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Abstract. Traditional representations of graphs and their duals sug-
gest the requirement that the dual vertices be placed inside their corre-
sponding primal faces, and the edges of the dual graph cross only their
corresponding primal edges. We consider the problem of simultaneously
embedding a planar graph and its dual into a small integer grid such that
the edges are drawn as straight-line segments and the only crossings are
between primal-dual pairs of edges. We provide a linear-time algorithm
that simultaneously embeds a 3-connected planar graph and its dual on
a (2n−2)× (2n−2) integer grid, where n is the total number of vertices
in the graph and its dual. Furthermore our embedding algorithm satisfies
the two natural requirements mentioned above.
Key Words. Graph drawing, computational geometry, planar graphs,
planar embedding.

1 Introduction

In this paper we address the problem of simultaneously drawing a planar graph
and its dual on a small integer grid. The planar dual of an embedded planar graph
G is the graphG′ formed by placing a vertex inside each face ofG, and connecting
those vertices of G′ whose corresponding faces in G share an edge. Each vertex
in G′ has a corresponding primal face and each edge in G′ has a corresponding
primal edge in the original graph G. The traditional manual representations of
a graph and its dual, suggest two natural requirements. One requirement is that
we place a dual vertex inside its corresponding primal face and the other is that
we draw a dual edge so that it only crosses its corresponding primal edge. We
provide a linear-time algorithm that simultaneously draws a planar graph and
its dual using straight-line segments on the integer grid while satisfying these
two requirements.

Straight-line embedding a planar graph G on the grid, i.e., mapping the
vertices of G into a small integer grid such that each edge can be drawn as a
straight-line segment and that no crossings between edges are created, is a well-
studied graph drawing problem. The first solution to this problem was given by
Fraysseix, Pach and Pollack [5] who provided an algorithm that embeds a planar
graph on n vertices on the (2n− 4)× (n− 2) integer grid. Later, Schnyder [10]
developed another method that reduces the grid size to (n− 2)× (n− 2). Since
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then there have been many studies regarding different restrictions of the problem.
Harel and Sardas [6] provide an algorithm to embed a biconnected graph on a
(2n−4)×(n−2) grid without triangulating the graph initially. The algorithm of
Chrobak and Kant [3] embeds a 3-connected planar graph on a (n− 2)× (n− 2)
grid so that each face is convex. Miura, Nakano, and Nishizeki [9] further restrict
the graphs under consideration to be 4-connected and present an algorithm for
straight-line embedding of such graphs on a (⌈n/2⌉ − 1)× (⌊n/2⌋) grid.

Another related problem is that of simultaneously embedding more than one
planar graph. In particular, consider two planar graphs on the same set of ver-
tices: H1 = (V,E1) and H2 = (V,E2). We would like to embed H1 and H2

simultaneously so that the vertices in V are mapped on the integer grid and
each of H1 and H2 is realized with straight-line segments and no crossings. Sim-
ilarly, we would like to simultaneously embed two related graphs, not necessarily
on the same vertex set. Such simultaneous embedding would enhance the visual
comparison of two graphs. In this paper we address the related problem of em-
bedding a planar graph and its dual on a small grid. Previous researchers have
considered two versions of the problem.

In a paper dating back to 1963, Tutte [11] shows that there exists a simul-
taneous straight-line representation of a planar graph and its dual in which the
only intersections are between corresponding primal-dual edges. However, a dis-
advantage of this representation is that the area required by the algorithm can
be exponential in the number of vertices of the graph. Bern and Gilbert [1]
address a variation of the problem: finding suitable locations for dual vertices,
given a straight-line planar embedding of a planar graph, so that the edges of
the dual graph are also straight-line segments and cross only their corresponding
primal edges. They present a linear time algorithm for the problem in the case
of convex 4-sided faces and show that the problem is NP-hard for the case of
convex 5-sided faces.

In this paper we consider the problem of embedding a given planar graph G
and its dual graph simultaneously so that following conditions are met:

– The primal graph is drawn with straight-line segments without crossings.
– The dual graph is drawn with straight-line segments without crossings.
– Each dual vertex lies inside its primal face.
– A pair of edges cross if and only if the edges are a primal-dual pair.
– Both the primal and the dual vertices are on the (2n − 2) × (2n − 2) grid,

where n is the number of vertices in the primal and dual graphs.

In the next section we present a linear-time algorithm for this problem which
relies on finding a strictly convex drawing for fully quadrilateralated graphs.

2 Algorithm for Embedding a Graph and Its Dual

Let G1 be a 3-connected planar graph. We construct a new graph G2 that
combines information about both the planar graph G1 and its dual. For this
construction we make some changes in G1. We introduce a new vertex vi

′ cor-
responding to a face Fi

′ of G1, for all 1 ≤ i ≤ f , where f is the number of
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Fig. 1. 3-connected graph G1. The inserted dual vertices are shown as empty circles.
Dashed lines represent the inserted edges. To obtain G2 we remove the original edges
of G1 (drawn with solid lines).

faces of G1. We connect each newly added vertex vi
′ to each vertex vj of Fi

′

with a single new edge and delete all the edges that originally belonged to G1.
Fig. 1 shows a sample construction. We call the resulting planar graph G2 fully-
quadrilateralated(FQ), i.e., every face of G2 is a quadrilateral. Since the original
graph G1 is 3-connected, the resulting graph G2 is also 3-connected (proven
formally in [11]).

Observation: If we can embed the graph G2 on the grid so that each inner
face of G2 is strictly convex and the outer face of G2 lies on a strictly concave
quadrilateral, then we can embed the initial graph G1 and its dual so that we
meet all the problem requirements with the only exception that one edge of the
primal graph G1(or its dual) is drawn with one bend.

The requirement that the edges of the dual graph be straight and cross only
their corresponding primal edges is guaranteed by the strict convexity of the
quadrilateral faces. Let the outer face of the graph G2 be (u, v, w, w′), where
u,w are primal vertices and v, w′ are dual vertices, as shown in Fig. 1. The
exception arises from the fact that we need to draw (u,w) and (v, w′), while
both of these edges can not lie inside the quadrilateral (u, v, w, w′). In order to
get around this problem we embed the quadrilateral (u, v, w, w′) so that it is
strictly concave. This way only one bend for one of the edges (u,w) or (v, w′)
will be sufficient. As a result all the edges in the primal and the dual graph are
embedded as straight-lines, except for one edge. In fact, it is easy to choose the
exact edge we need (either from the primal or from the dual).
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Hence, the original problem can be transformed into a problem of straight-line
embedding an FQ-3-connected planar graph G on the grid so that each internal
face of G is strictly convex and the outer face of G lies on a strictly concave
quadrilateral. Note that this problem can be solved by the algorithm of Chrobak
et al. [2]. However, the area guaranteed by their algorithm is O(n3) × O(n3),
whereas our algorithm guarantees a drawing on the (2n − 2) × (2n − 2) grid,
which is stated in the main theorem in this paper:

Theorem 1. Given a 3-connected planar graph G1, we can embed G1 and its
dual on a (2n−2)×(2n−2) grid, where n is the number of vertices in G1 and its
dual, so that each dual vertex lies inside its primal face, each dual edge crosses
only its primal edge and every edge in the overall embedding is a straight-line
segment except for one edge which has a bend placed on the grid. Furthermore,
the running time of the algorithm is O(n).

2.1 Overview of the Algorithm

Given a 3-connected graph G1, we summarize our algorithm to simultaneously
embed G1 and its dual as follows:

• Find a topological embedding of G1 using [7].

• Apply the construction described above to find G2.

• Let G = G2, where G is an FQ-3-connected planar graph.

• Find a suitable canonical labeling of the vertices of G.

• Place the vertices of G on the grid one at a time using this ordering.

• Remove all the edges of G and draw the edges of G1 and its dual.

Note that our method works only for 3-connected graphs. A commonly used
technique for drawing a general planar graph is to embed the graph after fully
triangulating it by adding some extra edges and then to remove the extra edges
from the final embedding. Using the same idea, we could first fully triangulate
any given planar graph. Then after embedding the resulting 3-connected planar
graph and its dual, we could remove the extra edges that were inserted initially.
However, the problem with this approach is that after removing the extra edges
there could be faces with multiple dual vertices inside. Thus the issue of choos-
ing a suitable location for the duals of such faces remains unresolved. In fact,
depending on the drawing of that face, it could as well be the case that no suit-
able location for the dual exists [1]. In the rest of the paper we consider only
3-connected graphs.

2.2 The Canonical Labeling

We present the canonical labeling for the type of graphs under consideration. It
is a simple restriction of the canonical labeling of [8], which in turn is based on
the ordering defined in [5].

Let G be an FQ-3-connected planar graph with n vertices. Let (u, v, w, w′)
be the outer face of G s.t. u,w are primal vertices and v, w′ are dual vertices.
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Then there exists a mapping δ from the vertices of G onto vi, 1 ≤ i ≤ m such
that δ maps u and v to v1, w

′ to vm and satisfies the following invariants for
every 3 ≤ k ≤ m:

1. The subgraph Gk−1 ⊆ G, induced by the vertices labeled vi, 1 ≤ i ≤ k− 1 is
biconnected and the boundary of its exterior face is a cycle Ck−1 containing
the edge (u, v).

2. Either one vertex or two vertices can be labeled vk.
(a) Let z0 be the only vertex labeled vk. Then z0 belongs to the exterior face

of Gk−1, has at least two neighbors in Gk−1 and at least one neighbor
in G−Gk.

(b) Let z0, z1 be the two vertices labeled vk, where (z0, z1) is an edge in
G. Then z0, z1 belong to the outer face of Gk−1, each has exactly one
neighbor in Gk−1 and at least one neighbor in G−Gk.

Since G is FQ, all the faces created by adding vk, 3 ≤ k ≤ m, have to be
quadrilaterals, see Fig. 2.

Note that assigning the mappings onto v1 and vm as above provides us the
embedding where all the edges of both the primal and the dual graph are straight
except for one primal edge, (u,w), which has a bend. Alternatively assigning v
and w to map onto v1, and u to map onto vm would choose a dual edge, (v, w′),
to have a bend.

Lemma 1. Every FQ-3-connected planar graph has a canonical labeling as de-
fined above.

Kant [8] provides a linear-time algorithm to find a canonical labeling of a
general 3-connected planar graph. It is easy to see that the canonical labeling
definition of [8] when applied to FQ-3-connected planar graphs, gives us the
labeling defined above.

2.3 The Placement of the Vertices

The main idea behind most of the straight-line grid embedding algorithms is
to come up with a suitable ordering of the vertices and then place the vertices
one at a time using the given order, while making sure that the newly placed
vertex (or vertices) is (are) visible to all the neighbors. In order to realize this
last goal, at each step, a set of vertices are shifted to the right without affecting
the planarity of the drawing so far. Our placement algorithm is similar to the
algorithm of Chrobak and Kant [3], with some changes in the invariants that we
maintain to guarantee the visibility together with strict convexity of the faces.

Let the canonical labeling, δ, that maps the vertices of G onto v1, v2, ...vm be
defined as in the previous section. Let U(gi) denote the vertices under gi. U(gi)
should be shifted to the right whenever the vertex gi is shifted to the right. U(gi)
is initialized to {gi} for every vertex gi of G. Let δ(gi) = vi′ and δ(gj) = vj′ .
Then we define Low(gi, gj) = i if i′ < j′, Low(gi, gj) = j if j′ < i′. If i′ = j′ then
let Low(gi, gj) be the one that is placed to the left. Let x(gi), y(gi) respectively
denote the x and y coordinates of the vertex gi.
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k

u v

v  =z0

(b)

Gk−1 Gk−1

Fig. 2. a)Only one vertex, z0, is labeled vk b)Two vertices, z0 and z1 are labeled vk.

•Embed the First Quadrilateral Face: We start by placing the vertices mapped
onto v1 and v2. The ones that are mapped onto v1 are u and v. We place u at
(0, 0) and v at (3, 0). Note that two vertices should be mapped to v2. We place
the vertex that is mapped to v2 and that has an edge with u at (1, 1) and the
other at (2, 1).

Then, for every k, 3 ≤ k ≤ m, we do the following:

•Update U(gi): Let Ck−1 = (u = c1, c2, ..., cr = v). Let cp, cq ∈ Ck−1,
respectively be the first and the last neighbor of the vertex(vertices) mapped to
vk. If only one vertex, z0, is mapped to vk, we update U(cp), U(cq) and U(z0) as
follows:

Low(cp, cp+1) = p+ 1 =⇒ U(cp) = U(cp) ∪ U(cp+1)

Low(cq−2, cq−1) = q − 2 =⇒ U(cq) = U(cq) ∪ U(cq−1)

U(z0) = U(z0) ∪

Low(cq−2,cq−1)⋃

i=Low(cp,cp+1)+1

U(ci)

We do not change U(gi) if two vertices, z0 and z1, are mapped to vk.

•Shift to the right: We then perform the necessary shifting. We shift each
vertex gi ∈

⋃r

i=q U(ci) to the right by one if only one vertex is mapped to vk, by
two otherwise.

•Locate the New Vertices: Finally we locate the vertex(vertices) mapped to
vk on the grid. Let |vk| denote the number of vertices mapped to vk. Then we
have:
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Fig. 3. Possible degenerate cases. a)Type d1 b)Type d2 c)Type d3 d)Type d4

If cp has no neighbors in G−Gk

x(z0) = x(cp)
y(z0) = y(cq) + x(cq)− x(cp)− |vk|+ 1

otherwise
x(z0) = x(cp) + 1
y(z0) = y(cq) + x(cq)− x(cp)− |vk|

If |vk| = 2 define z1 also:
x(z1) = x(z0) + 1
y(z1) = y(z0)

Upto this step the algorithm is just a restriction of the one in [3] and it
guarantees the convex drawing of the faces. Then, in order to guarantee strict-
convexity, we note the following degenerate cases, see Fig. 3:

•Degeneracies: We check for the following:

If only one vertex, z0, is mapped to vk
(d1) If x(z0) = x(cp+1) = x(cp+2)

Shift each vertex gi ∈
⋃r

i=p+1 U(ci) to the right by one.
Perform the location calculation for z0 again.

(d2) If k < m and z0, cq, cq+1 are aligned and cq has no neighbors in G−Gk

Shift each vertex gi ∈
⋃r

i=q+1 U(ci) to the right by one.
If two vertices, z0 and z1 are mapped to vk
(d3) If y(z0) = y(z1) = y(cp)

Shift each vertex gi ∈
⋃r

i=q U(ci) to the right by one.
Perform the location calculation for z0 and z1 again.

(d4) If k < m and z1, cq, cq+1 are aligned and cq has no neighbors in G−Gk

Shift each vertex gi ∈
⋃r

i=q+1 U(ci) to the right by one.

2.4 Proof of Correctness

Lemma 2. Let Ck = (u = c1, c2, ..., cr = v) be the exterior face of Gk after the
kth placement step. Let α(cj , cj+1) denote the angle of the vector cjcj+1, for
1 ≤ j ≤ r − 1. The following holds for 2 ≤ k ≤ m− 1:

1. α(cj , cj+1) lies in [−45◦, arctan−1/2] ∪ {0} ∪ [45◦, 90◦]. It can not lie in
(−45◦, arctan−1/2] if cj has a neighbor in G−Gk.
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Fig. 4. The vertices pointed to by the arrows must lie in the indicated area. The
dashed lines are to indicate open boundaries that are not included in the area.

2. If cj ∈ Ck, cj /∈ {c1, cr} s.t. cj does not have a neighbor in G−Gk, then:
(a) If Low(cj−1, cj) = j − 1 then α(cj , cj+1) = 90◦ otherwise α(cj−1, cj) =

−45◦.
(b) If α(cj , cj+1) = 90◦ then α(cj−1, cj) 6= 90◦.
(c) If α(cj , cj+1) = −45◦ then α(cj−1, cj) 6= −45◦.

We provide the proof of the above lemma in the Appendix.

Preserving Planarity Let only one vertex, z0, be mapped to vk. If (z0, cj)
is an edge in Gk for some cj ∈ Ck−1, then the placement algorithm and the
previous lemma guarantees that −90 < α(z0, cj) < −45, for j 6= p, j 6= q.
Then no crossing is created between a new edge (z0, cj) and the edges of Ck−1.
Because such a crossing would imply that there exists j′ < j s.t. cj′ ∈ Ck and
α(cj′ , cj) < −45. But this is impossible by the first part of the above lemma.
The same idea applies to the case where |vk| = 2. Then the following corollary
holds:

Corollary 1. Insertion of the vertex(vertices) mapped to vk, at the kth place-
ment step, where 2 ≤ k ≤ m preserves planarity.

Strictly Convex Faces Let |vk| = 1 and z0 be the vertex mapped to vk.
Let Fj = (cj , cj+1, cj+2, z0) be a quadrilateral face created after the insertion of
z0. If Low(cj , cj+1) = j + 1, then by the previous lemma α(cj , cj+1) = −45◦.
Fig. 4(a) shows the area where z0 and cj+2 must lie. If Low(cj , cj+1) = j, then
α(cj+1, cj+2) = 90◦. Fig. 4(b) shows the area where z0 and cj+2 must lie in this
case. Both cases imply that Fj = (cj , cj+1, cj+2, z0) is strictly convex.

If |vk| = 2 and z0, z1 are mapped to vk, the placement algorithm requires
that cp must lie in the area shown in Fig. 4(c), which implies that the newly
created face is strictly convex. The following corollary holds:

Corollary 2. The newly created faces after the insertion of the vertex(vertices)
mapped to vk, at the kth placement step, where 2 ≤ k ≤ m, are strictly convex.

Shifting Preserves Planarity and Strictly Convex Faces The above discussion
shows that after the insertion of the vertex(vertices) at the kth placement step,
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no new edge crossing is created and all the newly added faces are strictly convex.
In order to complete the proof of correctness we only need to prove that the same
holds for shifting also:

Lemma 3. Let Ck = (u = c1, c2, ..., cr = v) be the exterior face of Gk after the
kth placement step, where 2 ≤ k < m. For any given j, where 1 ≤ j ≤ r, shifting
the vertices in

⋃r

i=j U(ci), to the right by s units preserves the planarity and the
strictly convex faces of Gk.

Proof Sketch: The claim holds trivially for k = 2. Assume it holds for k′ = k−1,
where 2 ≤ k′ < m− 1. We assume |vk| = 1. The case where |vk| = 2 is similar.
Let z0 be the vertex mapped to vk and cp, cq ∈ Ck−1, respectively be the first
and the last neighbor of z0in Gk−1.

If j ≤ p then by the inductive assumption the planarity of Gk−1 and the
strictly convex faces of Gk−1 are preserved. The faces introduced by z0 shifts
rigidly to the right, which, by the previous corollaries, implies that Gk is planar
and all its faces are strictly convex.

If j > q, then by the inductive assumption the planarity of Gk−1 and the
strictly convex faces are preserved. Since neither z0 nor any of its neighbors in
Gk−1 are shifted the lemma follows.

If shifting the newly inserted vertex z0, we inductively apply the shifting to
j′ = Low(cp, cp+1) + 1 in Gk−1. By the inductive assumption the planarity and
strictly convex faces are preserved for Gk−1. Since we applied a shifting starting
with j′ then, all the faces except the first one are shifted rigidly to the right,
which implies that those faces are strictly convex. Then the only problem could
arise with the leftmost face. If Low(cp, cp+1) = p, then cp+1, cp+2 and z0 are all
shifted to the right by the same amount. Since initially the face (cp, cp+1, cp+2, z0)
was strictly convex, it continues to be so after shifting those three vertices also.
In the case where Low(cp, cp+1) = p + 1, the only shifted vertices are z0 and
cp+2. Again shifting those two vertices does not change the property that the
face is convex.

If j = q, the situation is very similar to the previous case, except now the
only deformed face is the rightmost face, instead of the leftmost one. The same
idea applies to this case also, i.e., given that initially the face is strictly convex,
it remains to be so after shifting ⊓⊔

2.5 Grid Size

Lemma 4. The placement algorithm requires a grid of size at most (2n− 4)×
(2n− 4).

Proof Sketch: If no degeneracies are created then the exact grid size required
is (n− 1)× (n− 1). We show that each degenerate case can be associated with
a newly added quadrilateral face of G.

Degenerate case of type d1 is associated with the face (cp, cp+1, cp+2, z0).
Degenerate case of type d2 at some step k of the algorithm, is associated with
a face (z0, cq, cq+1, gi), where gi is a vertex that will be added at some step
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k′ > k of the algorithm. We know that such a face exists, since k < m, cq has
no neighbors in G − Gk and each face under consideration is a quadrilateral.
Similar argument holds for degenerate case of type d4. Finally degenerate case
of type d3 is associated with the face (cp, cq, z1, z0). Fig. 3 shows all four types
of degeneracies that can occur. Note that each quadrilateral face is associated
with at most one degeneracy.

Since an FQ graph G with n vertices has n − 3 inside faces, the placement
algorithm requires grid size of at most (2n− 4)× (2n− 4). ⊓⊔

Final Shifting Let (u, v, w, w′) be the outer face of G. The placement al-
gorithm and Lemma-2 imply that the outer face is the isosceles right triangle
△uvw′ and that w lies on the line segment (v, w′). We need to do one final
right shift to guarantee that the outer face (u, v, w, w′) lies on a strictly concave
quadrilateral. For this we just shift v to the right by one. As a result we can draw
the edge (v, w′) as a straight-line segment. In order to draw the edge (u,w), we
place a bend point at (x(w′)− 1, y(w′)+ 2), where x(w′) and y(w′), respectively
denote the x and y coordinates of the vertex w′. We connect the bend point
with u and w. Then the total area required is (2n−2)× (2n−2) and Theorem-1
follows.

3 Implementation

We have implemented our algorithm to visualize 3-connected planar graphs and
their duals. Finding a suitable canonical labeling takes linear time [8]. We make
use of the technique introduced by [4] to do the placement step. It is based on
the fact that storing relative x-coordinates of the previously embedded vertices
is sufficient at every step. Then the placement step also requires only linear time.
Overall, the algorithm runs in linear time. Fig. 5 shows the primal/dual drawing
we get for the dodecahedral graph and Fig. 6 shows the primal/dual drawing of
an arbitrary 3-connected planar graph.

4 Conclusion and Open Problems

We have shown how to embed a planar graph and its dual on a small grid so that
the embedding satisfies certain criteria. In particular, the dual vertices should be
placed inside their primal faces and the dual edges should cross only their primal
edges. We have provided a linear-time algorithm that finds a straight-line planar
embedding of a 3-connected planar graph and its dual on a (2n− 2)× (2n− 2)
grid such that the embedding satisfies the requirements.

The following open problems arise from this work. Is there a larger class of
planar graphs that allows for primal-dual embedding on a small grid, so that
the drawing requirements can be met? For what class of planar graphs can we
guarantee stronger results, such as perpendicular planar-dual crossing, i.e., one
in which the dual edges cross the primal edges at right angles. Finally, how can
we generalize the idea of simultaneous embedding of graphs not only for planar-
dual pairs, but to any given two planar graphs, so that the resulting embedding

10



Fig. 5. Dodecahedral graph and its dual representation. The blue vertices(edges) in the
primal/dual representation correspond to vertices(edges) of the primal graph, and the red
ones correspond to the ones of the dual.

of the graphs provides a nice representation and enhances the visual comparison
between the two?
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Fig. 6. An arbitrary 3-connected planar graph with 16 vertices and its dual representation.
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Appendix

Lemma 3. Let Ck = (u = c1, c2, ..., cr = v) be the exterior face of Gk after the
kth placement step. Let α(cj , cj+1) denote the angle of the vector cjcj+1, for
1 ≤ j ≤ r − 1. The following holds for 2 ≤ k ≤ m− 1:

1. α(cj , cj+1) lies in [−45◦, arctan−1/2] ∪ {0} ∪ [45◦, 90◦]. It can not lie in
(−45◦, arctan−1/2] if cj has a neighbor in G−Gk.

2. If cj ∈ Ck, cj /∈ {c1, cr} s.t. cj does not have a neighbor in G−Gk, then:
(a) If Low(cj−1, cj) = j − 1 then α(cj , cj+1) = 90◦ otherwise α(cj−1, cj) =

−45◦.
(b) If α(cj , cj+1) = 90◦ then α(cj−1, cj) 6= 90◦.
(c) If α(cj , cj+1) = −45◦ then α(cj−1, cj) 6= −45◦.

Proof:
Part−1. We prove (1) by induction on k. For k = 2, the lemma holds by the

placement of u = c1, w = c2 and v = c3. Assume (1) holds for k′ = k − 1 where
2 ≤ k′ < m− 1. Let cp, cq ∈ Ck−1, respectively be the first and the last neighbor
of the vertex(vertices) mapped to vk. If |vk| = 1 and z0 is the vertex mapped to
vk, the newly added edges on Ck, are (cp, z0) and (z0, cq). The lemma holds for
these edges by the placement algorithm. It holds for the rest of the edges of Ck,
except for (cq, cq+1), by induction. For (cq, cq+1), if z0, cq and cq+1 are aligned
and cq does not have a neighbor in G−Gk, the placement algorithm guarantees
that α(cq, cq+1) lies in (−45◦, arctan−1/2], otherwise it holds by induction. For
|vk| = 2, (1) holds trivially by the placement algorithm, for the new edges and
by induction for the rest.

Part− 2. The proof of (2) is similarly by induction on k. For k = 2, each of
u = c1, w = c2 and v = c3 have neighbors inG−Gk and the lemma holds trivially.
Assume (2) holds for k′ = k − 1 where 2 ≤ k′ < m− 1 and let cp, cq ∈ Ck−1 be
defined as before.

We assume |vk| = 1. The case where |vk| = 2 is similar. Let z0 be the
vertex mapped to vk. We need to prove that (2) holds for any cj ∈ Ck =
(c1, ..., cp, z0, cq, ..., cr). Since by the definition of canonical ordering, z0 has an
edge in G−Gk, (2) holds for cj = z0. It holds for cj ∈ {c1, ..., cp−1} by induction,
since we do not make any changes in the locations of the vertices in {c1, ..., cp}
after inserting z0. It also holds for cj ∈ {cq+2, ..., cr} by induction, since those
vertices are shifted by the same amount to the right after inserting z0. Then, we
just need to prove that it holds for any cj ∈ {cp, cq, cq+1}. We prove the cases
where cj does not have an edge in G − Gk, since otherwise the lemma holds
trivially.

For cj = cp, we can safely assume that cp−1 has at least one neighbor in
G − Gk. This is true, since otherwise both cp and cp−1 have no neighbors in
G − Gk. Because of the fact that G is fully quadrilateralated this implies that
k = m, which contradicts the initial assumption about k. Now if Low(cp−1, cp) =
p− 1 then (2a) holds trivially by the placement algorithm. If Low(cp−1, cp) = p,
then by the first part of the lemma α(cp−1, cp) lies in {−45◦, 0}∪ [45◦, 90◦]. The



placement algorithm guarantees that if Low(cp−1, cp) = p, then y(cp−1) > y(cp).
This implies α(cp−1, cp) = −45. The proof of (2b) is by contradiction. Assume
α(cp, z0) = 90◦ and α(cp−1, cp) = 90◦ which, by the placement algorithm, implies
that cp−1 doesn’t have any neighbors in G − Gk. Since both cp and cp−1 don’t
have any edges in G − Gk, k = m, which is a contradiction. (2c) holds by the
placement algorithm for cj = cp, since α(cp, z0) = 90◦.

For cj = cq, (2a), (2b) and (2c) hold by the placement algorithm.
For cj = cq+1, if cq and cq+1 are not aligned with z0 during the initial

placement, or cq has a neighbor in G−Gk, then cq and cq+1 are shifted the same
amount to the right. Then in this case, the lemma holds by induction. Note that
we are assuming that cq+1 doesn’t have a neighbor in G−Gk. Now assume that
after the initial placement all three are aligned and cq doesn’t have a neighbor in
G−Gk either. Since G is FQ, this implies k = m, which contradicts the initial
assumption about k. ⊓⊔
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