,SATES(tq,tq) is defined as:

case leaf(root(tq)) A leaf(root(tq)):
if sim(tq,tq4) >0
SATES(tq,tqa) = {[(s(tq, ta), {(root(ty), root(ts))}}
else SATES(tq,tq) =

case lea f(root(tq)) A —leaf(root(ts)):
if sim(tq,ta) >0
SATES(tq, ta) = {[(5(ts, ta), {(root(t,), oot (t) )]}
else SATES(tq,ta) = |J ©a (SATES(tq, supp(c)))

¢ € children(ty)

case —leaf(root(tq)) Aleaf(root(ts)):
if sim(ty,ta) > 0
SATES(tq,ta) = {[(s(tq, ta), {(root(ty), root(ta)})]}
else SATES(tg,ta) = | ©q (SATES(supp(c),ta))

¢ € children(tq)

case —leaf(root(ty)) A —leaf(root(ts)):
if sim(tq,ta) >0 SATES(tq,td)

|M
U U [®(s(tq,ta), s, - - "Sl|M||) {(root(ty),root(ts))} Umj, U...U e
Mid ik (k) e m
e (sfk ’vk) € SATES(tk i ky
1, € [1. |SATES(tk tk)|]

else SATES(tq,ta) = UU,,U,, U,)
where |J, = ©5004 U [®(si,,... ,s}lj\ﬂl) mj,U...Um
Miz (F ¥ em
(s k mk ‘)€ SATES(:k ek ky

I’
I, €[1.. |5ATES(tk t M

U.=U ©a (SATES(tq, c))
c € children(ty

Us=U & (SATES(c tq))

¢ € children(tq)
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