

Mining HTML Pages to Support Document Sharing in
a Cooperative System

Donato Malerba, Floriana Esposito and Michelangelo Ceci

Dipartimento di Informatica, Università degli Studi
via Orabona, 4 - 70126 Bari - Italy

{malerba, esposito, ceci}@di.uniba.it

Abstract. In this paper, the problem of classifying HTML documents is
investigated in the context of a client-server application, named WebClass,
developed to support the search activity of a geographically distributed group of
people with common interests. The two main issues studied in the paper are the
selection of some features to represent HTML documents and the construction
of the classifiers. A new feature selection technique is presented and its
interaction with different classifiers is experimentally studied. Results show that
performance improves even with simple classifiers and the proposed feature
selection technique compares favorably with respect to other well-known
approaches.

Keywords: mining from semi-structured data, cooperative systems, feature
extraction and selection.

1. Introduction

There is an increasing interest among researchers in the possibility of sharing
information among distributed work groups in organizations (virtual groups) –
providing some form of shared or common information “space”. However, this is
only possible if it is based on a shared understanding of concepts and there is a shared
language of discourse. An ontology can be used as such a basis for knowledge sharing
since it formally represents the vocabulary and conceptual structure of the domain.
Formal ontologies were originally developed by the knowledge engineering
community to model domain knowledge and have recently been put to a variety of
different uses, e.g. in the development of large distributed electronic trading groups,
or in the classification of some Web pages such as those in Yahoo.

Ontologies enable knowledge sharing and re-use, but suffer from an imbalance
between efforts and benefits from the individual’s point of view. The ontological
annotation of documents to be shared with other users facilitates information retrieval
and integration, but this is an effective approach only when information providers
have a thorough comprehension of the underlying shared ontology. End users find it
difficult to understand ontologies codified in formal languages, especially abstract,
top-level definitions of concepts, relations and properties. An experimental study on
manual indexing for Boolean information retrieval systems has shown that the degree
of overlap in the keywords selected by two similarly trained people to represent the

same document is not higher than 30% on average [4]. This is an important limitation
on the development of cost effective and highly scalable co-operative information
repositories.

Data mining techniques give workspace users the power of automated
classification of documents according to a given ontology. Since members of a virtual
group are usually able to provide sets of pre-classified documents, but no operational
definition of how a document should be categorized, the classification of documents
can be delegated to an intermediary that is properly trained on the set of given
documents (see Figure 1).

Data mining techniques are usually designed to work on relational databases, that
is, on structured data. Therefore, the application of data mining techniques to
unstructured or semi-structured data poses additional research problems. In particular,
the application of data mining techniques to the discovery of useful information from
the Web contents is referred to as Web content mining. Web content data mostly
consist of semi-structured data such as HTML documents. Although multimedia
components of HTML documents, such as pictures, videos, animations and audios,
take 80% of a typical Web site, most of the work in Web content mining has been
focused on free or semi-structured text.

In this paper, we present WebClass, a client-server application that performs the
automated classification of Web pages on the basis of their textual content. This
application has been designed to support the search activity of a geographically
distributed group of people with common interests. Two categories of remote users
are allowed in WebClass: Administrators and final users. The former are allowed to
train the system by providing a set of pre-classified Web pages in HTML format,
where classes correspond to topics of interests for a final user. Training is performed
by means of a graphical user interface that supports browsing functions together with
functions typical of a learning system, such as parameter setup, feature extraction and

Shared
Documents

Intermediary
(WebClass)

Classifiers Ontology

Fig. 1. An intermediary-based architecture for computer-supported collaborative work.

selection, definition of training and test set, classifier generation and testing. Learned
classifiers are subsequently used by final users while browsing the Web. Final users
can either decide to store the document in a document base or discard it. In the former
case, the document is automatically classified by WebClass according to the pre-
defined set of classes.

The automated classification of Web pages requires the solution of two problems:
1. The definition of a representation language for HTML pages, and
2. The construction of a classifier that is able to categorize new Web pages on the

basis of their representation.
As to the first problem, WebClass adopts a feature vector representation of Web

documents, where each single feature corresponds to a distinct term extracted from
the training documents. Features are determined by means of a complex pre-
processing phase, which includes both a term extraction and a term selection process.

For the second problem, Webclass has four alternative ways of assigning a Web
page to a class:
1. By sequentially testing feature values according to a decision tree.
2. By computing the distance from the centroids of the different classes.
3. By computing a posterior probability by means of a naive Bayes classifier.
4. By computing the distance from all training documents (k-nearest-neighbor).

In the first three ways, a training phase is necessary to build either the decision tree
or the centroids or the prior probabilities. In the fourth way, specific instances rather
than previously built classifiers are used during the prediction task.

In this paper, some issues in the construction of WebClass classifiers are presented.
After a brief introduction to both WebClass client-server architecture and the logical
design of the underlying database, a novel technique for the selection of relevant
words in the preprocessing phase is introduced in Section 3, while the different
approaches adopted for the automated categorization are described in Section 4.
Empirical results on different training sets are reported and discussed in Section 5.

2 The WebClass system

The architecture of WebClass is based on the classical three-tier model (see Figure 2).
The first tier is a Java-enabled Web browser, through which it is possible to run a java
applet. The applet supports several user activities, namely browsing the Web,
classification and storage of interesting documents, query and retrieval of stored
documents, appropriate presentation of retrieved documents on the medium,
construction of classifiers (training phase), as well as typical management functions
(create/modify/delete system users). The second tier is a servlet middleware, namely a
Web server running Java servlets. The Java servlet is able to access the database and
return dynamically generated HTML pages. The third tier is the back-end database
server. The Java servlet can access information stored by means of the JDBC-ODBC
driver integrated in the development environment JDK 1.3.

Users can query the database either by writing a sentence in English or by
browsing documents in a class. In the former case, the system returns a list of
document identifiers (ID) and titles, ranked according to a relevance measure. By

clicking on a row, the document class (category) and the original URL of the Web
document are displayed (see Figure 3), and by clicking on “View This Document” it

Fig. 2. WebClass three-tier architecture. In the client-side, the user interacts with the system by
means of an applet. The applet can send parameterized requests to the appropriate Java servlet
running on the Web server, namely jsdk2.1 (step 1). The Java servlet interprets the request,
processes it and constructs an SQL statement, which is passed to the database server using the
Java Database Connection (JDBC) (step 2). The database server executes the SQL statement
and returns a result set to the Java servlet (step 3). The Java servlet processes the result set and
communicates the results to the applet.

 Web Client Browser Web Server with servlet engine Database Server

� �

� ®

Fig. 3. An example of textual query (above) and the set of retrieved documents (below).

is possible to view the stored document. Textual queries can be saved in the user
workspace for future use.

The second mode of database querying requires the specification of a class of
documents to be browsed (see Figure 4). WebClass works as an intemediary when
users browse the Web through the system and categorize documents by means of one
of the classification techniques available (see Figure 5). The extraction of features to
be used for document representation and classification and the possible construction
of classifiers is another functionality made available to remote users with
administration rights. In this case it is necessary to select training documents and
possibly test documents either from the database or from the Web (see Figure 6).
Once the training and test sets have been fully defined, it is possible to activate the

Fig. 4. : Browsing documents by categories.

Fig. 5.Browsing documents in the Web and tools for automated classification (see buttons
below). The class is reported in the bottom right-hand corner.

feature extraction process and, possibly, the construction of some classifiers. This
activity also requires the specification of some parameters by means of the interface.
The required parameters and their meanings will be explained in the next sections.

3 The Learning Issues

Many issues are related to the goal of building a Web page classifier. Firstly, it is
necessary to determine which kind of information in a Web page is relevant. In this
work, it is assumed that the relevance of a page for the group of users depends
exclusively on both the textual content and the HTML layout structure of the Web
page. Hence, the following factors are not considered in this study:
�� External factors, such as the novelty or the reliability of the information in the

document.
�� Multimedia components of a page, such as pictures, videos, animations and audios.
�� Contextual information reported in a link to an HTML document [2].
�� Possible dependencies among classes of Web documents. This means that classes

considered in this study are not hierarchically related in the user ontology.
Thus, the learning problem can be formulated as follows:
Given
�� a set C of classes of documents C1, C2, �, Cr,
�� a finite Web space W structured as a directed graph over Web documents,
�� a set of Web documents D �W described in a language LD,
Find
a model or hypothesis H which maps Web documents to a class and maximizes
predictive accuracy on possibly unseen documents in the Web space W.

 Fig. 6. Browsing documents by categories.

The second issue concerns the representation language LD adopted for Web
documents. Typically, documents are represented as feature vectors, where features
correspond to specific words or groups of words. This representation, also known as
bag-of-words, is that adopted by WebClass, although two variants have been tested:
Plain frequency vector representation and emphasized representation. The latter takes
into account the information related to all the HTML tags enclosing occurrences of
words.

The selection of features is the third issue. Thousands of features can be generated,
even from a small set of pages. Generally, only a subset of features is relevant, and
their selection has been proven beneficial for the computational complexity and the
accuracy of the page classifiers [8]. In the next section, a feature selection process that
extracts orthogonal sets of features for each document class is described and a novel
scoring measure, appropriate for feature selection in multi-class text categorization
problems, is presented.

The last issue concerns the construction of classifiers. Once again, several
solutions have been proposed in the literature: Bayesian classifiers [14], decision trees
[1], some adaptations of Rocchio’s algorithm to text categorization [7], and k-nearest
neighbor [11]. In this study four classifiers are considered. They are based on three
different views of classes: k-nearest neighbor (extensional view), decision trees and
Bayesian classifiers (classical intensional view), and centroids (exemplar intensional
view).

3.1 The preprocessing phase

Initially, all training documents are tokenized, and the set of tokens (words) is filtered
in order to remove HTML tags, punctuation marks, numbers and tokens of less than
three characters. The basic idea is to select relevant tokens to be used in the bag-of-
words representation. These tokens will be called features. As already observed in
Luhn’s seminal work [10], when distinct words in a textual document are arranged in
decreasing order of their frequency of occurrence, the distribution satisfies Zipf’s Law
[20], that is, the product rank*frequency is constant. Luhn conjectured that the
relevant words extracted from a document text would peak in the middle range, and
further proposed to use words with medium frequency, because high- and low-
frequency words are not good content identifiers. These considerations lead to a
standard procedure in text pre-processing, which is implemented in WebClass:
1. Removal of words with high frequency, or stopwords, such as articles,

prepositions, and conjunctions.
2. Removal of suffixes, such as those used in plurals (e.g., -s, -es and -ies), gerund

(-ing), simple past (-ed), and so on.
3. Determination of equivalent stems (stemming), such as analy in the words

analysis, analyses, analyze, analyzing and analyzer.
For the first step, stopwords used by WebClass have been taken from Glimpse

(glimpse.cs.arizona.edu), a tool used to index files by means of words, while for the last
two steps, the algorithm proposed by Porter [15] has been implemented.

Many approaches have been proposed in the literature on information retrieval for
the identification of relevant words to be used as index terms of documents [16]. Most

of them simply score words according to some measure and select the best firsts.
However, techniques proposed for information retrieval purposes are not always
appropriate for the task of document classification, also known as text categorization.
Indeed, we are not interested in words characterizing each single document, but we
look for words that distinguish a class of documents from other classes. Generally
speaking, the set of words required for classification purposes is much smaller than
the set of words required for indexing purposes.

For two-class problems, Mladenic [12] compared scoring measures based on the
Odds ratio1 and those based on information gain,2 leading her to favor the former.
For multi-class problems, as in the case of WebClass, an extension of the well-known
TF-IDF measure to text categorization, originally proposed for information retrieval
purposes [17], has been suggested [6]. However, this measure is not intended for
feature-selection purposes, but for the definition of a probabilistic classifier of
documents.

The feature selection algorithm implemented in WebClass is based on a variant of
TF-IDF. Given the training document d of the i-th class, for each token t the
frequency TF(i,d,t) of the token in the document is computed. Then, for each class i
and token t, the following statistics are computed:
�� MaxTF(i,t), the maximum value of TF(i,d,t) on all training documents d of class i;
�� PF(i,t), the page frequency, that is, the percentage of documents of class i in which

the token t occurs.
The union of sets of tokens extracted from Web pages in one class defines an

“empirical” class dictionary used by documents on the topic specified by the class.
By sorting the dictionary with respect to maxTF(i,t), words occurring frequently only
in one long HTML page might be favored. Indeed, Web page authors usually “hide” a
number of occurrences of “key” words in the HTML code, in order to force search
engines to rank that page in the first positions of the returned lists of Web references.
By sorting each class dictionary according to the product maxTF(i,t)*PF(i,t)2, briefly
denoted as MaxTF-PF2 (Max Term Frequency - Square Page Frequency) measure, the
effect of this phenomenon is kept under control.3 Moreover, common words used in
documents of a given class will appear in the first entries of the corresponding class
dictionary. Some of these words are actually specific to that class, while others are
simply common English words (e.g., “information”, “unique”, “suggestion”, “time”
and “people”) and should be considered as quasi-stopwords. In order to move quasi-
stopwords down in the sorted dictionary, the MaxTF-PF2 of each term is multiplied
by a factor ICF=1/CF(t), where CF(t) (category frequency) is the number of class

1 For a given token t,
)())(1(

))(1)((
log

)(

)(
log

21

21

2

1
CtPCtP

CtPCtP

Ctodds

Ctodds
ratio(t)-Odds

�

�
�� . Singularities

are handled as in [18].
2 For a given token t, Information-Gain(t) = H(C) – H(C|t), where H(C) (H(C|t)) is the entropy

in the document set before (after) the usage of the token t for splitting the document set into
subsets.

3 The plain PF(i,t) factor was also used, but was found to reduce performance slightly. For the
small sets of training documents we considered in our experiments, the term PF(i,t) might
not be small enough to reduce the effect of very frequent words in single documents.

dictionaries in which the word t occurs. In this way, the sorted dictionary will have
the most representative words of each class in the first entries, so that it will be
sufficient to choose the first N words per dictionary, in order to define the set of
attributes. Once the class dictionaries are determined, a unique set of features is
selected to represent documents of all classes. Currently, the administrator defines the
number of features.

Once the set of features has been determined, training documents can be
represented as feature vectors. WebClass can adopt two different representations:
Plain and emphasized. In the latter representation, the frequency of a word is
multiplied by an emphasis factor, which is computed in two different ways:
1. Additive emphasis: The emphasis factor of a word is computed by summing

weights associated to the HTML layout structures where the word occurs;
2. Multiplicative emphasis: The product of weights is considered.

The effect of the emphasis on the classification of Web pages is reported in [6].
Experimental results do not lead to a clear conclusion that any classification technique
generally benefits from the HTML structural information. In other words, the partial
structure existing in HTML pages does not seem to convey information useful for the
classification. Similar results have bee reported in [5], where Hidden Markov Models
have been applied to capture information possibly conveyed by the HTML tags. For
this reason, only the plain representation will be considered in the section on
experimental results. The importance of the HTML structure in document
understanding, that is the interpretation of the content of some parts of an HTML
page, is still an open problem. Some results obtained with systems developed to
convert HTML pages into XML documents [3] seem to indicate a certain relevance of
fonts, colors, and table structure.

3.2 The classification methods

WebClass has four alternative ways of assigning a Web page to a class:
1. By sequentially testing feature values according to a decision tree.
2. By computing the distance from the centroids of the different classes.
3. By computing the Bayesian posterior probability.
4. By computing the distance from all training documents (k-nearest-neighbor).

In the first three ways, a training phase is necessary to build either the decision tree
or the centroids or to estimate probability distributions. In the fourth way, training
instances are used only when the system is asked to classify a new page.

WebClass generates a univariate decision tree, by means of the system OC1 [13],
for each class Ci, by considering training documents of class Ci as positive examples
and all remaining documents as negative examples.4 Therefore, the result of the
classification process can be: 1) no classification (the document is not stored);

4 It is worthwhile observing that the construction of the classifiers may be cast as a set of two

class problems, even though the feature selection process is based on a multi-class approach.
Indeed, thanks to the common set of features for all classes, it is possible to perform a
centroid-based classification and to compare it with more sophisticated techniques, such as
decision trees.

2) single classification (the document is stored as an instance of the corresponding
class); 3) multiple classification (the document is stored as an instance of more than
one class).

According to the Bayesian theory, the optimal classification of a document d
assigns d to the class Ci � C maximizing the posterior probability P(Ci|d). Under the
assumption that each word in d occurs independently of other words, as well as
independently of the text length, it is possible to estimate the posterior probability as
follows [7]:

� 	
� 	 � 	

� 	

� 	 � 	
� 	

�
�
�

�
��

CC' Ft
C'|tP

td,TF
*C'P

Ft
Ci|tP td,TF*CiP

d|CiP

(1)

where F is the set of features selected in the pre-processing phase, and TF(d,t) is the
frequency of the word t in d. The prior probability P(Ci) is estimated as the
percentage of documents in Ci, while the likelihood P(t | Ci) is estimated according to
Laplace’s Law of succession:

� 	 � 	
� 	

�

�

�
�

Ft

tiTFF
tiTF1

CitP

'

',||
,

|ˆ (2)

with TF(i,t) denoting the frequency of word t in all documents of class Ci. During the
training phase, all probabilities P(Ci) and P(t | Ci) are estimated on the training set, so
that they can be readily used when a new document d has to be classified.

The computation of centroids is based on a simple formula. Let v1, v2,…, vni be the
feature vectors corresponding to the ni training pages of class Ci. Let vj(k) denote the
k-th component of vj, k=1, 2, …, N. Then the centroid is an N-dimensional feature
vector, whose components are computed by averaging on the corresponding
components of the training documents. In order to classify a document, the centroid
most similar to the document description has to be found. The similarity measure
considered is the cosine correlation [9], which computes the angle spanned by two
vectors (the document and the centroid). The mathematical formulations of both the
centroid and the similarity measure are the following:

�

�

� �

��

N

k

N

k

N

k

j

n

j
j

kVkP

kVkP
VPsim

n

kv
kP

s

1 1

22

11

)()(

)()(
),(

)(
)((3)

The cosine correlation returns a particularly meaningful value when vectors are
highly dimensional and features define orthogonal directions. In WebClass both
conditions are satisfied, though orthogonality refers to the group of features extracted
from each class dictionary rather than to the individual features. The cosine
correlation is also used in the fourth classification approach, namely the k-nearest-
neighbor.

All the above classifiers assign a document d to one of the “meaningful” classes Ci
� C. Nevertheless, in some application domains some documents cannot or should
not be meaningfully assigned to any class. Although the problem can be operatively

dealt with by adding a “reject” class to C, where all such documents might be
collected, from the point of view of document classification this is not always correct.
This reject class represents “the rest of the world” and the computation of a posterior
probability, as well as the computation of a centroid, would make little sense. By
assuming that documents in the reject class have a low posterior probability,
compared with other classes, or are very distant from the centroids/examples of other
classes, the problem can be reformulated in a different way, namely how to define
some thresholds for both posterior probabilities and distances. WebClass uses
documents of the reject class in the training set to compute the optimal thresholds.
Optimality is evaluated with respect to F-score,5 a measure that synthesizes two
important parameters used in information retrieval, namely recall and precision.

5 Design of the experiments and results

A set of experiments was designed to test the performance of WebClass. Documents
used in the test are a subset of the collection known as “Reuters-21,578, Distribution
0.1” (http://www.research.att.com/~lewis/reuters21578.html) This is a set of
21,578 news items provided by the German agency Reuters, manually catalogued by
personnel from Reuters Ltd. and Carnegie Group Inc. There are 135 distinct classes,
mainly on economical topics, but in our experiments we considered only ten of them,
namely acq, coffee, crude, earn, interest, money-fx, money-supply, ship, sugar and
trade. They are the most represented classes associated to the first 4,000 documents of
the collection. All other classes are grouped in a generic reject class. From the first
4,000 news items in the collection about 3,500 documents are selected for the test set,
by discarding empty documents as well as documents with multiple classifications.
From the subsequent 10,000 documents three training sets of different size (about
2,000, 3,000 and 4,000, respectively) are extracted according to the same criterion
applied for the test set (see Table 1). It is noteworthy that examples are unevenly
distributed among classes. The first 14,000 news items in the Reuters corpus actually
contain examples of many other classes, which are dropped because they are too
poorly represented to lead to meaningful conclusions on system performance.

Fifty features are extracted for each class, totaling up to five hundred features for
each experiment. Since there are about 22,500 unique terms in the Reuters collection
(after performing stemming, stopword removal and conversion to lower case), the
reduction is about 97,8%. This choice is coherent with the best result observed by
Yang and Pedersen [19] for information gain based feature selection. Twenty-four
experiments were performed by varying the feature selection measure (MaxTF-PF2-
ICF vs. average mutual information (AMI)6 vs Odds-ratio), the training set size

5 F-Score=2*Precision*Recall/(Precision+Recall)
6 Let Wi be a random variable denoting the presence/absence of the word (token) wi in a

document. It can take two values vi, where vi � {wi,
wi}. Let C be a random variable with
values in the set of user classes. The average mutual information is defined as follows [19]:

(2,000, 3,000, 4,000) and the method used to classify documents (centroids, nearest
neighbor, k-nearest neighbor, Bayesian classifier). In this experimentation decision
trees could not be tested because of the OC1 limit on processing examples described
by no more than one hundred features.

The experimental results are shown in Figure 7, where the level of results is
measured on the basis of an F-score. It is noteworthy that quite a simple classification
method, based on the computation of a distance from class centroids, performs quite
well when features are extracted by means of MaxTF-PF2-ICF. This empirically
confirms that the set of selected features for each class has a good discriminant power.
The combination information gain and Bayesian classifier outperform all methods
only in the experiment on 2,000 training pages. Our results are at divergence with
those reported in the work by Mladenic [12], according to which information gain
performs worse than random feature selection. A closer look at words sorted by
information gain shows that almost all best words are characteristic of a negative class
value. These negative results prevented Mladenic from considering other measures
similar to information gain, such as mutual information. Nevertheless, from our
results we observe that average mutual information performs better than Odds ratio in
some experiments. The difference might be due to the fact that, in our approach,
features are extracted and selected by processing documents class by class, while
Mladenic merged together words of both positive and negative examples.

Table 1. Distribution of selected Reuters news in training and test sets

Class Training 2000 Training 3000 Training 4000 Test
acq 260 390 520 458
coffee 10 15 21 19
crude 44 66 88 77
earn 450 675 900 794
interest 20 30 39 33
money-fx 8 12 16 16
money-supply 20 30 40 35
ship 16 24 32 27
sugar 10 15 20 18
trade 18 27 37 32

Subtotal 856 1284 1713 1506
reject 1132 1690 2260 2017

Total 1988 2974 3973 3526

� �

� �

� �

� ��

�

������

iii

iii

wwv i

i

Cc
i

wwv
i

Cc
ii

Cc
ii

vPcP
vcP

vcP

vcPvcPvPcPcPWCHCHWCI

,

,

)()(
),(

log),(

))(log()()())(log()()()(),(

Centroids

0

10

20

30

40

50

60

Test 2000 (50
feature x
category)

Test 3000 (50
feature x
category)

Test 4000 (50
feature x
category)

A
ve

ra
ge

 F
-S

co
re

IG MaxTF OR

Nearest Neighbour

0
10
20
30
40
50
60

Test 2000 (50
feature x
category)

Test 3000 (50
feature x
category)

Test 4000 (50
feature x
category)

A
ve

ra
ge

 F
-S

co
re

IG MaxTF OR

Naive Bayes

0

10
20

30

40
50

60

Test 2000 (50
feature x
category)

Test 3000 (50
feature x
category)

Test 4000 (50
feature x
category)

IG M axTF OR

7 - Nearest Neighbour

0
10
20
30
40
50
60

Test 2000
(50 feature x

category)

Test 3000
(50 feature x

category)

Test 4000
(50 feature x

category)

A
ve

ra
ge

 F
-S

co
re

IG MaxTF OR

Fig. 7. Experimental results on the Reuters data.

 Test 2000 (50 feature x category)
 AMI MaxTF-PF^2-ICF Odds Ratio

Centroids 46.55 50.54 37.84

NN 44.17 43.84 34.30
7-NN 49.98 50.25 37.66

Naive-Bayes 52.83 47.32 35.57
 Test 3000 (50 feature x category)
 AMI MaxTF-PF^2-ICF Odds Ratio

Centroids 47.80 53.69 42.59
NN 43.52 43.19 32.79

7-NN 49.23 48.77 37.70
Naive-Bayes 52.52 47.55 35.86
 Test 4000 (50 feature x category)
 AMI MaxTF-PF^2-ICF Odds Ratio

Centroids 48.14 51.79 40.55

NN 44.96 43.17 28.20
7-NN 49.07 48.45 37.09

Naive-Bayes 50.16 47.88 36.28

Finally, we performed a further test according to the standard experimental design
proposed by Lewis also known as “Modified Apté” (www.research.att.com/~lewis/). In
this case, 5,754 cases were used for the training set, 2,861 for the test set and 722 for
the reject set. The number of selected features was kept the same. Table 2 shows that
the proposed feature selection based on MaxTF-PF2-ICF outperforms the information
gain in almost all experiments, with the exception of 7-NN.

Table 2. Experimental results on the Reuters data – “Modified Apté” test.

 IG MaxTF-PF2-ICF Odds Ratio

Centroids 60.09 61.44 45.99

NN 66.12 66.48 44.10

7-NN 67.88 67.62 44.36

N. Bayes 62.76 67.58 11.64

6 Conclusions

In this paper, the problem of automatically classifying HTML documents, according
to a set of pre-defined classes, has been investigated in the context of a client-server
application developed to support Web document sharing in a group of users with
common interests. The two main issues studied in the paper are the selection of some
features to represent HTML documents and the construction of the classifiers. For the
first issue, a novel technique for the selection of relevant features from training pages
has been presented, while for the second issue several classifiers have been
considered and a thresholding algorithm has been proposed in the case of a reject
class. The interaction of the feature selection technique with different classifiers has
been experimentally studied. Results show that performance improves even with
simple classifiers and the proposed feature selection technique compares favorably
with respect to other well-known approaches.

We are currently investigating some research issues related to the classification of
HTML documents in a set of hierarchically related classes. An experimental study of
a general method defined for the construction of a hierarchical classifier is planned for
the near future, together with an experimental study on the document retrieval
technique implemented in WebClass and not described in this paper.

References

1. C. Apté, F. Damerau, & S.M. Weiss (1994). Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems, 12(3), 233-251.

2. G. Attardi, S. Di Marco, D. Salvi, & F. Sebastiani (1998). Categorisation by context. On-
line Proceedings of the 1st International Workshop on Innovative Internet Information
Systems, http://www.idt.ntnu.no/~monica/iii-98/proceedings_on_line.html.

3. R. Baumgartner, S. Flesca, G. Gottlob (2001). Supervised Wrapper Generation with Lixto.
Proc. of the 27th Int. Conf. on Very Large Data Bases, 715-716.

4. C. Cleverdon (1984). Optimizing convenient online access to bibliographic databases.
Information Services and Use, 4, 37-47.

5. M. Diligenti, M. Gori, M. Maggini & F. Scarselli (2001). Classification of HTML
Documents by Hidden Tree-Markov Models. Proc. of the 6th Int. Conf. on Document
Analysis and Recognition ICDAR’01, IEEE Computer Society Press, Los Vaqueros, CA.

6. F. Esposito, D. Malerba, L. Di Pace, & P. Leo (2000). A Machine Learning Approach to
Web Mining, In E. Lamma & P. Mello (Eds.), AI*IA 99: Advances in Artificial
Intelligence, Lecture Notes in Artificial Intelligence, Vol. 1792, 190-201, Berlin: Springer.

7. T. Joachims (1997). A probabilistic analysis of the Rocchio algorithm with TFIDF for text
categorization. Proc. of the 14th Int. Conf. on Machine Learning, 143-151.

8. D. Koller & M. Sahami (1996). Toward optimal feature selection. Proc. of the 13th Int.
Conf. on Machine Learning ICML’96, 284-292.

9. D.D. Lewis, R.E. Schapire, J.P. Callan, & R. Papka (1996). Training algorithms for linear
text classifiers. In H.-P. Frei, D. Harman, P. Schauble, & R. Wilkinson, (ed.), Proc. of the
19th Annual Int. ACM SIGIR Conf. on Research and Development in Information
Retrieval, 298-306.

10. H. Luhn (1958). The automatic creation of literature abstracts. IBM Journal of Research
and Development, 2(2):159—165.

11. B. Masand, G. Linoff, & D. Waltz (1992). Classifying new stories using memory based
reasoning. Proc. SIGIR’92, 59-65.

12. D. Mladenic (1998). Feature subset selection in text-learning. In C. Nédellec, & C.
Rouveirol (Eds.), Machine Learning: ECML-98, Lecture Notes in Artificial Intelligence,
1398, 95-100, Berlin: Springer.

13. S.K. Murthy, S. Kasif & S. Salzberg (1994). A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2, 1-32.

14. M. Pazzani & D. Billsus (1997). Learning and revising user profiles: The identification of
interesting web sites. Machine Learning Journal, 23, 313-331.

15. M. F. Porter (1980). An algorithm for suffix stripping. Program, 14(3) : 130-137.
16. G. Salton (1989). Automatic text processing: The transformation, analysis, and retrieval of

information by computer. Reading, MA: Addison-Wesley.
17. G. Salton & C. Buckley (1988). Term weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5), 513-523.
18. W.M. Shaw Jr (1995). Term-relevance computations and perfect retrieval performance.

Information Processing & Management, 31(4), 491-498.
19. Y. Yang & J.O. Pedersen (1997). A Comparative Study on Feature Selection in Text

Categorization. Proc. of the 14th Int. Conf. on Machine Learning ICML-97, 412-420.
20. G.K. Zipf (1949). Human Behavior and the Principle of Least Effort. Reading, MA:

Addison-Wesley.

