Skip to main content

Attacking the Complexity of Prioritized Inference Preliminary Report

  • Conference paper
  • First Online:
  • 865 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2507))

Abstract

In the past twenty years, several theoretical models (and some implementations) for non-monotonic reasoning have been proposed. We present an analysis of a model for prioritized inference. We are interested in modeling resource-bounded agents, with limitations in memory, time, and logical ability. We list the computational bottlenecks of the model and suggest the use of some existent techniques to deal with the computational complexity. We also present an analysis of the tradeoff between formal properties and computational efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.R Anderson and N.D Belnap. Entailment: The Logic of Relevance and Necessity, Vol. 1. Princeton University Press, 1975.

    Google Scholar 

  2. Gerhard Brewka. Adding priorities and specificity to default logic. In European Workshop on Logics in Artificial Intelligence (JELIA’ 94), LNAI. Springer-Verlag, 1994.

    Google Scholar 

  3. S. Chopra, K. Georgatos, and R. Parikh. Relevance sensitive non-monotonic inference on belief sequences. Journal of Applied Non-Classical Logics, 11(1–2), 2001.

    Google Scholar 

  4. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.

    Google Scholar 

  5. Samir Chopra, Rohit Parikh, and Renata Wassermann. Approximate belief revision. Logic Journal of the IGPL, 9(6):755–768, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. Simon E. Dixon. Belief Revision: A Computational Approach. PhD thesis, Basser Department of Computer Science, University of Sydney, 1994.

    Google Scholar 

  7. J. Kleer. An assumption-based truth maintenance system. Art. Intelligence, 28:127–162, 1986.

    Article  Google Scholar 

  8. Andreas Herzig and Omar Rifi. Propositional belief base update and minimal change. Artificial Intelligence, 115(1):107–138, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. S.O. Hansson and R. Wassermann. Local change. Studia Logica, 70(1):49–76, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Levesque. A logic of implicit and explicit belief. In Proceedings of AAAI-84, 1984.

    Google Scholar 

  11. Pierre Marquis. Knowledge compilation using theory prime implicates. In Proceedings of IJCAI95, pages 837–843, 1995.

    Google Scholar 

  12. John McCarthy. Circumscription. Artificial Intelligence, 13(1+2):27–39, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. C. Moore. Autoepistemic logic. In Non-Standard Logics for Automated Reasoning, pages 105–136. Academic Press, London, 1988.

    Google Scholar 

  14. J. Martins and S. Shapiro. A model for belief revision. Art. Int., 35:25–79, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  15. Pierre Marquis and S. Sadaoui. A new algorithm for computing theory prime implicate compilations. In Proceedings of AAAI96, pages 504–509, 1996.

    Google Scholar 

  16. W. McCune and L. Wos. Otter: The cade-13 competition incarnations. Journal of Automated Reasoning, 1997.

    Google Scholar 

  17. R. Parikh. Beliefs, belief revision and splitting languages. In Proceedings Itallc-96, 1996.

    Google Scholar 

  18. Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13, 1980.

    Google Scholar 

  19. Mark D. Ryan. Prioritizing preference relations. In Proceedings of the First Imperial College, Department of Computing, Workshop on Theory and Formal Methods, 1993.

    Google Scholar 

  20. Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation. Artificial Intelligence, 74(2):249–310, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  21. Annette ten Teije and Frank van Harmelen. Computing approximate diagnoses by using approximate entailment. In Proceedings of KR’96, pages 256–265, 1996.

    Google Scholar 

  22. R. Wassermann. Resource-bounded belief revision. Erkenntnis, 50:429–446, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. Renata Wassermann. On structured belief bases. In Hans Rott and Mary-Anne Williams, editors, Frontiers in Belief Revision. Kluwer, 2001.

    Google Scholar 

  24. Mary-Anne Williams. Implementing belief revision. In G. Antoniou, editor, Nonmonotonic Reasoning. MIT Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wassermann, R., Chopra, S. (2002). Attacking the Complexity of Prioritized Inference Preliminary Report. In: Bittencourt, G., Ramalho, G.L. (eds) Advances in Artificial Intelligence. SBIA 2002. Lecture Notes in Computer Science(), vol 2507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36127-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36127-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00124-9

  • Online ISBN: 978-3-540-36127-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics