
Remote Code Browsing, a Network Based
Computation Utility

C. Giblin, S. Rooney, and A. Bussani

IBM Zurich Research Laboratory
8803 Rüschlikon, Säumerstrasse 4, Switzerland

cgi@zurich.ibm.com, sro@zurich.ibm.com, bus@zurich.ibm.com

Abstract. Remote code browsing is a service by which an end user can
select the location of a potentially useful piece of software and have the
software fetched and installed on a virtual machine running on a remote
server, such that the user may test the suitability of the software without
having to install it on their own machine. This capability is made possible
by a range of existing technologies combined in a novel way. This paper
explains the motivation for code browsing, and describes how our current
implementation works.

1 Introduction

This document is being written using a free text editor emacs, the postscript
is generated with a free text processing software latex and both run on a free
operating system Linux. The value of free software distributed over the Internet
is hardly in doubt. However, that value is diminished by the following factors:

– there is always a danger that the downloaded software will disrupt the normal
working of the system on which it was installed either because the software
is erroneous or the authors were malicious or simply because the person who
installed it misunderstood its expected effect. This is particularly true when
the installed software changes the functioning of the operating system itself.
Moreover, installs are often not easily reversible, i.e. the uninstall does not
remove all traces of the install.

– often the only way to determine the precise behavior of a publicly available
piece of software is to execute it. But the action of downloading and installing
many such packages is labor intensive and frustrating.

– the software may only function on a platform unavailable to the user, however
the utility of the software might be the factor which determines whether it
is worthwhile changing platform.

Installing the software on a machine other than the user’s own removes the
possibility of disruption at least to the user. One could imagine an organization
might dedicate some machines, running a variety of different operating systems
to this task. However, it would not make the act of installing the public software
any easier and such machines themselves would be vulnerable to disruption,

M. Feridun et al. (Eds.): DSOM 2002, LNCS 2506, pp. 121–132, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



122 C. Giblin, S. Rooney, and A. Bussani

especially as they would be shared between many members of the same organi-
zation.

Ideally, each user would have a dedicated set of machines (each running a
different operating system) for installing foreign code. If in addition, some person
or people in the organization were responsible for downloading and installing
code on the user’s behalf, then all the limitations mentioned above would be
removed. In general however, this would be prohibitively expensive.

Our code browsing utility goes some way towards automating the task of
downloading and installation — thereby removing the need for additional per-
sonnel — and using dynamically created virtual machines on which to install
the code — thereby removing the need for a large number of physical machines.
Application areas are:

– security analysis, security specialists can archive and reactivate potentially
malicious software in a controlled and safe environment as and when re-
quired.

– software vendors, vendors can furnish the means by which end-users can
execute the trial versions of the vendor’s software without having to install
it on their machine.

– software testing, the tester can dynamically deploy baseline configurations
and execute tests on demand. As a result the testing iterations are faster
and more dependable.

– business user, users can casually browse software packages without local
installation.

This paper demonstrates the feasibility of the code browsing service by de-
scribing how it works. The code browsing service uses a range of different existing
technologies and these are introduced and explained as part of the demonstra-
tion.

2 Code Browsing Utility Overview

The code browsing utility is a distributed set of software components which in-
teract in order to achieve the desired code browsing function. These components
make use of a range of different technologies including: servlets, tuple spaces, dy-
namic DNS, DHCP, VNC, virtual x86 architecture, amongst others. In order to
combine these different technologies such that they function together coherently,
we adopt a very loosely coupled model of interaction.

The code browsing utility divides into two parts: a download service with
which end-users interact and which is responsible for retrieving the code from
the remote site and passing it, along with some meta information, to the vir-
tual machine factory; a Virtual Machine (VM) factory which creates the virtual
machines and installs the code on them.

The download service copies the file to be code browsed to a file system
directory along with a meta information entry. This entry contains the file’s
name, the operating system on which it should be installed and its size, as well



Remote Code Browsing, a Network Based Computation Utility 123

Download
Service

VM 
Factory

File Space

Servers

User

URL

File

File + Bookkeeping info

OS
Description

e-mail 

Remote Location

Fig. 1. Overview of the code browsing utility

as information about the virtual machine, e.g. whether it should be persistent
between boots, how long it should exist. The VM factory is notified of a new code
browsing request and sets about creating the virtual machine with the requested
code installed. The VM factory creates a virtual machine of the appropriate
type, e.g. Redhat Linux, Windows XP, Windows NT etc. and notifies the user of
the system’s availability by e-mail. Users then access that virtual machine using
remote terminal technology. Figure 1 shows the essential interactions between
the main components of the code browsing utility.

3 Virtual Machine Factory

The VM Factory1 creates virtual machines which are run on a set of physical
machines — currently Linux PCs — which constitute the hosting environment.
These Linux PCs are connected across an Ethernet LAN to an edge router which
links the infrastructure to our intranet.

The VM factory consists of three types of entity: gatekeepers which are the
entry point of the VM factory and which coordinate the activity of the other
components; server controllers which create the VMs; directory services contain-
ing the system’s shared information.

For this description, we will assume one gatekeeper and one directory service
per code browsing utility, and one server controller per physical machine in the
hosting environment.
1 The VM Factory makes uses of the ICorpMaker control software [1] that automates
the addition of new clients to an Application Service Provider’s infrastructure. Al-
lowing users to dynamically install arbitrary pieces of software rather than one from
a small predefined set is a natural extension of this resource renting model.



124 C. Giblin, S. Rooney, and A. Bussani

Directory

(2)servers register

(1)static information 
is manually added

(3)gatekeeper reads
 directory

(4)creates users’
file system dir

and watcher threads

(5)gatekeeper distributes
subnets to servers

(6) new server
registers

GateKeeper Server Controller 1

Server Controller 2

Server Controller 3

Fig. 2. Starting the VM factory

Dynamic IP Subnet Allocation
Central to the VM factory is the directory service which manages a range of

information about the environment. There are two distinct types of information
kept in the directory: static information manually entered by a human opera-
tor, e.g. registered users, IP addresses to allocate to virtual machines; dynamic
information added by the entities themselves.

When the controllers within the hosting environment are started they register
themselves with the directory service. When the gatekeeper is started it uses
this directory service to look-up the registered code browsing users, creating a
file system directory for each user. The gatekeeper then starts a set of watcher
threads which monitor the addition of new files.

When new files to browse arrive, corresponding meta information, in the
form of entries in a bookkeeping file, is updated. The watcher monitors these
entries, interpreting a new entry as a request for a new code browsing session.
An alternative would be to have the download manager communicate directly
with the gatekeeper, but as we envisage multiple different access methods to
our system we chose a decoupled model which reduces run time dependencies.
The gatekeeper and the download manager need only to agree on the network
location to which downloaded files should be written and the format of the meta
data information. Multiple files, for example, multiple interdependent rpms, can
be installed within the same code browsing session. The order of downloading is
the order of installation.

The gatekeeper reads from the directory both the address range which is
available for assigning to virtual machines and the servers which are currently
registered. It divides this IP range into smaller subnets and allocates one to each
of the servers; the server controllers allocate addresses in this range to virtual
machines.



Remote Code Browsing, a Network Based Computation Utility 125

Each time that the gatekeeper discovers that it cannot allocate a code brows-
ing session because of a lack of servers, it rereads the directory to see if any new
servers have been activated and if so allocates these new servers each a free IP
subnet. When the gatekeeper notices that a controller has stopped it removes
the IP subnet allocated to that server and will reallocate it to the next controller
about which it becomes aware. This means that at different times a given IP ad-
dress may be allocated to virtual machines running on different physical servers
and therefore resolve to different MAC addresses. Some Ethernet switches inter-
cept ARP requests to maintain their own IP/MAC cache, this would cause lost
packets if the cache aged slower than the dynamic reallocation of a subnet. In
order to flush the cache each time a new virtual machine is activated it sends a
single broadcast ping to the entire subnet. Figure 2 shows the various stages in
starting the VM factory.

Code Browser Virtual Machine Creation
When a watcher thread detects a new code browsing request, it prompts the

gatekeeper to create a code browsing session. The gatekeeper asks each of the
registered servers in turn whether they are capable of supporting a new virtual
machine of the specified type until either it finds one which is capable or discovers
that the request is currently unrealizable. If there is not enough resources within
the hosting environment to support the code session, then the watcher thread
goes to sleep for a certain amount of time and retries. The amount of time
it sleeps is random, but is chosen from a range which increases exponentially
after each retry. This Ethernet-like synchronization of competing entities over
a shared resource is simple and prevents unfair starvation2. If after retrying a
certain number of times, the watcher fails to create the session, it sends an e-mail
informing the user that they should retry at another moment. Figure 3 shows
the steps involved in creating a code browsing session.

If the gatekeeper can no longer communicate with the controller, it assumes
the controller has failed and removes the dynamic information about the corre-
sponding server from the directory. Once an available physical server has been
identified, the gatekeeper sends it a description of how the virtual machine should
be created.

The technology the code browser uses for supporting virtual machines is cur-
rently VMWare [2]. VMWare is a commercial software allowing multiple differ-
ent guest OSs to be run on a given host OS by virtualizing the x86 architecture,
similar freeware software is also available [3]. Current work is looking at using
dynamically created Linux images on a mainframe [4]. If virtual servers are avail-
able for different processors then the user chooses the processor type on which
their software should be installed in the download request.

2 A more complex scheduler could be imagined in which the duration of the code
browsing session is a factor in the promptness with which it is scheduled, e.g. shorter
sessions first, the rational is that a user who wants a code browsing session for a
long period is less likely to need it quickly than one who wants it for a short period,
moreover people who are frugal in their requests should be privileged over those that
are less so.



126 C. Giblin, S. Rooney, and A. Bussani

Watcher Thread Gatekeeper Server 1
Controller

Server N
Controller...

CreateCBSession

Failed

CreateCBSession

Suceeded

CanCreateVM?

CanCreateVM?No

No

CanCreateVM?

CanCreateVM?

No

Yes

CreateVM

IP address

Sleep

Sleep

DeleteCBSession

DeleteVM

Fig. 3. Creating a code browsing session

The VMWare instances are preconfigured. This involves creating the
VMWare virtual disks and installing an OS type on them. In addition, we add
a small amount of code in order to allow the guest OS to be controlled within
the code browsing utility.

At startup the controller identifies how many configured VMWare instances
it has at its disposal from a configuration parameter. The controller will permit
a maximum of that number of simultaneously active code browsing sessions.
When the gatekeeper assigns the server an IP subnet, the controller uses this
subnet and the information about the MAC addresses contained in the VMWare
configuration file in order to create a configuration file for the Dynamic Host
Control Protocol (DHCP). One DHCP daemon is run per physical server. The
controller matches each of the allocated IP addresses to each of the discovered
MAC addresses in a fixed order and then restarts the DHCP daemon (dhcpd).
This happens each time the controller receives an address allocation, i.e. each
time either the gatekeeper or the controller is restarted.

During the lifetime of dhcpd the same VMWare instance on a given physical
server will always be allocated the same IP address; dhcpd behavior remains
standard and from the server controller’s point of view is predictable.

When the controller is asked by the gatekeeper if it can support a requested
code browsing session, it will reply positively if a VMWare instance is free and
it supports the appropriate OS type. The gatekeeper then initiates the code



Remote Code Browsing, a Network Based Computation Utility 127

(1)
(2)

(3)

(4)

(6)

(2)

(3) (4)

(5)

(7)

(8)

(9)

Ga
te
ke
ep
er

Ga
te
ke
ep
er

Server

dhcpd

dhcpd

Server
Controller

Server

dhcpd.conf

cfile.tar

(1)
Server

Controller

Virtual Machine

(1) create User Unix Directory and watcher thread
(2) pass the server controller the allocated Subnet
(3) create dhcpd.conf
(4) start dhcpd

(1) detect presence of new code file
(2) request available server to create VM
(3) start configured VM, starts OS specific script
(4) get IP address from dhcpd
(5) get VM config file and latest code
(6) fetch code file from Unix directory
(7) execute OS independent controller
(8) notify server controller VM is running
(9) update DNS server

Fig. 4. Key stages in initialization and VM creation

browsing session on the controller. The controller starts by creating a virtual
machine configuration file containing information such as the hostname of the
virtual machine, the name of the user, the local URL of the code to install.

Once this is done it starts a script which launches one of the VMWare in-
stances. VMWare allows the state of an OS to be checkpointed and resumed.
In order to speed up the creation of the virtual machine, we checkpoint the
VMWare instance just before the end of its boot process — for example, just
before the execution of rc.local in Linux — each time VMWare is activated it
resumes from this point. Immediately after the checkpoint, a script is executed
that is used to configure the virtual machine in the appropriate way. This script
copies — using rcp — from a well known location the code browsing utility soft-
ware used to control the virtual machine and the freshly created configuration
file. The code browsing initialization is achieved by an OS specific script and an
OS independent Java jar file. The OS specific script, after executing the platform
specific commands, chains to the platform independent initialization.

The action of the OS specific script depends on the OS: on Linux it creates
an account for the user named in the configuration file of the virtual machine



128 C. Giblin, S. Rooney, and A. Bussani

and sets the password. The remote user may then telnet into this account. On
Windows it starts the Virtual Network Computing server [5] and sets its pass-
word. VNC is a technology which transmits the framestore of an OS across the
network much like a video stream. A VNC client is available as a Java applet
and hence the remote display can be rendered inside a conventional browser,
without change to the client’s machine. This allows remote users to “login” to
Windows machine, even from a non Windows platform. An alternative would be
the use of NetMeeting which we found to perform better than VNC when the
user runs Windows locally and accesses a remote virtual Windows system. Fig-
ure 4 summarizes some of the key stages in the initialization of the VM factory
and the creation of a VM.

Virtual Machine Code Install

With the requested virtual machine now created and initialized, the final
step automatically installs the downloaded software into the virtual machine.
A script inspects the software to be installed to determine the installation pro-
cess. For example, the default Linux script simply checks the file for some well
known suffixes, e.g. rpm, tar.gz, zip and executes the appropriate commands on
them. Likewise the default Windows install script is capable of unzipping and
performing a silent installation of the requested package. As a result, when the
users logs into the virtual machine, the desired software is already installed. In
the worst case the file type is unknown or the installation fails and the file is left
for the user to install themselves. The user may also transfer data files usable
by software installed in the same code browsing session using the same method.

The user can customize the installation process by supplying their own in-
stall script for non generic tasks, e.g. compilation and executing. This script is
downloaded as a part of a software package to be browsed and is recognized (by
naming conventions) as overriding the default installation. It then starts the vir-
tual machine controller and terminates. After starting VMWare, the controller
on the physical machine waits for a notification from the controller on the virtual
machine that all is well. The creation action of the server is now complete.

At the moment although our installation process is sufficient for our current
prototype, it is somewhat ad hoc. We envisage an architectural entity which
manages the installation process taking into account formal requirements speci-
fiable by the user such as software dependencies, in some convenient language,
e.g. XML. This entity should also be capable of taking advantage of heuristics
in situations in which complex installations are not easily formalized a priori.

Our server farm consists of four PC’s running Redhat Linux 7.2 each with
642 Mbytes of main memory, a Pentium III running at 1 Ghz and a SCSI de-
vice driver. We found that each PC was able to support 4 VMWare instances
each of which emulated a machine with 64 Mbytes of main memory and had a
2 Gbyte virtual disk. Above 4 VMWare instances we found that performance
diminished significantly due to excessive swapping. Typically trial applications
were: Quake II game server, the video server from Real Networks, WebSphere
standalone edition and the Eclipse development environment. All of these ran



Remote Code Browsing, a Network Based Computation Utility 129

acceptably, if not extremely quickly on our infrastructure. A VMWare instance
can be configured and started on behalf of the user in under 30 seconds.

User Code Browsing Session
After the successful creation of a VM, the gatekeeper sends a dynamic DNS

update to a DNS server that it manages, such that the user’s name within the
domain of the naming server resolves to the newly allocated IP address. The
cache time, Time To Live (TTL), of this new record in the DNS server is set to
a very low value — currently one second. In practice we have found that some
DNS servers ignore low TTL values and cache the record for a longer period,
moreover end-user applications such as web browsers and video players often
keep their own cache. To avoid the problem of naming interference, in addition
to using the user’s name as a DNS entry we also send the IP address of the
newly created VM to the user in the form of a URL resolving to the newly
created virtual machine.

The watcher thread then looks up the registered user’s e-mail address and
sends a message informing them that the code browsing session is now available.
The thread then goes to sleep for the desired duration, when it wakes up it
removes the code browsing session, in a way similar to its creation.

The user receives the e-mail containing a URL to a generated HTML page
which contains the information about the code browsing session, including DNS
and IP address of the VM, the duration of the session, the OS type of the VM
and the code that was installed. It also includes the VNC or telnet prompt which
allow the user to enter the created VM.

For virtual Linux system, the user telnets into an account whose name and
password are those supplied by the user during registration. The requested code
has been placed in this account and unpacked. The user has root privileges on
the VM, permitting them, for example, to install kernel patches.

Only one code browsing session may be active per user at a given time, we
have found that this encourages users to only ask for a reasonable amount of time
for the duration of their code browsing session as they cannot obtain a new one
until the old one is complete. During a given session, the user may download new
code into their code browsing directory using the downloader; the corresponding
session will be activated after the old one terminates.

The user may damage the VM, but this is of no importance, as the VM will
cease to exist at the end of the code browsing session. In fact allowing users to
first attempt potentially dangerous things in a disposable environment is one of
the motivations for the code browsing utility.

Session Termination
After the code browsing session has finished the watcher thread removes the

code file from the user’s file system directory and places it in a cache directory.
This cache is available to users of the download session, who may then choose to
install code from the cache rather than from a remote site. This serves to inform
the user about software that other users are installing. At the moment the cache
is unsophisticated — simply keeping the N most recently downloaded files — but
more interesting caches can be imagined for guiding a user’s choice, for example



130 C. Giblin, S. Rooney, and A. Bussani

information about the most frequently code browsed software; information about
what other users who browsed a specific piece of software also browsed.

OS

Code

Time

H
T
T
P
D

(1) User requests
code browser

Servlet

App. Server

(2) Servlet writes
download request

(3) Download service
acquires request

Download
Service

Worker thread

Worker thread

Worker thread

Request
Tuple Space

File System

Bookeeper
File

Cache

(4) Resource download 
from internet or cache

Virtual Machine
Factory

(5) Metadata 
updated

(6) VM Created
software installed

(7) User notified
by email

(8) User accesses
the VM

VM1 VM2 VM3

Browser

Fig. 5. Download Service

Persistent Virtual Machines
In general, within the code browsing utility VMWare instances are run in non

persistent mode, i.e. all changes made during a given run of the OS are lost when
it is rebooted, so each time a new session is started the OS is in a clean state.
However, the effect of the addition of some new software, for example kernel
patches on Linux, are only taken into account when the machine is rebooted.
The user may specify that the OS be persistent across reboot, to achieve this we
make a copy of a ’clean’ VMWare instance making it persistent. At the end of
the code browsing session this copy is deleted, i.e. the OS is persistent within a
code browsing session but not between code browsing sessions.

The additional time needed both to copy the VMWare instance and to re-
boot from scratch, rather than simply resuming it from a checkpoint, means the
initialization of a persistent code browsing session is significantly longer than
that of a transient one.

The ability to save and retrieve snapshots of virtual machines in an archive
is a natural extension; future work will combine the code browsing utility with
high speed archiving and retrieval technology.



Remote Code Browsing, a Network Based Computation Utility 131

4 Download Service

The Download Service (DS) allows the user to delegate the time consuming task
of downloading software to a networked service. It automates the acquisition of
software on behalf of a user from the Internet, forwarding it to the VM factory.

The DS is implemented as a process containing a pool of worker threads,
each of which connects to a networked persistent tuplespace [6] and waits for
a download request. A tuple is a vector of typed fields and a tuplespace is a
globally shared memory space in which data is stored and retrieved as a set of
tuples using a well defined coordination semantics.

When a download worker picks up a resource request, it decides to retrieve
the package from the network or cache. In both cases, the package is placed in
the designated user file system directory and the bookkeeping file containing
the meta-data is updated. The VM factory recognizes the existence of the new
request as explained in Section 3 and the worker thread returns to the tuplespace
to await the next request.

The worker threads are stateless and maintain no context common to the re-
questers of the service or the VM factory. The tuplespace decouples the requestor,
the downloader and the VM Factory, making each component independent of the
others’ availability. Since the tuplespace is persistent and supports transactional
semantics, requests survive system restarts and failures.

Scaling to handle increasing workloads is a matter of increasing the number
of DS processes. Since the tuplespace is networked, multiple systems can access
the tuplespace, forming a pool of distributed and heterogeneous downloader
systems.

Although the current system supports downloading over the FTP and HTTP
protocols, extending it to support other protocols is straightforward. The worker
can be extended with new protocol support through sub-classing and then config-
ured in the DS. Tuplespace queries can be customized for specific request types,
allowing system administrators the option of grouping specific protocol support
onto dedicated processes or systems. Figure 5 shows how the DS interacts with
the rest of the code browsing utility.

5 Discussion/Conclusion

The system described in this paper is fully functional and was made available
to fellow researchers at our laboratory for a period. While many people tried
it out, ultimately they did not use it for software testing. In our opinion, this
was because the investment in learning a new experimental system was not
sufficiently compensated by the advantages accrued. The system would be more
beneficial if it offered more OS types and allowed snapshots of virtual machines
to be save and retrieved.

As well as enhancing the functionality of the code browsing service, we intend
to make it available as a Web Service [7]. This would allow it to be a component
in other Web Services.



132 C. Giblin, S. Rooney, and A. Bussani

In summary, we view the remote code browsing service as an example of a
new type of network based computation utility which is enabled by the quick
dynamic creation of virtual partitions of physical resources.

References

1. S. Rooney, “The ICorpMaker, a Dynamic Infrastructure for ASPs,” Proceedings of
IEEE Workshop on IP Operations & Management, Sept 2000.

2. VMWare, “Getting Started Guide, VMWare 2.0 for Linux,” VMWare Technical
Support, January 2000.

3. K. Lawton, “Running multiple operating systems concurrently on an IA32 PC
using virtualization techniques,” Part of the plex86 source release, available from
www.plex86.org, November 1999.

4. IBM, “S/390 Virtual Image Facility for Linux, Guide and Reference,” Version 1.0,
Release 1.0 SL0500, GC24-5930-04, June 1999.

5. T. Richardson, Q. S. Fraser, KennethWood, and A. Hopper, “Virtual Network Com-
puting,” IEEE Internet Computing, vol. 2, pp. 33–38, Jan/Feb 1998.

6. P. Wyckoff, S. McLaughry, and T. L. D. Ford, “Tspaces,” IBM Systems Journal,
http://www.research.ibm.com/journal/sj/373/wyckoff.html, August 1998.

7. H. Kreger, “Web Services Conceptual Architecture (WSCA 1.0),” IBM Software
Group white paper, May 2001.


	Introduction
	Code Browsing Utility Overview
	Virtual Machine Factory
	Download Service
	Discussion/Conclusion

