Automatic SAT-Compilation of Protocol
Insecurity Problems via Reduction to Planning*

Alessandro Armando and Luca Compagna

DIST — Universita degli Studi di Genova, Viale Causa 13 — 16145 Genova, Italy,
{armando,compa}@dist.unige.it

Abstract. We provide a fully automatic translation from security pro-
tocol specifications into propositional logic which can be effectively used
to find attacks to protocols. Our approach results from the combination
of a reduction of protocol insecurity problems to planning problems
and well-known SAT-reduction techniques developed for planning. We
also propose and discuss a set of transformations on protocol insecurity
problems whose application has a dramatic effect on the size of the
propositional encoding obtained with our SAT-compilation technique.
We describe a model-checker for security protocols based on our ideas
and show that attacks to a set of well-known authentication protocols
are quickly found by state-of-the-art SAT solvers.

Keywords. Network security; Verification.

1 Introduction

Even under the assumption of perfect cryptography, the design of security proto-
cols is notoriously error-prone. As a consequence, a variety of different protocol
analysis techniques has been put forward [B4I8[T0/T2|T6]19/21122]. In this paper
we address the problem of translating protocol insecurity problems into proposi-
tional logic in a fully automatic way with the ultimate goal to build an automatic
model-checker for security protocols based on state-of-the-art SAT solvers. Our
approach combines a reduction of protocol insecurity problems to planning prob-
lems!] with well-known SAT-reduction techniques developed for planning. At the
core of our technique is a set of transformations whose application to the input
protocol insecurity problem has a dramatic effect on the size of the propositional
formulae obtained. We present a model-checker for security protocols based on
our ideas and show that—using our tool—attacks to a set of well-known authen-
tication protocols are quickly found by state-of-the-art SAT solvers.

* This work has been supported by the Information Society Technologies Programme,
FET Open Assessment Project “AVISS” (Automated Verification of Infinite State
Systems), IST-2000-26410.

! The idea of regarding security protocol analysis as a planning problem is not new.
To our knowledge it is also been proposed in [I.

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 210-225] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Automatic SAT-Compilation of Protocol Insecurity Problems 211

2 Security Protocols and Protocol Insecurity Problems

In this paper we concentrate our attention on error detection of authentication
protocols (see [7] for a survey). As a simple example consider the following one-
way authentication protocol:

(1) A—B: {Na}Kab
(2) B— A:{f(Na)}tr.,

where N, is a noncd? generated by Alice, K, is a symmetric key, f is a function
known to Alice and Bob, and {z}; denotes the result of encrypting text x with
key k. Successful execution of the protocol should convince Alice that she has
been talking with Bob, since only Bob could have formed the appropriate re-
sponse to the message issued in (1). In fact, Ivory can deceit Alice into believing
that she is talking with Bob whereas she is talking with her. This is achieved
by executing concurrently two sessions of the protocol and using messages from
one session to form messages in the other as illustrated by the following protocol
trace:

(1.1) A—I(B): {Na}x.,
(2.1) I(B) — A: {Nu}x,,
(2.2) A—I(B): {f(N)}x.,
(1.2) I(B) — A: {f(N)}o,

Alice starts the protocol with message (1.1). Ivory intercepts the message and
(pretending to be Bob) starts a second session with Alice by replaying the re-
ceived message—cf. step (2.1). Alice replies to this message with message (2.2).
But this is exactly the message Alice is waiting to receive in the first protocol
session. This allows Ivory to finish the first session by using it—cf. (1.2). At the
end of the above steps Alice believes she has been talking with Bob, but this is
obviously not the case.

A problem with the above rule-based notation to specify security protocols is
that it leaves implicit many important details such as the shared information and
how the principals should react to messages of an unexpected form. This kind
of description is therefore usually supplemented with explanations in natural
language which in our case explain that N, is a nonce generated by Alice, that
f is a function known to the honest participants, and that K, is a shared key.

To cope with the above difficulties and pave the way to the formal analy-
sis of security protocols a set of models and specification formalisms as well as
translators from high-level languages (similar to the one we used above to intro-
duce our example) into these formalisms have been put forward. For instance,
Casper [18] compiles high-level specifications into CSP, whereas CAPSL [5] and
the AVISS tool [2] compile high-level specifications into formalisms based on
multiset rewriting inspired by [6].

2 Nonces are numbers generated by principals that are intended to be used only once.

212 A. Armando and L. Compagna

2.1 The Model

We model the concurrent execution of a protocol by means of a state tran-
sition system. Following [16], we represent states by sets of atomic formulae
called facts and transitions by means of rewrite rules over sets of facts. For
the simple protocol above, facts are built out of a first-order sorted signa-
ture with sorts user, number, key|, func, text (super-sort of all the previous
sorts), int, session, nonceid, and 1ist_of| text. The constants 0, 1, and 2
(of sort int) denote protocols steps, 1 and 2 (of sort session) denote session
instances, a and b (of sort user) denote honest participants, kq, (of sort key)
denotes a symmetric key and na (of sort nonceid) is a nonce identifier. The
function symbol {_}_ : text x key — text denotes the encryption function,
f : number — func denotes the function known to the honest participants,
nc : nonceid X session — number, and s : session — session are nonce
and session constructors respectively. The predicate symbols are i of arity text,
fresh of arity number, m of arity int X user X user X text, and w of arity
int X user X user X list_of text X list_of text X session:

— i(t) means that the intruder knows ¢.

— fresh(n) means that n has not been used yet.

— m(j,s,r,t) means that principal s has (supposedly)ﬁ sent message t to prin-
cipal r at protocol step j.

— w(j, s,r, ak, ik, c) represents the state of execution of principal r at step j of
session ¢; in particular it means that r» knows the terms stored in the lists
ak (acquired knowledge) and ik (initial knowledge) at step j of session c,
and—if j # O0—also that a message from s to r is awaited for step j to be
executed.

Initial States. The initial state of the system isf

w(0,a, a,[],[a,b, kap], 1) « w(1,a,b,[], [b,a, kas], 1) (1)
= w(0,b,b,[], [b a, kap], 2) »w(1,b,a,[], [a, b, kas], 2) (2)
. fresh(nc(na, 1)) « fresh(ne(na, s(1))) (3)
. fresh(nc(na, 2)) « fresh(nc(na, s(2))) (4)
RORIO 5)

Facts () represent the initial state of principals a and b (as initiator and respon-
der, resp.) in session 1. Dually, facts (2] represent the initial state of principals
b and a (as responder and initiator, resp.) in session 2. Facts (B) and (@) state
the initial freshness of the nonces. Facts (&) represent the information initially
known by the intruder.

Rewrite rules over sets of facts are used to specify the transition system
evolves.

3 As we will see, since the intruder may fake other principals’ identity, the message
might have been sent by the intruder.

4 To improve readability we use the “.” operator as set constructor. For instance, we
write “z.y.2z” to denote the set {z,y, z}.

key
list_of

Automatic SAT-Compilation of Protocol Insecurity Problems 213

Protocol Rules. The following rewrite rule models the activity of sending the
first message:

w(0, A, A, [],[A, B, Kup), C) « fresh(nc(na, C)) L2 ECHon),

m(1, A, B,{nc(na,C)}k,,) - w(2, B, A, [nc(na,C)],[A, B, Ko, C) (6)
Notice that nonce ne(na, C) is added to the acquired knowledge of A for subse-
quent use. The receipt of the message and the reply of the responder is modeled
by:
m(l, A, B, {nC(IDv C]')}Kab)

. w(lvAan H? [BaAvKabLC)
m(2v Ba A’ {f(’l’LC(ID, Cl))}Kab)
»w(1, A, B,[],[B, A, Ku),s(C)) (7)

stepy(A,B,C,C1,K 43,1D)

The final step of the protocol is modeled by:

m(27 B7 A7 {f(nc(ID, Cl))}qu)

w(2,B, A, [nc(ID,C1)],[A, B, Ka),C)
'w(oaA,AvH’[AanKabLs(C)) (8)

stepy(A,B,C,C1,Kqp,1D)

Intruder Rules. There are also rules specifying the behavior of the intruder. In
particular the intruder is based on the model of Dolev and Yao [I1]. For instance,
the following rule models the ability of the intruder of diverting the information
exchanged by the honest participants:

m(J, 57 R, T) diwvert(J,R,S,T)

1(S) «i(R) . i(T) (9)
The ability of encrypting and decrypting messages is modeled by:

’L(T)) Z(K) encrypt(K,T)

i({T} k) +i(K)

i(T) - i(K) - i({T}k) (10)
et (K (T (11)
Finally, the intruder can send arbitrary messages possibly faking somebody else’s
identity in doing so:

i(T) vi(S) v i(R) L BST),

i(T) vi(S) . i(R)

(T).i(S) i(R)em(1,S,R,T) (12)

S0, D) i(5) i(R) . m(2, S, R T) (13)

Bad States. A security protocol is intended to enjoy a a specific security property.
In our example this property is the ability of authenticating Bob to Alice. A
security property can be specified by providing a set of “bad” states, i.e. states

214 A. Armando and L. Compagna

whose reachability implies a violation of the property. For instance, it is easy
to see that any state containing both w(0,a,a,[],[a, b, kap], s(1)) (i.e. Alice has
finished the first run of session 1) and w(1, a, b, [], [b, a, kap], 1) (i.e. Bob is still at
the beginning of session 1) witnesses a violation of the expected authentication
property of our simple protocol and therefore it should be considered as a bad
state.

2.2 Protocol Insecurity Problems

The above concepts can be recast into the concept of protocol insecurity problem.
A protocol insecurity problem is a tuple = = (S, L, R,Z, B) where S is a set of
atomic formulae of a sorted first-order language called facts, L is a set of function

symbols called rule labels, and R is a set of rewrite rules of the form L 4 R,
where L and R are finite subsets of S such that the variables occurring in R
occur also in L, and ¢ is an expression of the form I(x) where | € £ and x is the
vector of variables obtained by ordering lexicographically the variables occurring

in L. Let S be a state and (L 4 R) € R, if 0 is a substitution such that Lo C S,
then one possible next state of S is S” = (S'\ Lo) U Ro and we indicate this

with § <% S’. We assume the rewrite rules are deterministic ie. if § ~% S’
and S <% S”. then S’ = S”. The components Z and B of a protocol insecurity
problem are the initial state and a sets of states whose elements represent the bad
states of the protocol respectively. A solution to a protocol insecurity problem

Z (i.e. an attack to the protocol) is a sequence of states Si,...,S, such that
S; LN i+1 fori =1,...,n and Z = 57 , and there exists Sg € B such that
Sp C S,.

3 Automatic SAT-Compilation of Protocol Insecurity
Problems

Our proposed reduction of protocol insecurity problems to propositional logic is
carried out in two steps. Protocol insecurity problems are first translated into
planning problems which are in turn encoded into propositional formulae.

A planning problem is a tuple II = (F, A, Ops,I,G), where F and A are
disjoint sets of variable-free atomic formulae of a sorted first-order language
called fluents and actions respectively; Ops is a set of expressions of the form

op(Act, Pre, Add, Del)

where Act € A and Pre, Add, and Del are finite sets of fluents such that
Add N Del = @; I and G are boolean combinations of fluents representing the
initial state and the final states respectively. A state is represented by a set of
fluents. An action is applicable in a state S iff the action preconditions occur
in S and the application of the action leads to a new state obtained from S by
removing the fluents in Del and adding those in Add. A solution to a planning

Automatic SAT-Compilation of Protocol Insecurity Problems 215

problem II is a sequence of actions whose execution leads from the initial state
to a final state and the precondition of each action appears in the state to which
it applies. Note that several actions can apply at the same step.

3.1 Encoding Planning Problems into SAT

Let IT = (F, A,Ops, I,G) be a planning problem with finite F and A and let n
be a positive integer, then it is possible to build a set of propositional formulae
@Y%, such that any model of @7, corresponds to a partial-order plan of length
n which can be linearized into a solution of II. The encoding of a planning
problem into a set of SAT formulae can be done in a variety of ways (see [L713]
for a survey). The basic idea is to add an additional time-index to the actions
and fluents to indicate the state at which the action begins or the fluent holds.
Fluents are thus indexed by 0 through n and actions by 0 through n — 1. If p is
a fluent or an action and 7 is an index in the appropriate range, then i:p is the
corresponding time-indexed propositional variable.

The set of formulae 7, is the smallest set (intended conjunctively) such that:

— Initial State Axioms: 0:1 € ¢7;

Goal State Axioms: n:G € D;

Universal Axioms: for each op(a, Pre, Add, Del) € Ops and i =0,... ,n—
1:

(i:aD N{i:p | pe€ Pre}) € DY,
(i:a D AN{(E+1):p|pe Add}) € Y
(i:a D A{=(i+1):p|pé€ Del}) € D}

— Explanatory Frame Axioms: for all fluents f and ¢ =0,... ,n—1:

(t:fA=(E+1):f)D
\/{i:a | op(av, Pre, Add, Del) € Ops, f € Del} € &%

(mi:fAG+1):f) D
\/ {i:a | op(ax, Pre, Add, Del) € Ops, f € Add} € P}
— Conflict Exclusion Axioms: for i =0,... ,n—1:
S(iiag Nitag) € Py

for all a; # ag such that op(ay, Prey, Addy, Dely) € Ops, op(as, Preg, Adds,
Dely) € Ops, and Pre; N Dely # () or Pres N Dely # ().

It is immediate to see that the number of literals in &7, is in O(n|F|+n|Al). More-
over the number of clauses generated by the Universal Axioms is in O(nPy|.A|)
where Py is the maximal number of fluents mentioned in an operator (usually
a small number); the number of clauses generated by the Explanatory Frame
Axioms is in O(n|F|); finally, the number of clauses generated by the Conflict
Exclusion Axioms is in O(n|.AJ?).

216 A. Armando and L. Compagna

3.2 Protocol Insecurity Problems as Planning Problems

Given a protocol insecurity problem = = (S, £, R,Z, B), it is possible to build a
planning problem [Tz = (F=, A=,Ops=, I=,G=) such that each solution to IT=
can be translated back to a solution to Z: Fz= is the set of facts S; A= and Opsz=
are the smallest sets such that lo € Az and op({o, Lo, Ro \ Lo, Lo \ Ro) € Ops

for all (L iR R) € R and all ground substitutions o; finally Iz = A{f | f €
IIN~f 1 feS fgI}and Gz = Vg, N f | [€ S} For instance, the

actions associated to (6) are of the form:

Op(St@pl (A7 Ba Ca Kab)7
[UJ(O, A7 Aa Hy [A7 B7 KabL C)v

[m(l’ Aa B, {nc C)}Kab)a
w(2, B, A, [nc(na, C)], [4, B, Ku), C)],
[w(0,4, A,[],[A, B, Ku),C),

The reduction of protocol insecurity problems to planning problems paves the
way to an automatic SAT-compilation of protocol insecurity problems. However a
direct application of the approach (namely the reduction of a protocol insecurity
problem = to a planning problem ITz followed by a SAT-compilation of ITs)
is not immediately applicable. We therefore devised a set of optimizations and
constraints whose combined effects often succeed in drastically reducing the size
of the SAT instances.

3.3 Optimizations

Language specialization. We recall that for the reduction to propositional logic
described in Section Blto be applicable the set of fluents and actions must be
finite. Unfortunately, the protocol insecurity problems introduced in Section
have an infinite number of facts and rule instances, and therefore the correspond-
ing planning problems have an infinite number of fluents and actions. However
the language can be restricted to a finite one since the set of states reachable in
n steps is obviously finite (as long as the initial states comprise a finite number
of facts) To determine a finite language capable to express the reachable states,
it suffices to carry out a static analysis of the protocol insecurity problem.

To illustrate, let us consider again the simple protocol insecurity problem pre-
sented above and let n = 7, then ||int| = {0, 1,2}, |user| = {a,b}, ||iuser| =
{a,b, intruder}, |key|| = {kab}, |nonceid| = {na}, ||session| = [Y/*+!!
st(1) Uiﬁé(kﬂn 5%(2), where k is the number of protocol steps in a session

5 Notice that the system is finitely branching since the rules are finite and determin-
istic.

Automatic SAT-Compilation of Protocol Insecurity Problems 217

run (in this case ¥ = 2)f |number| = nc(nonceid,session), [func| =
U?;(} i(number), [text| = ||iuser||U|key| U |number||U|/func||U{func}key[l

Moreover, we can safely replace 1ist_of text with [text, text, text]. The
set of facts is then equal to i(text)Ufresh(number)Um(int, iuser, iuser, text)U
w(int,iuser,user,list_of text,list_of text,session) which consists of
1012 facts. This language is finite, but definitely too big for the practical ap-
plicability of the SAT encoding.

A closer look to the protocol reveals that the above language still contains
many spurious facts. In particular the m(...), w(...), and i(-) can be specialized
(e.g. by using specialized sorts to restrict the message terms to those messages
which are allowed by the protocol). By analyzing carefully the facts of the form
m(...) and w(...) occurring in the protocol rules of our example we can re-
strict the sort func in such a way that |[func|| = {f(number)} and replace
list_of text with [iuser, iuser, key]U [number]|. Thanks to this optimization,
the number of facts drops to 12, 620.

An other important language optimization borrowed from [15] splits mes-
sage terms containing pairs of messages such as m(j, s, 7, (msg1, msga)) (where
(.,-) is the pairing operator) into two message terms m(j,s,r,msg1,1) and
m(j, s,r,msga,2). (Due to the simplicity of the shown protocol, splitting mes-
sages has no impact on its language size.)

Fluent splitting. The second family of optimizations is based on the observation
that in w(y, s, r, ak, ik, c), the union of the first three arguments with the sixth
form a key (in the data base theory sense) for the relation. This allows us to
modify the language by replacing w(j, s, r, ak, ik, ¢) with the conjunction of two
new predicates, namely wk(j, s, r,ak,c) and inknw(j, s,r, ik, c). Similar consid-
erations (based on the observation that the initial knowledge of a principal r
does not depend on the protocol step j nor on principal s) allow us to sim-
plify inknw(j, s, r, ik, c) to inknw(r,ik,c). Another effective improvement stems
from the observation that ak and ik are lists. By using the set of new facts
wk (4, s,r,aky,1,¢),... ,wk(j,s,r ak;, 1, c) in place of wk(j,s,r, [ak1,... ,aki],c)
the number of wk terms drops from O(|text|') to O(l|text|) In the usual sim-
ple example the application of fluent splitting reduces the number of facts to
1,988.

Exploiting static fluents. The previous optimization enables a new one. Since
the initial knowledge of the honest principal does not change as the protocol
execution makes progress, facts of the form inknw(r, ik, ¢) occurring in the initial
state are preserved in all the reachable states and those not occurring in the
initial state will not be introduced. In the corresponding planning problem, this

5 The bound on the number of steps implies a bound on the maximum number of
possible session repetitions.

TIf S1,...,Sm and S’ are sorts and f is a function symbol of arity Si,...,Sm — S,
then || S;|| is the set of terms of sort S; and f(S1,... ,Sm) denotes { f(¢t1,... ,tm) | ti €
1Si|l, i =1,...,m}.

8 If S is a sort, then |S| is the cardinality of ||S]|.

218 A. Armando and L. Compagna

means that all the atoms ¢ : inknw(r, ik, c¢) can be replaced by inknw(r,ik,c)
for i =0,...,n — 1 thereby reducing the number of propositional letters in the
encoding. Moreover, since the initial state is unique, this transformation enables
an off-line partial instantiation of the actions and therefore a simplification of
the propositional formula.

Reducing the number of Conflict Fxclusion Axioms. A critical issue in the propo-
sitional encoding technique described in Section [3.1]is the quadratic growth of
the number of Conflict Exclusion Axioms in the number of actions. This fact
often confines the applicability of the method to problems with a small number
of actions. A way to lessen this difficulty is to reduce the number of conflicting
axioms by considering the intruder knowledge as monotonic. Let f be a fact,
S and S’ be states, then we say that f is monotonic iff for all S if f € S and
S — S’ then f € S’. Since a monotonic fluent never appears in the delete list of
some action, then it cannot be a cause of a conflict. The idea here is to transform
the rules so to make the facts of the form i(-) monotonic. The transformation on
the rules is very simple as it amounts to adding the monotonic facts occurring
in the left hand side of the rule to its right hand side. A consequence is that a
monotonic fact simplifies the Explanatory Frame Axioms relative to it. The nice
effect of this transformation is that the number of Conflict Exclusion Axioms
generated by the associated planning problems drops dramatically.

Impersonate. The observation that most of the messages generated by the in-
truder by means of (IZ) and (I3) are rejected by the receiver as non-expected
or ill-formed suggests to restrict these rules so that the intruder sends only mes-
sages matching the patterns expected by the receiver. For each protocol rule of
the form:

com(Gos,rt) o w(js rakik) stepi()

we use a new rule of the form:

coew(d, s, rak, ik, c) vi(s) Li(r) ci(t) ...

impersonate,(...)

coam(gy s, t') cw(g, s, ryak, ik, c) wi(s) vi(r) s i(t)

This rule states that if agent 7 is waiting for a message ¢ from s and the intruder
knows a term ¢’ matching ¢, then the intruder can impersonate s and send ¢'. This
optimization (borrowed from [16]) often reduces the number of rule instances in
a dramatic way. In our example, this optimization step allows us to trade all the
1152 instances of (2 and (I3]) with 120 new rules.

It is easy to see that this transformation is correct as it preserves the existing
attacks and does not introduce new ones.

Step compression. A very effective optimization, called step compression has
been proposed in [9]. It consists of the idea of merging intruder with protocol
rules. In particular, an impersonate rule:

Automatic SAT-Compilation of Protocol Insecurity Problems 219

w(i, T1, Ta, T3, T4, Ts) « 1(21) « 3(T2) « i (T6) impersonate;(-..)

m(i, 21,2, x6) » w(i, T1, T2, T3, Ta, T5) « 1(x1) + i(z2) « i(xg) (14)

a generic protocol step rule:

. . step; (...)
w(zayhy%yi’n 11473/5) . m(Za y17y2796) -

w(J, Y15 Y2, Y7, Ya Ys) » m(i + 1, y2,y1,98) (15)
and a divert rule:

diverti+1(...)
_— 5

m(i + 1,21, 29,23) i(z1) + i(z2) .« i(z3) (16)

can be replaced by the following rule:

w(i, z1, Ta, T3, 24, 25)0 « 1(21)0 i(z2)0 i(x6)0 step-compy(-+1)7,

U)(j, Y1,Y2,Y7, Ya, 95)‘7 . Z.(Zl)o- . i(ZQ)O' . i(Z3)O'

where 0 = 01009 with 01 = mgu({w(i, x1, x2, 23, x4, 25) = w(i, y1, Y2, Y3, Y4, ¥s5),
m(i, x1, 22, x6) = m(i,y1,Y2,96)}) and oo = mgu({m(i + 1,y2,y1,ys) = m(i +
1, 21,22, Z3)})

The rationale of this optimization is that we can safely restrict our attention
to computation paths where (I4)), (I5), and (IB) are executed in this sequence
without any interleaved action in between.

By applying this optimization we reduce both the number of facts (note that
the facts of the form m(...) are no longer needed) and the number of rules
as well as the number of steps necessary to find the attacks. For instance, by
using this optimization the partial-order plan corresponding to the attack to the
NSPK protocol has length 7 whereas if this optimization is disabled the length
is 10, the numbers of facts decreases from 820 to 505, and the number of rules
from 604 to 313.

3.4 Bounds and Constraints

In some cases in order to get encodings of reasonable size, we must supplement
the above attack-preserving optimizations with the following bounding tech-
niques and constraints. Even if by applying them we may loose some attacks, in
our experience (cf. Section H) this rarely occurs in practice.

Bounding the number of session runs. Let n and k be the bounds in the number
of operation applications and in the number of protocol steps characterizing a
protocol session respectively. Then the maximum number of times a session can
be repeated is [n/(k+1)]. Our experience indicates that attacks usually require
a number of session repetitions that is less than [n/(k+1)]. As a matter of fact
two session repetitions are sufficient to find attacks to all the protocols we have
analyzed so far. By using this optimization we can reduce the cardinality of the
sort session (in the case of the NSPK protocol, we reduce it by a factor 1.5)
and therefore the number of facts that depend on it.

220 A. Armando and L. Compagna

Multiplicity of fresh terms. The number of fresh terms needed to find an attack
is usually less than the number of fresh terms available. As a consequence, a
lot of fresh terms allowed by the language associated with the protocol are not
used, and many facts depending on them are allowed, but also not used. Often,
one single fresh term for each fresh term identifier is sufficient for finding the
attack. For instance the simple example shown above has the only fresh term
identifier na and to use the only nonce nc(na,1) is enough to detect the attack.
Therefore, the basic idea of this constraint is to restrict the number of fresh terms
available, thereby reducing the size of the language. For example, application
of this constraint to the analysis of the NSPK protocol protocol preserves the
detection of the attack and reduces the numbers of facts and rules from 313 to
87 and from 604 to 54 respectively. Notice that for some protocols such as the
Andrew protocol the multiplicity of fresh terms is necessary to detect the attack.

Constraining the rule variables. This constraint is best illustrated by considering
the Kao-Chow protocol (see e.g. [7]):

(1) A—-S:A BN,

(2) S— B:{A,B,Ny, Kap} Kas,{A, B, Nu, Kap } Kps
(3) B— A:{A,B,Ny, Kap}Kas,{Na}Kap, Ny

(4) A— B:{Ny}Kap

During the step (2) S sends B a pair of messages of which only the second
component is accessible to B. Since B does not know K, then B cannot check
that the occurrence of A in the first component is equal to that inside the
second. As a matter of fact, we might have different terms at those positions.
The constraint amounts to imposing that the occurrences of A (as well as of B,
N,, and Kgp) in the first and in the second part of the message must coincide.
Thus, messages of the form {a, b, nc(na, s(1))}kas, {a, b, nc(nd, s(1)) }kbs would
be ruled out by the constraint. The application of this constraint allows us
to get a feasible encoding of the Kao-Chow protocols in reasonable time. For
instance, with this constraint disabled the encoding of the Kao Chow Repeated
Authentication 1 requires more than 1 hour, otherwise it requires 16.34 seconds.

4 Implementation and Computer Experiments

We have implemented the above ideas in SATMC, a SAT-based Model-Checker
for security protocol analysis. Given a protocol insecurity problem = a bound
on the length of partial-order plan n, and a set of parameters specifying which
bounds and constraints must be enabled (cf. Section B4)), SATMC first applies
the optimizing transformations previously described to = and obtains a new pro-
tocol insecurity problem =’, then =’ is translated into a corresponding planning
problem IT=/ which is in turn compiled into SAT using the methodology outlined
in Section Bl The propositional formula is then fed to a state-of-the-art SAT
solver (currently Chaff [20], SIM [I4], and SATO [23] are supported) and any

Automatic SAT-Compilation of Protocol Insecurity Problems 221

model found by the solver is translated back into an attack which is reported to
the user.

SATMC is one of the back-ends of the AVISS tool [2]. Using this tool, the
user can specify a protocol and the security properties to be checked using a
high-level specification language and the tool translates the specification in an
Intermediate Format (IF) based on multiset rewriting. The notion of protocol
insecurity problem given in this paper is inspired by the Intermediate Format.
Some of the features supported by the IF (e.g. public and private keys, compound
keys as well as other security properties such as authentication and secrecy) have
been neglected in this paper for the lack of space. However, they are supported
by SATMC.

We have run our tool against a selection of problems drawn from [7]. The
results of our experiments are reported in Table[I] and they are obtained by ap-
plying all the previously described optimizations, by setting n = 10, by imposing
two session runs for session, by allowing multiple fresh terms, and by constrain-
ing the rule variables. For each protocol we give the kind of the attack found
(Att), the number of propositional variables (Atoms) and clauses (Clauses), and
the time spent to generate the SAT formula (EncT) as well as the time spent
by Chaff to solve the corresponding SAT instance (ST). The label MO indicates
a failure to analyze the protocol due to memory-outl] It is important to point
out that for the experiments we found it convenient to disable the generation of
Conflict Exclusion Axioms during the generation of the propositional encoding.
Of course, by doing this, we are no longer guaranteed that the solutions found
are linearizable and hence executable. SATMC therefore performs a check on any
partial order plan found and if any conflict is detected, then clauses negating
those conflicts are added to the propositional formula and the resulting formula
is fed to again to the SAT-solver. This procedure is repeated until a solution
without conflicts is found or no other models are found by the SAT solver.

The experiments show that the SAT solving activity is carried out very
quickly and that the overall time is dominated by the SAT encoding.

5 Related Work

Since our technique is tailored to error-detection of security protocols we compare
it with the most relevant techniques performing the same functionality.

The idea of regarding security protocols as planning problems is not new. In
[1], it has been proposed an executable planning specification language ALgp
for representing security protocols and checking the possibility of attacks via a
model finder for logic programs with stable model semantics. Compared to this
approach SATMC performs better (at least on the available results) and can
readily exploit improvements of state-of-the-art SAT solvers.

9 Times have been obtained on a PC with a 1.4 GHz Processor and 512 MB of RAM.
Due to a limitation of SICStus Prolog the SAT-based model-checker is bound to use
128 MB during the encoding generation.

222 A. Armando and L. Compagna

Table 1. Performance of SATMC

lProtocol ‘ Att‘ Atoms‘ Clauses‘ EncT‘ ST‘
ISO symmetric key 1-pass unilateral auth. R 679 2,073 0.18{0.00
ISO symmetric key 2-pass mutual auth. R 1,970 7,382 0.43]0.01
Andrew Secure RPC Prot. R| 161,615|2,506,889| 80.57|2.65
ISO CCF 1-pass unilateral auth. R 649 2,033 0.17]0.00
ISO CCF 2-pass mutual auth. R 2,211 10,595 0.46|0.00
Needham-Schroeder Conventional Key RSTS| 126,505 370,449 29.25|0.39
Woo-Lam IT PS 7,988| 56,744 3.31{0.04
Woo-Lam Mutual Auth. PS| 771,934|4,133,390|1,024.00(7.95
Needham-Schroeder Signature prot. MM| 17,867| 59,911 3.77(0.05
Neuman Stubblebine rep. part RSTS| 39,579| 312,107| 15.17|0.21
Kehne Langendorfer Schoenwalder(rep.part)| PS - - MO| -
Kao Chow Rep. Auth., 1 RSTS| 50,703| 185,317| 16.34/0.17
Kao Chow Rep. Auth., 2 RSTS| 586,033/1,999,959| 339.70|2.11
Kao Chow Rep. Auth., 3 RSTS|1,100,428(6,367,574|1,288.00| MO
ISO public key 1-pass unilateral auth. R 1,161 3,835 0.32]0.00
ISO public key 2-pass mutual auth. R 4,165| 23,883 1.18]0.01
Needham-Schroeder Public Key MM 9,318| 47,474 1.77|0.05
Needham-Schroeder Public Key with server | MM| 11,339| 67,056 4.29|0.04
SPLICE/AS Auth. Prot. R| 15,622| 69,226 5.48(0.05
Encrypted Key Exchange PS| 121,868|1,500,317| 75.39(1.78
Davis Swick Private Key Certificates, 1 R 8,036| 25,372 1.37(0.02
Davis Swick Private Key Certificates, 2 R| 12,123 47,149 2.68(0.03
Davis Swick Private Key Certificates, 3 R| 10,606| 27,680 1.50(0.02
Davis Swick Private Key Certificates, 4 R| 27,757 96,482 8.18]0.13

Legenda: R: Replay
PS: Parallel-session
RSTS: Replay attack based on a Short-Term Secret
MM: Man-in-the-middle attack
MO: Memory Out

Gavin Lowe and his group at the University of Leicester (UK) have analyzed
the Clark/Jacob library [7] using Casper/FDR2 [12]. This approach has been
very successful for discovering new flaws in protocols. However, Casper/FDR2
limits the size of messages that are sent in the network.

The recently proposed Athena approach [22] combines model checking and
theorem proving techniques with the strand space model to reduce the search
space and automatically prove the correctness of or find an attack on security
protocols (when it terminates). However, Athena does not support non-atomic
keys, which is a real drawback for analyzing e-commerce protocols. A comparison
in term of performance is left for the future work.

We conclude this overview of relevant related work by mentioning that
SATMC is one of the back-ends of the AVISS tool and that in the context

Automatic SAT-Compilation of Protocol Insecurity Problems 223

of that work we have performed a thorough comparison between the back-ends
currently integrated in it. The On-the-Fly Model-Checker (OFMC) performs
uniformly well on all the Clark/Jacob library. However, it is interesting to ob-
serve that in many cases the time spent by the SAT solver is equal to or smaller
than the time spent by OFMC for the same protocol. The Constraint-Logic-
based model-checker (CL) performs better of SATMC in terms of effectiveness
as it can find type-flaw attacks (as well as OFMC). However, the overall timing
of SATMC is better than that of CL. Detailed results about these experiments
can be found in [2].

6 Conclusions and Perspectives

We have proposed an approach to the translation of protocol insecurity problems
into propositional logic based on the combination of a reduction to planning and
well-known SAT-reduction techniques developed for planning. Moreover, we have
introduced a set of optimizing transformations whose application to the input
protocol insecurity problem drastically reduces the size of the corresponding
propositional encoding. We have presented SATMC, a model-checker based on
our ideas, and shown that attacks to a set of well-known authentication protocols
are quickly found by state-of-the-art SAT solvers.

Since the time spent by SAT solver is largely dominated by the time needed
to generate the propositional encoding, in the future we plan to keep working
on ways to reduce the latter. Preliminary results seem to indicate that the ap-
plication of propositional simplification techniques can reduce dramatically the
dimension of the propositional formula of several orders of magnitude. For in-
stance, by applying unit propagation to the SAT formula generated for the Kao
Chow Rep. Auth., 3 protocol (see Table [I)) we obtain an equivalent proposi-
tional formula with only 978 propositional variables and 5,093 clauses. Another
promising approach amounts to treating properties of cryptographic operations
as invariants. Currently these properties are modelled as rewrite rules (cf. rule
(@) in Section XT)) and this has a bad impact on the size of the final encoding.
A more natural way to deal with these properties amounts to building them
into the encoding but this requires, among other things, a modification of the
explanatory frame axioms and hence more work (both theoretical and imple-
mentational) is needed to exploit this very promising transformation.

Finally, we would like to experiment SATMC against security problems with
partially defined initial states. Problems of this kind occur when the initial knowl-
edge of the principal in not completely defined or when the session instances are
partially defined. We conjecture that neither the size of the SAT encoding nor the
time spent by the SAT solver to check the SAT instances will be significantly
affected by this generalization. But this requires some changes in the current
implementation of SATMC and a thorough experimental analysis.

224

A. Armando and L. Compagna

References

10.

11.

12.

13.

14.

15.

16.

. Luigia Carlucci Aiello and Fabio Massacci. Verifying security protocols as planning

in logic programming. ACM Transactions on Computational Logic, 2(4):542-580,
October 2001.

A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Moeder-
sheim, M. Rusinowitch, M. Turuani, L. Vigano, and L. Vigneron. The AVISS
Security Protocols Analysis Tool. In 14th International Conference on Computer-
Aided Verification (CAV’02). 2002.

David Basin and Grit Denker. Maude versus haskell: an experimental comparison
in security protocol analysis. In Kokichi Futatsugi, editor, Electronic Notes in
Theoretical Computer Science, volume 36. Elsevier Science Publishers, 2001.

D. Bolignano. Towards the formal verification of electronic commerce protocols.
In Proceedings of the IEEE Computer Security Foundations Workshop, pages 133—
146. 1997.

Common Authentication Protocol Specification Language.

URL http://wuw.csl.sri.com/ " millen/capsl/.

Cervesato, Durgin, Mitchell, Lincoln, and Scedrov. Relating strands and multi-
set rewriting for security protocol analysis. In PCSFW: Proceedings of The 13th
Computer Security Foundations Workshop. IEEE Computer Society Press, 2000.
John Clark and Jeremy Jacob. A Survey of Authentication Protocol Literature:
Version 1.0, 17. Nov. 1997.

URL http://www.cs.york.ac.uk/~ jac/papers/drareview.ps.gz,

Ernie Cohen. TAPS: A first-order verifier for cryptographic protocols. In Pro-
ceedings of The 13th Computer Security Foundations Workshop. IEEE Computer
Society Press, 2000.

Sebastian Moedersheim David Basin and Luca Vigand. An on-the-fly model-
checker for security protocol analysis. forthcoming, 2002.

Grit Denker, Jonathan Millen, and Harald Ruel. The CAPSL Integrated Protocol
Environment. Technical Report SRI-CSL-2000-02, SRI International, Menlo Park,
CA, October 2000. Available at http://www.csl.sri.com/ millen/capsl/.
Danny Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols
using Casper and FDR. In Proceedings of the Workshop on Formal Methods and
Security Protocols. 1999.

Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld. Automatic SAT-
compilation of planning problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 1169-1177. Morgan Kauf-
mann Publishers, San Francisco, 1997.

Enrico Giunchiglia, Marco Maratea, Armando Tacchella, and Davide Zambonin.
Evaluating search heuristics and optimization techniques in propositional satisfia-
bility. In Rajeev Goré, Aleander Leitsch, and Tobias Nipkow, editors, Proceedings
of IJCAR’2001, pages 347-363. Springer-Verlag, 2001.

Mei Lin Hui and Gavin Lowe. Fault-preserving simplifying transformations for
security protocols. Journal of Computer Security, 9(1/2):3-46, 2001.

Florent Jacquemard, Michael Rusinowitch, and Laurent Vigneron. Compiling and
Verifying Security Protocols. In M. Parigot and A. Voronkov, editors, Proceedings
of LPAR 2000, LNCS 1955, pages 131-160. Springer-Verlag, Heidelberg, 2000.

http://www.csl.sri.com/~millen/capsl/
http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz
http://www.csl.sri.com/~millen/capsl/

17.

18.

19.

20.

21.

22.

23.

Automatic SAT-Compilation of Protocol Insecurity Problems 225

Henry Kautz, David McAllester, and Bart Selman. Encoding plans in propositional
logic. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors, KR’96:
Principles of Knowledge Representation and Reasoning, pages 374-384. Morgan
Kaufmann, San Francisco, California, 1996.

Gawin Lowe. Casper: a compiler for the analysis of security protocols. Journal of
Computer Security, 6(1):53-84, 1998. See also

http://www.mcs.le.ac.uk/ gl7/Security/Casper/.

Catherine Meadows. The NRL protocol analyzer: An overview. Journal of Logic
Programming, 26(2):113-131, 1996. See also
http://chacs.nrl.navy.mil/projects/crypto.html.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01). 2001.

L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1):85-128, 1998.

D. Song. Athena: A new efficient automatic checker for security protocol analysis.
In Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSEW
’99), pages 192-202. IEEE Computer Society Press, 1999.

H. Zhang. SATO: An efficient propositional prover. In William McCune, editor,
Proceedings of CADE 14, LNATI 1249, pages 272-275. Springer-Verlag, Heidelberg,
1997.

http://www.mcs.le.ac.uk/~gl7/Security/Casper/
http://chacs.nrl.navy.mil/projects/crypto.html

	Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning
	Introduction
	Security Protocols and Protocol Insecurity Problems
	The Model
	Protocol Insecurity Problems

	Automatic SAT-Compilation of Protocol Insecurity Problems
	Encoding Planning Problems into SAT
	Protocol Insecurity Problems as Planning Problems
	Optimizations
	Bounds and Constraints

	Implementation and Computer Experiments
	Related Work
	Conclusions and Perspectives
	References

