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Abstract. Content-based retrieval has been identified as one of the most
challenging problems, requiring a multidisciplinary research among com-
puter vision, information retrieval, artificial intelligence, database, and
other fields. In this paper, we address the specific aspect of inferring
semantics automatically from raw video data. In particular, we present
the Cobra video database management system that supports the inte-
grated use of different knowledge-based methods for mapping low-level
features to high-level concepts. We focus on dynamic Bayesian networks
and demonstrate how they can be effectively used for fusing the evi-
dence obtained from different media information sources. The approach
is validated in the particular domain of Formula 1 race videos. For that
specific domain we introduce a robust audio-visual feature extraction
scheme and a text recognition and detection method. Based on numerous
experiments performed with DBNs, we give some recommendations with
respect to the modeling of temporal dependences and different learning
algorithms. Finally, we present the experimental results for the detec-
tion of excited speech and the extraction of highlights, as well as the
advantageous query capabilities of our system. �

1 Introduction

Recent developments in digital television, Internet, and information technology
resulted in a demand for techniques that can manipulate the video data based on
content. As database management systems do not provide enough facilities for
managing and retrieving video contents, this has led to a wide range of research in
this field (see [1,2,3,4] for reviews). However, the database research is not limited
only to general database problems, such as modeling video as a new data type,
new query languages, or spatio-temporal query processing and indexing. Nowa-
days, researchers meet some new difficult problems. Among them, content-based
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retrieval has been identified as one of the most challenging problems, requiring
a multidisciplinary research among computer vision, information retrieval, ar-
tificial intelligence, database, and other fields. Only by combining these fields,
researchers can find the solution for various problems that have to be solved to
enable content-based retrieval. These problems include finding knowledge-based
methods for interpreting raw data into semantic content, video processing, ob-
ject recognition and tracking, video understanding, scalability, flexibility, dealing
with unstructured data, etc.

This paper addresses these problems with the emphasis on the automatic
recognition of semantic content from raw video data. With respect to this prob-
lem, video retrieval approaches presented in literature can be roughly divided
into two main classes.

The first class focuses mainly on visual features that characterize colors,
shapes, textures, or motion, i.e. the low-level visual content. Although these
approaches use automatically extracted features to represent the video content,
they do not provide semantics that describe high-level video concepts, which is
much more appropriate for users when retrieving video segments.

The second class concerns annotation-based approaches, which use free-text,
attribute, or keyword annotation to represent the high-level concepts of the
video content. However, this results in many drawbacks. The major limitation
of these approaches is that the search process is based solely on the predefined
attribute information, which is associated with video segments in the process of
annotation. Thus, user is restricted to small number of predefined queries for
retrieving useful information from videos. Furthermore, manual annotation is
tedious, subjective and time consuming.

Obviously, the main gap lies between low-level media features and high-level
concepts. In order to solve this problem, several domain-dependent research ef-
forts have been undertaken. These approaches take an advantage of using domain
knowledge to facilitate extraction of high-level concepts directly from features.
In particular, they mainly use information on object positions, their transitions
over time, etc., and relate them to particular events (high-level concepts). For
example, methods have been proposed to detect events in football [5], soccer
[6], and hunting [7], etc. Motion (for review see [8]) and audio are, in isolation,
very often used for event recognition. In [9] for example, extracting highlights
from baseball games is based on audio only. Although these efforts resulted in
the mapping from features to high-level concepts, they are essentially restricted
to the extent of recognizable events, since it might become difficult to formal-
ize complex actions of non-rigid objects using rules. Furthermore, rules require
expert knowledge and have problems when dealing with uncertainty.

On the other hand, some other approaches use probabilistic methods that
often exploit automatic learning capabilities to derive knowledge. For example,
Naphade et al. [10] used hierarchical Hidden Markov Models (HMMs) to extract
events like explosions. Structuring of video using Bayesian networks alone [11]
or together with HMMs [12] has been also proposed.
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Numerous approaches presented in literature have shown that is now becom-
ing possible to extract high-level semantic events from video. However, the ma-
jority of the aforementioned approaches uses the individual visual or audio cues,
and is error-prone suffering from robustness problems due to detection errors.
Fusing the evidence obtained from different sources should result in more ro-
bust and accurate systems. Furthermore, some events are naturally multi-modal
demanding the gathering of evidence from different media sources.

On the other hand, the fusion of the multi-modal cues is quite challenging,
since it has to deal with indications obtained from different media information
sources, which might contradict each other. Only a few attempts to fuse mainly
audio and video sources in order to detect and recognize events have appeared
recently. In [13] a probabilistic model has been used to combine results of visual
and audio event detection in order to identify topics of discussion in a classroom
lecture environment. Another Bayesian approach used for topic segmentation
and classification in TV programs has been proposed in [14].

However, the aforementioned approaches, which mainly come from the com-
puter vision community, have problems with scalability, because they were only
intended for small collections of data. Furthermore, they stick to one technique
for semantic extraction, while, as we can see from literature, different techniques
are more suitable for extraction of different events. In contrast to these ap-
proaches, we propose a database approach that integrates the techniques used
in computer vision within a DBMS.

From the database point of view, the contribution of this work is twofold.
Firstly, we integrate video processing and feature extraction techniques into
a DBMS, which allows incremental and dynamical change of metadata. Fur-
thermore, we integrate into the system a few knowledge-based techniques,
namely hidden Markov models, Dynamic Bayesian Networks (DBNs), and a
rule-inference engine. We demonstrate how these techniques can be used to-
gether to automatically interpret low-level features into semantic content. By
coupling these techniques with the DBMS tightly and integrating them in all
three layers of the DBMS architecture (not only in one place), we achieve a high
degree of scalability, flexibility, and efficiency. Secondly, our approach benefits of
using domain knowledge, but at the same time, it provides a general framework
that can efficiently use the aforementioned techniques in different domains.

From the computer vision perspective, we contribute by demonstrating how
dynamic Bayesian networks can be effectively used for content-based video re-
trieval by fusing the evidence obtained from different media information sources.
We validate our approach in the particular domain of Formula 1 race videos.
For that specific domain we introduce a robust audio-visual feature extraction
scheme and a text recognition and detection method. Based on numerous exper-
iments performed for fusing extracted features in order to extract highlights, we
give some recommendations with respect to the modeling of temporal and atem-
poral dependences and different learning algorithms used for DBNs. Finally, we
present a user interface and some query examples that give an impression of the
advantageous capabilities of our system.
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2 System Architecture

The architecture of our video DBMS is easy extensible, supporting the use of
different knowledge-based techniques for identifying the video contents. The con-
tent abstractions, which are stored as metadata, are used to organize, index and
retrieve the video source. The metadata is populated off-line most of the time,
but can also be extracted on-line in the case of dynamic feature/semantic ex-
tractions in the query time.

In order to achieve content independence, we introduce a video data model
called Cobra (for a detailed formal description see [15]). The model provides a
framework for automatic extraction of high-level concepts (objects and events)
from raw video data. It is independent of feature/semantic extractors, providing
flexibility in using different video processing and pattern recognition techniques
for those purposes. The model is in line with the latest development in MPEG-
7, distinguishing four distinct layers within video content: the raw data, the
feature, the object and the event layer. The object and event layers are concept
layers consisting of entities characterized by prominent spatial and temporal
dimensions respectively. By using the Cobra video model, we achieved insulation
between applications and feature/semantic extraction techniques on one, and
data on the other hand.

The system is flexible in using different knowledge-based techniques for in-
terpreting raw video data into high-level concepts. For that purpose, the system
can use different techniques, such as Hidden Markov Models (HMMs), Dynamic
Bayesian Networks (DBNs), neural networks, rules, etc. From the implemen-
tation point of view, flexibility is achieved by choosing an open and flexible
database kernel that is easy to extend with different semantic extraction tech-
niques. In the next section, we elaborate more on that.
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Fig. 1. The conceptual architecture
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Dynamic feature/semantic extraction is facilitated by a query pre-processor.
It checks the availability of required metadata needed to resolve the query.
If metadata is not available it invokes feature/semantic extraction engines
to extract it dynamically. The query pre-processor is also responsible for
high-level optimisation during the semantic extraction. Depending on the
(un)availability of metadata (features/semantics already extracted) and meth-
ods for feature/semantic extractions, as well as the cost and quality models of
the method, it makes a decision which method and feature set to use to fulfil
the query.

As shown in Fig. 1, domain independence is achieved by separating domain
knowledge and techniques, which use it. Domain knowledge is stored within the
database. Therefore the system can be used in different domains. To provide a
user with the ability to query a new domain, knowledge of that domain (HMMs,
DBNs, rules, etc.) has to be provided.
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Fig. 2. The Cobra VDBMS

3 Implementation Platform

The architecture presented in the previous section is implemented within our
prototype video database system that follows the well-known three-level DBMS
architecture (Fig. 2).

At the conceptual level, we use an extension of the object query language.
The query preprocessor rewrites a graphical query and performs preprocessing
described in the previous section. The Moa object algebra [16], enriched with
the Cobra video data model and several extensions, is used at the logical level.
The algebra accepts all base types of the underlying physical storage system and
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allows their orthogonal combination using the structure primitives: set, tuple,
and object. This provides data independence between the logical and physical
level, as well as possibilities for extra optimization during query execution.

At the logical level we define structures and operators that support Moa ex-
tensions. In the current implementation we have four extensions: Video-process-
ing/feature-extraction, HMM, DBN, and rule-based extension.

The video-processing and feature-extraction extension encapsulates opera-
tions used for video segmentation, processing and feature extraction. Operations
are implemented using Matlab and its image processing toolbox and as such used
through a Matlab server directly by the system. At the moment, we are using
the same Matlab server for the DBN extension, since the DBN learning and
inference algorithms are implemented in Matlab.

The other two extensions are tightly coupled with the system. In the se-
quel, we will describe them very briefly (for a detailed description see [17]). The
rule-based extension is implemented within the query engine. It is aimed at for-
malizing the descriptions of high-level concepts, as well as their extraction based
on features and spatio-temporal reasoning. The HMM extension implements two
basic HMM operations: training and evaluation. Here, we exploit the parallelism
of our database kernel and implement the parallel evaluation of different HMMs
at the physical level. Figure 3 shows a database server with the HMM exten-
sion, which calls remotely six HMM servers performing parallel evaluation. By
distributing the HMM evaluation, we speed up the query processing of the very
costly inference operation.

HMM
engine

HMM engine

HMM engine

HMM engine

HMM engine
HMM engine

HMM

ext.

Monet
Database

Kernel

Fig. 3. Parallel HMM inference

For each Moa operation, there is a program written using an interface lan-
guage understood by the physical layer. In our system, a Moa query is rewritten
into Monet Interface Language (MIL), which is understood by Monet [18] - an
extensible parallel database kernel that is used at the physical level. Monet sup-
ports a binary relational model, main memory query execution, extensibility with
Abstract Data Types (ADTs) and new index structures, as well as parallelism.

The Moa extensions are supported at the physical level by the efficient imple-
mentation of their operations. Operations are implemented as Monet functions
using MIL or as separate modules using Monet Extension Language (MEL).
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For example, at the Monet level, the HMM inference operator is implemented
as a MIL function, exploiting the parallel execution operator of Monet. In that
way the function sends data, starts, and obtains results from 6 HMM engines in
parallel (Fig. 4).

PROC hmmP(BAT[oid,dbl] f1, BAT[oid,dbl] f2, BAT[oid,dbl] f3,

BAT[oid,dbl] f4) : str := {

# preparing a observation sequence

#(quntization of features)...

VAR Obs:=new(void,int);

Obs:=quant1(f1,f2,f3,f4);

VAR parEval:=new(str,flt);

# evaluating 6 models in parallel

VAR BrProcesa:=threadcnt(7);

{|

# Service

VAR vr:=hmmOneCall(Server1, "aMatrixS.bat", "bMatrixS.bat", Obs, num);

parEval.insert("Service",vr);

# Forehand

vr:=hmmOneCall(server2, "aMatrixF.bat", "bMatrixF.bat", Obs, num);

parEval.insert("Forehand",vr);

# Smash

vr:=hmmOneCall(Server3, "aMatrixSm.bat", "bMatrixSm.bat", Obs, num);

parEval.insert("Smash",vr);

# Backhand

vr:=hmmOneCall1(Server4, "aMatrixB.bat", "bMatrixB.bat", Obs, num);

parEval.insert("Backhand",vr);

# Volley backhand

vr:=hmmOneCall1(Server5, "aMatrixVB.bat", "bMatrixVB.bat", Obs, num);

parEval.insert("VolleyBackhand",vr);

# Volley forehand

vr:=hmmOneCall1(Server6, "aMatrixVF.bat", "bMatrixVF.bat", Obs, num);

parEval.insert("VolleyBackhand",vr);

|}

VAR najmanji:=parEval.max;

VAR ret:=(parEval.reverse).find(najmanji);

RETURN ret;

}

Fig. 4. Parallel evaluation of 6 HMMs

By extending our system at all levels we efficiently integrate several know-
ledge-based techniques within our VDBMS. This is an important advantage over
approaches that implement a video extension at the application level, which
results in a much slower system.

4 Dynamic Bayesian Networks

A Bayesian network is a kind of probabilistic network, which is designed for rea-
soning under uncertainty. Basically, it is a directed acyclic graph that describes
dependencies in a probability distribution function defined over a set of vari-
ables. The nodes represent variables, while the links between nodes represent
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the dependencies between the variables. Therefore, the graph can be seen as a
representation of joint probability distribution for all variables.

A dynamic Bayesian network is a probabilistic network, which is able to
model stochastic temporal processes. It is a special case of singly connected
Bayesian networks specifically aimed at time series modeling. A time-slice of
a dynamic Bayesian network is used to represent each snapshot of the evolving
temporal process. A DBN satisfies the first order Markov property. So, each state
at time t may depend on one or more states at time t-1 and/or some states in
the same time instant. The conditional probabilities between time-slices define
the state evolution model.

The parameters of a DBN can be learned from a training data set. As we work
with DBNs that have hidden states, for this purpose we employ the Expectation
Maximization (EM) learning algorithm, which is based on Maximum Likelihood
(ML) algorithm. For inference, we use the modified Boyen-Koller algorithm for
approximate inference. For a detail description of both algorithms see [19].

At the moment, the DBN extension uses a Matlab server, since the DBN
learning and inference algorithms are implemented in Matlab. An operation of
the MOA extension (Fig. 5a) is supported at the physical level by the implemen-
tation of a MIL procedure (Fig. 5b). The procedure sends a remote call using the
TCP/IP module of Monet to the Matlab server. The Matlab server invokes the
right function (Fig. 5c), which does all computations and then retrieves results
back to Monet.

DBNInference(map[value(THIS)](FS)
WITH
(select[and(lt(%0,50000)),
(gt(%0,10000)))]
(FeaturesExt):FS);

(a)

(c) (b)

PROC DBNInference (
BAT[oid,oid] ind2,
BAT[oid,oid] ind1, BAT[oid,dbl] f1,
BAT[oid,dbl] f2, BAT[oid,dbl] f3,
BAT[oid,dbl] f4) : BAT[void,str] := {
… initialization ...
export(sk1,"DBNInference","function");
… send data ...
VAR res:=import("res");
RETURN res;
}

function ret =
DBNInference(aMatrix, fvec1,...);
{function implementation}

Fig. 5. Implementation of DBN inference; (a) Moa level; (b) Monet level; (c) Matlab

5 Formula 1 Case Study

In this section, we describe the extraction of multi-modal cues obtained from
the three different media components of the TV Formula 1 program, as well
as their fusion using dynamic Bayesian networks in order to characterize the
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highlights. We will present several experiments done to investigate properties of
these networks. Finally, we will demonstrate how the obtained results can be
used for content-based retrieval.

5.1 Information Sources

As the majority of techniques for event detection, which rely solely on the one-
media cues, showed to have robustness problems, we decided to base our analysis
on the fusion of the evidence obtained from different information sources. In
particular, we concentrate on three different media: audio, video and text.

Audio plays a significant role in the detection and recognition of events in
video. Generally, audio information is highly correlated with visual information.
In our domain, the importance of the audio signal is even bigger, since it en-
capsulates the reporter’s comment, which can be considered as a kind of the
on-line human annotation of a Formula 1 race. Furthermore, the occurrence of
important events that can be classified as highlights is most of the time charac-
terized by the commentator very well. Whenever something important happens
the announcer raises his voice due to his excitement, which is a good indication
for the highlights.

Visual information has been widely used for video characterization. It yields
significant and useful information about the video content, but consequently it
is the most difficult to automatically understand. Furthermore, the processing
of visual information is very time consuming. Therefore, we made a trade-off
between the usefulness of the video cues and the cost of their computation.

The third information source we use is the text that is superimposed on the
screen. This is another type of on-line annotation done by the TV program pro-
ducer, which is intended to help viewers to better understand the video content.
The superimposed text often brings some additional information that is difficult
or even impossible to deduce solely by looking at the video signal. As examples
in the Formula 1 program, think of the fastest speed, lap time, order, or the vi-
sual difference between the two Ferrari cars of Michael Schumacher and Rubens
Barrichello, which are almost the same1 and can be distinguished only by diverse
driver’s helmets.

5.2 Audio Characterization

The audio signal of the TV broadcasting Formula 1 program is very complex
and ambiguous. It consists of human speech, car noise, and various background
noises, such as crowd cheering, horns, etc. Usually, the Formula 1 program in-
volves two or more announcers, pit reports, and on-line reports received from
the Formula 1 drivers. Car noise includes roaring of F1 engines, or the car brak-
ing noise. Extraction of basic characteristics from these audio recordings, which
consist of complex mixtures of frequencies, is demanding and challenging task.
1 The only difference is a very small yellow mark on Barrichello’s camera
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Despite this, we decided to use the audio signal to find the segments with
announcer’s exited speech, as well as the segments in which specific keywords
are mentioned, since the audio signal is shown to be very powerful for video
characterization and indexing.

Audio Feature Used. Based on a few experiments we made a selection among
the variety of features that can be extracted from the audio signal. We chose
Short Time Energy (STE), pitch, Mel-Frequency Cepstral Coefficients (MFCCs),
and pause rate.

Short time energy represents the average waveform amplitude, defined over
a specific time window. Short time energy is usually computed after performing
sub-band division of wide range signal. Since indicative bands for speech charac-
terization are lower sub-bands, we use bands below 2.5kHz in our work. Among
four filters that are frequently used for the computation of STE (see [19]), we em-
ployed Hamming window filter for the calculation of Short time energy, because
it brought the best results for speech endpoint detection, and excited speech
indication.

Pitch is the fundamental frequency of an audio signal. In general, only speech
and harmonic music have well-defined pitch, but still it can be used to charac-
terize any audio form. Among many techniques that have been proposed for
pitch estimation and tracking we used the autocorrelation analysis. All tech-
niques for pitch estimation demand appropriate bandwidth of audio signal for
accurate estimation of pitch. Since human speech is usually under 1 KHz, we are
particularly interested in determining pitch that is under this frequency range.

Mel-Frequency Cepstral Coefficients are widely used for speech recognition.
They are based on Mel-scale. Mel-scale is gradually warped linear spectrum,
with coarser resolution on higher, and finer resolution on lower frequencies. It is
metrically adapted to the human perception system. Based on this division, the
Mel-frequency sub-band energy is defined. MFCCs are a simple cosine transform
of the Mel-scale energy for different filtered sub-bands.

The pause rate feature is intended to determine the quantity of speech in an
audio clip, which can be used as an indication of the emphasized human speech.
We calculate it by counting the number of silent audio frames in an audio clip.

Audio Analysis. In order to classify human speech as excited or non-excited,
first the speech endpoint detection has to be performed. For that we employ
short time energy for filtered audio signal and MFCCs. We use 0-882Hz filtered
audio signals in the calculation of short time energy, because this bandwidth di-
minishes car noises, and various background noises as well. From Mel-Frequency
Cepstral Coefficients, we use only first three coefficients of the total number of
12 coefficients, because they are shown to be the most indicative for speech de-
tection. We calculate the values of these two features for each audio frame (10
ms segments), their average values and dynamic range, and maximum values
of STE for audio clips (0.1s segments). After setting the appropriate thresholds
for these parameters, we were able to perform speech endpoint analysis of our
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audio signal. The thresholds we used are 2.2 x 10−3 for the weighted sum of the
average and maximum values, and dynamic range of STE, and 1.3 for the sum
of the average values and dynamic range of first three Mel-frequency cepstral
coefficients. As a result we get an indication for each audio clip (0.1s segment)
whether it can be considered as a speech or non-speech segment. For the speech
endpoint detection we performed some experiments with entropy and zero cross-
ing rate, but they showed powerless when applied in a noisy environment such
as ours.

For the detection of emphasized speech we use STE, MFCCs, pitch, and
pause rate. For different features we use different frequency bands. For STE we
use filtered audio signal, 882Hz - 2205Hz, and for MFCCs and pitch we use low
passed audio signal, 0 - 882Hz. We compute average and maximum values in
an audio clip for all these features obtained for audio frames. Additionally, we
compute dynamic range for STE, and pitch as well. These computations are
only performed on speech segments obtained by the speech endpoint detection
algorithm. Such calculated features are then used by a probabilistic system to
detect excited speech.

For the recognition of specific keywords we used a keyword-spotting tool,
which is based on a finite state grammar [20]. We extract a couple of tens of
words that can be usually heard when the commentator is excited, or it is a
specific part of the race that we are interested in. Two different acoustic models
have been tried for this purpose. One was trained for clean speech, and the
other was aimed at word recognition in TV news. The latter showed better
results. Thus, we employed it for keyword spotting in our system. It resulted in
considerably high accuracy, but note that even better results could be obtained
using a specific acoustic model for the Formula 1 TV program.

The keyword spotting system calculates the non-normalized probability for
each word that is specified, the starting time when the word is recognized, as
well as the duration of the recognized word. After the normalization step based
on keyword spotting system outputs, these parameters are used as inputs of a
probabilistic network.

5.3 Visual Analysis

In the pre-processing step of our visual analysis we segment a race video into
shots. A simple histogram based algorithm is modified it the sense that we calcu-
late the histogram difference among several consecutive frames. This algorithm
resulted in the accuracy of over 90%, which we considered satisfying. The visual
analysis we perform is intended to result in the visual cues that can be used to
characterize replay scenes, as well as video content correlated with three different
events, namely, the start of a race, passing and fly-out events.

The Formula 1 program usually contains a large amount of replay scenes.
They are very important, since they always contain interesting events. The replay
scenes in the Formula 1 program are usually neither slowed down, nor marked.
Frequently, they begin and conclude with special shot change operations termed
Digital Video Effects (DVEs). The problem is that these DVEs vary very often,
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even in the same race and consequently must be frequently learned. Therefore,
we decide to employ a more general algorithm based on motion flow and pattern
matching [19].

Finally, we extract some visual features that indicate the three events we
want to find: start, passing and fly-out. Start is defined by two parameters:
(1) the amount of motion in the scene, and (2) the semaphore presence in the
image. To detect the amount of motion we use pixel color difference between
two consecutive frames. The semaphore is described as a rectangular shape,
because the distance between red circles is small and they touch each other. This
rectangular shape is increasing its horizontal dimension in regular time intervals,
i.e. after a constant number of video frames. The rectangular region is detected by
filtering the red component of the RGB color representation of a still image. For
passing, we calculate the movement properties of several consecutive pictures,
based on their motion histogram. This enables us to compute the probability that
there is a chance of one car passing another. Note that we employed very general
visual feature for passing detection. By applying more powerful techniques for
object tracking we could obtain much better results.

Fly outs usually come with a lot of sand and dust. Therefore, we recognize
presence of these two characteristics in the picture. We filter the RGB image for
these colors and compute the probability, which will be used by a probabilistic
network.

5.4 Text Detection and Recognition

The text that appears in a digital video can be broadly divided into two classes:
scene text and graphic text. The scene text occurs as a natural part of the actual
scene captured by the camera. Examples in our domain include billboards, text
on vehicles, writings on human clothes, etc. The graphic (superimposed) text,
which is the point of our interest, is mechanically added text to video frames
in order to supplement the visual and audio content. It usually brings much
more useful information, since it represents additional information for better
understanding of a video scene, and is closely related to it.

Since the process of text detection and recognition is complex, we will divide
it into three steps, as follows: (1) text detection, (2) refinement of text regions,
and (3) text recognition. An example of text detection and recognition is shown
in Fig. 6.

As the number of frames in a typical Formula 1 video is large, processing
each frame for text recognition is not computationally feasible. Therefore, the
first step of the text recognition task will be to find text regions in a still image.
Here, we used the property of our domain that the superimposed text is placed
in the bottom of the picture, while the background is shaded in order to make
characters clearer, sharpened, and easier to read. The characters are usually
drawn with high contrast to the dark background (light blue, yellow, or white),
on the pre-specified position in each frame. Therefore, to detect whether the
superimposed text is present in the picture, we simply need to process the bottom
part of the picture.
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Interpolation and
binarization

Extraction of text region

Pattern
matching

Fig. 6. Text recognition

Our text detection algorithm consists of two steps. In the first step we analyze
if the shaded region is present in the bottom part on each image in a video se-
quence. By computing the number of these shaded regions in consecutive frames,
we skip all the short segments that do not satisfy the duration criteria. In the
second pass we calculate the duration, number, and variance of bright pixels
present in these shaded regions. If computed values satisfy constrains defined for
the text detection algorithm then this video sequence is marked as a segment
that contains the superimposed text.

Such segments are further processed in the refinement process, which consists
of next steps: (1) filtering of text regions, and (2) interpolation of text regions.
The text regions have to be filtered in order to enable better separation from
the background, as well as for sharpening the edges of characters. The filtering
is done through minimizing pixel intensities over several consecutive frames.
However, this filtering is not sufficient for text recognition. Therefore, we have to
employ an interpolation algorithm to enlarge characters and make them clearer
and cleaner. In this interpolation algorithm the text area is magnified four times
in both directions. After this refinement, we have magnified text regions with
much better character representations. After these actions, the text is ready for
the text recognition step.

The algorithm for text recognition is based on pattern matching techniques,
mainly because of the uniform structure of a small number of different words
superimposed on the screen. These words are names of the Formula 1 drivers,
and some informative words, such as pit stop, final lap, classification, winner,
etc. Since the processing of a color image is computationally expensive and slow,
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we decided to extract reference patterns, and to perform matching with black-
white pictures. Black-white text regions are obtained from the color text regions
by filtering RGB components. After applying thresholds on the text region, we
marked characters as a white space on the black background. For character
extraction we used the horizontal and the vertical projection of white pixels.
Since characters can have different heights we used a double vertical projection
in order to refine the characters better. However, we did not match characters
to reference patterns because they are usually irregular and can be occluded or
deformed. Thus, we connect characters that belong to one word into a region.
This is done based on the pixel distance between characters. Regions that are
closed to each other are considered as characters that belong to the same word.

Having the regions containing one word, we perform pattern matching. To
speed up the matching algorithm, we separate words into several categories based
on their length, and perform the matching procedure only for reference patterns
with a similar length. A simple metric of pixel difference is used for pattern
matching. By specifying an appropriate threshold, we were able to recognize the
superimposed words. Thus, a reference pattern with the largest metric above
this threshold is selected as a matched word. A more detailed description of the
text detection and recognition algorithm is given in [19].

5.5 Probabilistic Fusion

In this subsection, we demonstrate how dynamic Bayesian networks can be
effectively used for fusing the evidence obtained from the audio-visual analy-
sis described above. We performed numerous experiments to compare Bayesian
Networks (BNs) versus Dynamic Bayesian Networks (DBNs), different network
structures, temporal dependences, and learning algorithms.

We digitalized three Formula 1 races of the 2001 season, namely, the German,
Belgian, and USA Grand Prix. The average duration of a Formula 1 race is about
90 minutes or 135,000 frames for a PAL video. Videos were digitized as a quarter
of the PAL standard resolution (384x288). Audio was sampled at 22kHz with 16
bits per audio sample.

Feature values, extracted from the audio and video signal, are represented as
probabilistic values in range from zero to one. Since the parameters are calculated
for each 0.1s, the length of feature vectors is ten times longer than the duration
of the video measured in seconds. The features we extracted from a Formula
1 video are: keywords (f1), pause rate (f2), average values of short time energy
(f3), dynamic range of short time energy (f4), maximum values of short time
energy (f5), average values of pitch (f6), dynamic range of pitch (f7), maximum
values of pitch (f8), average values of MFCCs (f9), maximum values of MFCCs
(f10), part of the race (f11), replay (f12), color difference (f13), semaphore (f14),
dust (f15), sand (f16), and motion (f17). Since we also employed text detection
and recognition algorithms, we were also able to extract text from the video.
We decide to extract the names of Formula 1 drivers, and the semantic content
of superimposed text (for example if it is a pit stop, or driver’s classification is
shown, etc.).
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For the BN/DBN learning and inference we employed the Expectation Max-
imization learning algorithm and the modified Boyen-Koller algorithm for ap-
proximate inference, respectively. A detailed description of these algorithms can
be found in [19].

Audio BNs and DBNs. We decided to start our experiments by comparing
the results that can be achieved by employing BNs versus DBNs using different
network structures. Therefore, we developed three different structures of BNs
for processing only audio clues to determine exited speech, and corresponding
DBN structures for the same purpose. The intention was to explore how different
network structures can influence the inference step in this type of networks. The
structures of BNs, which are also used for one time slice of DBNs, are depicted
in Fig. 7.
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Fig. 7. Different network structures: a) Fully parameterized structure; b) Structure
with the direct influence from evidence to query node; c) Input/output BN structure

The query node is Excited Announcer (EA), since we want to determine if
the announcer raise his voice due to the interesting event that is taking place in
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the race. The shaded nodes represent evidence nodes, which receive their values
based on features extracted from the audio signal of the Formula 1 video.

The temporal dependencies between nodes from two consecutive time slices
of DBNs were defined as in Fig. 8. For learning and inference algorithms we
considered all nodes from one time slice as belonging to the same cluster (”exact”
inference end learning).
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Audio Context
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Pitch

MFCC

EA

Audio Context

STE

Pitch

MFCC

Fig. 8. Temporal dependencies for DBNs

We learned the BN parameters on a sequence of 300s, consisting of 3000 ev-
idence values, extracted from the audio signal. For the DBNs, we used the same
video sequence of 300s, which was divided into 12 segments with 25s duration
each. The inference was performed on audio evidence extracted from the whole
digitalized German Grand Prix. For each network structure we computed preci-
sion and recall. Note that we had to process the results obtained from BNs since
the output values cannot be directly employed to distinguish the presence and
time boundaries of the excited speech, as can be seen in Fig. 9a. Therefore, we
accumulated values of a query node over time to make a conclusion whether the
announcer is excited.

However, the results obtained from a dynamic Bayesian network are much
smoother (see Fig. 9b), and we did not have to process the output. We just
employed a threshold to decide whether the announcer is excited. The results
from conducted experiments with previously described networks are shown in
Table 1.

By comparing different BN structures we can see that there is no significant
difference in precision and recall obtained from them. The corresponding DBNs
did not perform much better except for the fully parameterized DBN. It gives
much better results than other networks (Table 1). To see whether those re-
sults are the best that we can obtain from the extracted audio parameters, we
conducted more experiments with DBNs that will be described in the sequel.

Next, we investigate the influence that different temporal dependencies have
on learning and inference procedures in DBNs. We developed three DBNs with
the same structure of one time slice (the fully parameterized DBN), but different
temporal dependencies between two consecutive time slices. First one was with
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Fig. 9. Results of an audio BN (a) and DBN (b) inference for 300s long ”avi” file

Table 1. Comparison of BNs and DBNs for detection of emphasized speech

Used network
structure

“Fully param-
eterized” BN
(Fig. 7a)

BN with di-
rect evidence
influence (Fig.
7b)

Input/Output
BN (Fig. 7c)

“Fully param-
eterized” DBN
(Fig. 8, Fig. 7a)

Precision 60 % 54 % 50 % 85 %
Recall 67 % 62 % 76 % 81 %

temporal dependencies shown in Fig. 8. Next one was the DBN where all non-
observable nodes distribute evidence to the query node in the next time slice,
and only the query node receives evidence from the previous time slice. The third
one was the configuration where the query node does not distribute evidence to
all non-observable nodes, but only to the query node in the next time slice. Here,
all other non-observable nodes pass their values to the corresponding nodes and
the query node in the next time slice. The evaluation showed that the first one
significantly outperforms the second and slightly the third structure.

In addition we make experiments with different clusters formed in the fully
parameterized DBN. Since our network is relatively simple we made only one
experiment with clustering. In this experiment we separate non-observable nodes
from the other part of the network, as proposed by Boyen and Coller in [21]. In
the original network, all nodes from one time slice are assumed to be in the same
cluster. Evaluation showed that the clustering technique did not bring significant
changes of the recall parameter, but resulted in a larger number of misclassified
sequences.

Conclusions from these experiments are twofold. From the first group of ex-
periments we conclude that the DBN learning and inference procedure depend
a lot on the selected DBN structure for one time slice. We can see that this is
not the case when we perform inference and learning with BNs. These experi-
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ments also showed the advantages of the fully parameterized DBN over the other
BN/DBN networks. Secondly, we conclude that chosen temporal dependencies
between nodes of two consecutive time slices have strong influence on the results
of DBN inference. The best result was obtained from the fully parameterized
DBN with temporal dependencies depicted in Fig 8.

Based on results obtained from these experiments, we selected the ”fully pa-
rameterized” DBN, with one cluster for nodes in same time slice, as the most
powerful DBN structure for detection of the emphasized announcer speech. To
evaluate the chosen network structure we employed it for detecting the empha-
sized speech in the audio signal of the Belgian and USA Grand Prix. Table 1
shows recall and precision obtained by employing the DBN inference algorithm
for these two races.

Table 2. Evaluation results for the audio DBN

Race Belgian Grand Prix USA Grand Prix
Precision 77 % 76 %
Recall 79 % 81 %

Audio-visual DBN. However, the audio DBN can only extract the segments
of the Formula 1 race where the announcer raises his voice. Other interesting
segments, which were missed by the announcer, could not be extracted. There-
fore, the employment of the audio DBN for highlight extraction would lead to
high precision, but low recall (if we count replay scenes, recall will be about
50%).

To improve the results obtained solely from audio cues we developed an audio-
visual DBN for highlight detection. The structure that represents one time slice
of this network is depicted in Fig. 10. The Highlight node was chosen to be the
main query node, while we also queried nodes: Start, Fly Out, and Passing, in
our experiments. Chosen temporal dependencies between nodes in this network
are shown in Fig. 11.

Experiments were done similarly as for the audio DBNs. We employed the
learning algorithm on 6 sequences with 50s duration each. The results obtained
by applying the audio-visual DBN to the German Grand Prix are shown in
Table 3. The precision and recall for highlights are calculated based on the
probability threshold of 0.5, and minimal time duration of 6s.

The values of the other query nodes are calculated based on the value of
the main query node. We calculated the most probable candidates during each
”highlight” segment, and pronounce it as a start, fly out, or passing based on
values of corresponding nodes. For segments longer than 15s we performed this
operation every 5s to enable multiple selections.

The supplemental query nodes are incorporated in the scheme in order to
classify different interesting events that takes place in the Formula 1 race. We
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Table 3. The audio-visual DBN

Audio-visual DBN German Grand Prix

Highlights
Precision
Recall

84 %
86 %

Start
Precision
Recall

83 %
100 %

Fly Out
Precision
Recall

64 %
78 %

Passing
Precision
Recall

79 %
50 %

can see from Table 3 that we gained high accuracy for highlights and start, while
the accuracy for fly out and passing were a little bit lower. Main reason for this
is that we used very general and less powerful video cues for fly out, and espe-
cially passing. We performed evaluation of the same network structure on the
Belgium and the USA Grand Prix, but we had a big decrement in our results,
mostly because of the ”passing” part of the network. Therefore, we simplified
the overall audio-visual network, and excluded the ”passing” sub-network. A sig-
nificant difference in results obtained with and without the passing sub-network
is presented in Table 4.

The network with the passing sub-network worked fine in the case of the
German GP, but failed with the other two races. The explanation for this is
a different camera work in the German GP. This just confirms the fact that
general low-level visual features might yield very poor results in the context of
high-level concepts (to characterize passing we used motion). Obviously, more
domain dependent features, which characterize the trajectories of Formula 1
cars, will be much robust and give a better result for the passing event.

Table 4. Evaluation results for audio-visual DBN

Audio-visual DBN Belgian Grand Prix 2 USA Grand Prix

Highlights
Precision
Recall

44 %
53 %

73 %
76 %

Start
Precision
Recall

100 %
67 %

100 %
50 %

Fly Out
Precision
Recall

100 %
36 %

0 %3

0 %3

Passing
Precision
Recall

28 %
31 %

2 These results were obtained by the audio-visual DBN that includes the passing
subnetwork

3 There were no fly-outs in the USA Grand Prix
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5.6 Content-Based Retrieval

Except for highlights and the three events modeled by the DBN, our system can
be used to query the Formula 1 videos based on recognized superimposed text,
as well as based on audio-visual features directly. A user can ask for the race
winner, the classification in the ith lap, the position of a driver in the ith lap,
relative positions of two drivers in the ith lap, pit stop of a specific driver, the
final lap, etc. To give an impression of the system capabilities, in the sequel we
will list some query examples:

”Retrieve the video sequences showing the car of Michael Schumacher”
”Retrieve the video sequences with Michael Schumacher leading the race”
”Retrieve the video sequences where Michael Schumacher is first, and Mika

Hakkinen is second”
”Retrieve the video sequences showing Barrichello in the pit stop”
”Retrieve the sequences with the race leader crossing the finish line”
”Retrieve all fly outs”...
Furthermore, our system benefits of combining the results obtained from

Bayesian fusion and text recognition, and is capable to answer very detailed
complex queries, such as:

”Retrieve all highlights showing the car of Michael Schumacher”
”Retrieve all fly outs of Mika Hakkinen in this season”
”Retrieve all highlights at the pit line involving Juan Pablo Montoya”...
In order to better demonstrate the advantages of the proposed system and

simplify the querying process, we developed a graphical user interface. The inter-
face is developed on the top of our DBMS using Java and Java Media Framework
for video manipulation. Fig. 12 shows how the Barrichello’s pit-stop query can
be defined. The user interface allows a user to combine results obtained from the
DBN and text detection. In addition, a user can define new compound events by
specifying different temporal relationships among already defined events. He can
also update meta-data through the interface by adding a newly defined event,
which will speed up the future retrieval of this event.

6 Conclusions

This paper addresses the problem of recognizing semantic content in video data
based on visual features. We have presented the architecture and implementation
platform of our prototype video database management system. The system pro-
vides a framework for automatic extraction of high-level concepts (objects and
events) from raw video data. It is independent of feature/semantic extractors,
providing flexibility in using different video processing and pattern recognition
techniques for that purpose.

The automatic extraction of concepts from raw video data is supported by
few extensions. The video processing and feature extraction extension is used
for video segmentation and feature extraction purposes. The rule-based exten-
sion formalizes descriptions of high-level concepts using spatio-temporal reason-
ing. Finally, the stochastic extensions exploit the learning capability of hidden



Extending a DBMS to Support Content-Based Video Retrieval 339

Fig. 12. The user interface

Markov models and DBNs to recognize events in video data automatically. By
integrating these techniques within the DBMS, we provide users with ability to
define and extract events dynamically. For example, a user can define the model
for a new event by indicating example sequences and training the model (in the
case of HMMs and DBNs). Then, he already can query the database.

In this paper, we focus on the DBNs, and their use for content-based retrieval,
which is, to the best of our knowledge, the first time they are used for such
purpose. We have conducted numerous experiments with different DBN and BN
structures, and compare two different DBN learning algorithms. We have also
explored the influence of different atemporal and temporal connections within
a dynamic Bayesian network. Expectedly, the DBNs have outperformed BNs in
our application. For DBNs, the exact representation of temporal dependencies
has been found as the most powerful for learning and inference. We have shown
that the structure and temporal connections within a DBN have strong influence
on the learning and inference procedures.

The approach has been validated for retrieval in the particular domain of
the Formula 1 TV program. We have based our analysis on the fusion of the
evidence obtained from different information sources (audio, video, and text).
Consequently, a robust feature extraction scheme has been introduced for the
audio-visual analysis of our particular domain. For text detection and recogni-
tion, we presented a new technique, which is based on properties of Formula 1
race videos.
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We can conclude that the usage of cues from the three different media has
resulted in much better characterization of Formula 1 races. The audio DBN
was able only to detect 50% of all interesting segments in the race, while the
integrated audio-visual DBN was able to correct the results and detect about
80% of interesting segments in the race. However, this audio part is still useful
for the detection of the segments with the excited announcer speech, where it
showed high recognition accuracy. By integrating the superimposed text, audio
and video subsystems we have built a powerful tool for indexing the Formula 1
races videos, which can answer very detailed and specific quires.

Although we have already presented a significant amount of work done to
enable indexing and characterization of the multimedia documents of Formula
1 race, we state that still many improvements can be done. The main one is in
the video analysis, where we only used the simplest features. For example, the
problem of detecting and tracking moving objects supplemented with a lot of
camera work and shot change is a challenging computer vision problem, which
needs a further research.

References

1. Grosky, W.:Managing Multimedia Information in Database System. Communica-
tions of the ACM, 40(12), (1997) pp. 73-80.

2. Yoshitaka, A., Ichikawa, T.,:A Survey on Content-Based Retrieval for Multimedia
Databases. IEEE Transactions on Knowledge and Data Engineering, 11(1), (1999)
pp. 81-93.

3. Del Bimbo, A.:Visual Information Retrieval. Morgan Kaufmann, San Francisco,
California (1999)

4. W. Al-Khatib, Y. Day, A. Ghafoor, P. Berra: Semantic Modeling and Knowledge
Representation in Multimedia Databases. IEEE Transactions on Knowledge and
Data Engineering, 11(1), (1999), pp. 64-80.

5. S. Intille, A. Bobick: Visual Tracking Using Closed-Worlds. Tech. Report No. 294,
M.I.T. Media Laboratory, (1994)

6. Y. Gong, L. T. Sin, C. H. Chuan, H-J. Zhang, M. Sakauchi: Automatic Parsing of
TV Soccer Programs. In Proc. of IEEE International Conference on Multimedia
Computing and Systems, Washington D.C., (1995), pp. 167-174.

7. N. Haering, R.J. Qian, M.I. Sezan: ”A semantic event-detection approach and its
application to detecting hunts in wildlife video. Circuits and Systems for Video
Technology, IEEE Transactions on, 10(6), Sept. 2000, pp. 857-868.

8. M. Shah, R. Jain (eds): Motion-Based Recognition. Kluwer Academic Publishers,
(1997)

9. Y. Rui, A. Gupta, A. Acero: Automatically Extracting Highlights for TV Baseball
Programs. In Proc. of ACM Multimedia, Los Angeles, CA, 2000, pp. 105-115.

10. M. Naphade, T. Kristjansson, B. Frey, T.S. Huang: Probabilistic multimedia ob-
jects (multijects): A novel approach to indexing and retrieval in multimedia sys-
tems. In Proc. of the IEEE ICIP, Chicago, IL, 1998, vol. 3, pp. 536-540.

11. N. Vasconcelos, A. Lippman: Bayesian Modeling of video editing and structure:
Semantic features for video summarization and browsing. In Proc. of the IEEE
ICIP, Chicago, IL, 1998, vol. 2, pp. 550-555.



Extending a DBMS to Support Content-Based Video Retrieval 341

12. A.M. Ferman, A.M. Tekalp: Probabilistic Analysis and Extraction of Video Con-
tent. In Proc. of the IEEE ICIP, Tokyo, Japan, 1999, vol. 2, pp. 91-95.

13. T. Syeda-Mahmood, S. Srinivasan: Detecting Topical Events in Digital Video. In
Proc. of ACM Multimedia, Los Angeles, CA, 2000, pp. 85-94.

14. R.S. Jasinschi, N. Dimitrova, T. McGee, L. Agnihotri, J. Zimmerman, D. Li, ”In-
tegrated Multimedia Processing for Topic Segmentation and Classification”, Proc.
of IEEE ICIP, Greece, 2001.
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