
Geometric Systems of Disjoint Representatives�
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Abstract. Consider a finite collection of subsets of a metric space and
ask for a system of representatives which are pairwise at a distance at
least q, where q is a parameter of the problem. In discrete spaces this gen-
eralizes the well known problem of distinct representatives, while in Eu-
clidean metrics the problem reduces to finding a system of disjoint balls.
This problem is closely related to practical applications like scheduling
or map labeling. We characterize the computational complexity of this
geometric problem for the cases of L1 and L2 metrics and dimensions
d = 1, 2. We show that for d = 1 the problem can be solved in polyno-
mial time, while for d = 2 we prove that it is NP-hard. Our NP-hardness
proof can be adjusted also for higher dimensions.

1 Introduction

Take a universe X and a family of its subsets M = {Mi| i ∈ I,Mi ⊆ X}.
The System of Distinct Representatives (SDR) for M selects from each Mi an
element, such that sets are represented by distinct elements. Such assignment
can be formally described by an injective mapping f : I → X satisfying the
property f(i) ∈Mi for all i ∈ I.

Observe that such system can be equivalently formulated as a matching in
bipartite graph, where vertices of the first block of the bi-partition correspond
to the elements of X, the other vertices stand for the setsMi and edges describe
the incidence relation.

The theory of Systems of Distinct Representatives is well known and very
important for discrete optimization problems. Namely, in the case when the
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family M and all its sets Mi are finite, the elegant Hall theorem [5] describes
necessary and sufficient conditions for the existence of an SDR, and if it exists
it can be found by a polynomial time algorithm (either the algorithm involving
augmenting paths or the matching algorithm of Edmonds [3]).

Though several generalizations of the concept have been studied, we believe
that the concept of distant representatives is new. We assume that the universe
X is equipped by a metric dist(a, b) and therefore we may ask for representatives
that are sufficiently spaced in X. More formally:

Definition 1. Given a parameter q > 0 and a family M = {Mi| i ∈ I} of sub-
sets of X, a mapping f : I → X is called a System of q-Distant Representatives
(Sq-DR) if

(1) f(i) ∈Mi for every i ∈ I,
(2) dist(f(i), f(j)) ≥ q for every i, j ∈ I, i 	= j.

The metric on the space X could be defined in several ways, for example:

– The trivial metric: For arbitrary universe X we set dist(a, b) = 0 if a = b,
and dist(a, b) = 1 otherwise.

– The integral metric: X = N, dist(a, b) = |a− b|.
– The graph metric: Take X = V (G) and set dist(a, b) to the length of the
shortest path connecting vertices a and b in a graph G.

– The plane Euclidean metric: X = R
2, distance is the length of the segment

joining the points a and b in the plane.
– The plane Manhattan distance is defined as the sum of coordinate differences
|ax − bx|+ |ay − by|. The universe X = R

2 as in the previous case.

Observe that in the case of trivial or integral or graph metric the System of
q-Distant Representatives is equivalent to System of Distinct Representatives as
far as q ≤ 1. This holds in slightly more general setting: Consider any universe
X equipped by any metric for which dist(a, b) ≥ 1 whenever a 	= b. Then for
q ≤ 1 the condition (2) merely says that f(i) 	= f(j), i.e., a System of q-Distant
Representatives is a System of Distinct Representatives. For this case any further
metric structure on X becomes irrelevant and in such a case an Sq-DR could be
found by a polynomial-time algorithm.

We address the computational complexity of the Sq-DR problem in [4] and
show several NP-hardness results, mainly for the discrete spaces. Some cases pro-
vide a natural counterpart to the results of Aharoni and Haxell [1] who studied
a more general concept of Systems of Disjoint Representatives on Hypergraphs.
Though they derive necessary and sufficient conditions for the existence of such
system on finite familiesM, the problem whether these conditions are satisfied
is still NP-hard as we show in [4].

The aim of this paper is to show that for unit balls in the Euclidean plane the
S1-DR problem is NP-hard for both Euclidean an Manhattan metrics. This is in
contrast with the complexity of the corresponding Sq-DR problem for balls in the
one dimensional Euclidean space, where it allows a polynomial-time algorithm.
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2 Systems of Distant Representatives
in the Euclidean Space

In this section we consider the case when the universe X is the d-dimensional
Euclidean space R

d equipped with the Lp metric for some fixed p. (The Lp
metric is defined by the formula: distLp(a, b) =

p

√∑d
j=1 |aj − bj |p). Clearly, the

collectionM consists of sets of points. If all sets Mi are finite, we can transform
such instance to a finite graph G (here vertices represent points, and pairs of
them are adjacent when the corresponding points are at distance less than q) and
look for 2-distant representatives in the graph metric. We omit for the moment
this case and focus our attention on infinite sets Mi, namely unit diameter balls
in R

d. From the computational complexity it is important that such infinite sets
can be described in constant space, e.g. by the coordinates of the centers of the
balls.

Observe that in any Lp metric, two points a and b are at distance smaller
than q, iff the two open balls of diameter q, one centered at a and the other
at b, intersect. The Sq-DR problem for closed unit balls in R

d then has a nice
geometric representation: replace each closed unit ball Mi ofM by an open ball
M ′i of diameter 1+q and ask, whether eachM ′i can be assigned as a representative
a ball of diameter q, completely placed insideM ′i , all these representatives being
pairwise disjoint. In the rest we use this representationM′ of the Sq-DR problem,
rather than the original collectionM. The reason is that in this representation
we do not need to operate with the underlying distance: all essential properties
are captured by the inclusion relation. A similar situation was considered for
finite sets by Aharoni and Haxell in [1].

It is clear that such problems can naturally arise in practical applications
like map labeling (for d = 2), where the sets Mi correspond to the possible
label placement, and the disjoint representatives of diameter q correspond to the
reserved places for labels. See [7,2] for hardness results on similar map labeling
problems.

The one-dimensional version of finding an Sq-DR for (unit) balls in R is
equal to the following scheduling problem: Let a set I of tasks be given. These
tasks require to be scheduled on one processor without preemption, such that
each task is processed for the same time (q) and within the predetermined time
bounds — the release date and the due date — that form intervals (ri, di) (Mi =
(ri + q

2 , di − q
2 )). The question is whether a feasible schedule exists.

Clearly, the polynomial-time algorithm solving the scheduling problem due
to Simons [8] provides also a solution for the Sq-DR problem on R with any Lp
metric (the parameter p is irrelevant in the one-dimensional Euclidean space).
We show in the next section that in the two-dimensional space (and hence in
higher dimensions as well) the problem becomes NP-hard for both the Euclidean
(L2) and the Manhattan (L1) metrics.
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3 Systems of Distant Representatives in the Plane

In the Euclidean metric, balls correspond to disks, while in the Manhattan metric
we get squares of diagonal length equal to the required diameter, and diagonals
are parallel with the coordinate axes. For convenience, in the case of the Man-
hattan metric we consider that the plane and all its objects are rotated by π

4
and scaled by the factor

√
2, hence all squares involved have side length 1 + q

(inM′) or q (the representatives), and squares are oriented in the usual way.

Theorem 1. The S1-DR problem is NP-hard for closed unit squares in the Man-
hattan metric.

Proof. We show a reduction from the planar 3-SAT problem, whose NP-comple-
teness was proved in [6]. An instance for this version of the satisfiability problem
consists of a formula Φ = (V,C) in the conjunctive normal form, where each
variable has one positive and two negative occurrences, each clause consists of
two or three literals, and the incidence graph G of Φ is planar. The graph G has
vertex set V (G) = V ∪ C and an edge (x, c) belongs to E(G) iff the clause c
contains x or ¬x as a literal.

The family M′ contains squares of side length 2. It can be split into three
parts: one part represents clauses, the next variables, and the third part are
connectors joining clause and variable gadgets together.

The three-literal clause gadget consists of two squares of the same placement.
It is clear, that only two of the four quadrants could be completely free whenever
an S1-DR exists. Similarly, for a clause with only two literals we use three squares
in the same position.

The variable gadget is schematically depicted in Fig. 1. The dashed lines
represent the unit grid in the plane. By black lines we depict 16 squares which
we call active, the bold lines indicate two squares at the same position. The
halftoned area cannot be used for a possible representative of an active square
— it is fully occupied e.g. by four squares at the same position (hence each of
them is represented by a different quadrant).

The important property of the variable gadget is, that if any S1-DR exists,
then either squares P1 and P2 or N1 and N2 will be partly occupied by the
representatives for the vertex gadget. For example, if neither P1 nor P2 is hit by
the representatives, then both N1 and N2 are, as depicted in Fig. 2. The small
squares are representatives for the active squares of the gadget, their numbering
corresponds to left-to-right ordering of the active squares from Fig. 1.

The connector gadget corresponds to a chain of squares. These squares are
grouped to triples and all squares in a triple have the same position (so Fig. 3
represents in fact 18 squares). Two consecutive triples in the chain share one
quadrant. If we select two quadrants at the ends of the chain, like A and B in
the figure, then at least one of them is fully occupied, if the chain has an S1-DR.

The collectionM′ contains for each clause c ∈ C a disjoint copy of the clause
gadget placed on a grid according to the planar drawing of G. Similarly we place
the variable gadgets for each variable x ∈ V . If a variable x occurs positively
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Fig. 1. Variable gadget.
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Fig. 2. S1-DR for the variable gadget corresponding to the truth assignment.
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Fig. 3. Connector gadget.

in a clause c, we include intoM′ a connector joining a unique quadrant of the
clause gadget representing c with a lower right quadrant of the square P1 related
to the variable gadget of x. We similarly use left corners of N1 and N2 for the
two (possible) occurrences of ¬x.

The placement of all these objects in the plane follows the planar drawing
of the graph G on the unit grid. All squares except those in the construction
of the variable gadget coincide with the grid, so the entire collectionM can be
constructed such that its size is polynomial in the size of the formula Φ.
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Assume that an S1-DR forM′ exists. No clause gadget cannot serve all its
literals by a free quadrant, hence at least one these literals is forced to fully
occupy the square P1 (for a positive literal) or some Ni (otherwise) of the corre-
sponding variable gadget. As it was mentioned above, it is impossible to occupy
both P1 and some Ni of the same gadget at the same time. Hence, we may de-
fine an assignment x = true if P1 is not occupied by the representatives for the
active squares of the variable gadget for x and we put x = false otherwise. Such
assignment is well defined and satisfies Φ.

The construction of an S1-DR from a truth assignment of Φ is then straight-
forward.

In the proof of Theorem 1 only few squares were placed out of the unit grid.
We show, that in the case if all unit squares respect the grid, than the problem
is solvable by a polynomial-time algorithm.

Corollary 1. For any q of form 1
k , k ∈ N it holds that the Sq-DR problem for

closed unit squares can be solved in polynomial time, if all sides of squares inM
coincide with the grid of span q.

Proof. If any Sq-DR exists, then shift all the representatives to the left&down-
most position. The resulting Sq-DR has the property that all representatives
coincide with the grid points.

Then we can without loss of generality restrict the universeX only to the grid
points and solve the problem by finding a System of Distinct Representatives.

We conclude this section by proving an analogous result for disks, i.e., for
the Euclidean metric.

Theorem 2. The S1-DR problem is NP-hard for unit disks in the Euclidean
metric.

Proof. The proof mimics the proof of the case of squares. We represent a planar
formula Φ by a collection of disks that are partitioned into clause and vari-
able gadgets, and connectors. As above we use the representation M′, where
representatives correspond to disks of diameter 1, while the disks in M′ have
diameter 2.

The first tool involved in the construction is the reserved halftoned area.
Observe that the four disks depicted in Fig. 4 a) allow an S1-DR only as the
four halftoned disks.

The connectors are depicted in Fig. 4 b). In no S1-DR of the connector
gadget both disks A and B may remain simultaneously empty. The vertex gadget
is illustrated in the part c). As in the previous proof, it is impossible to find
representatives for the vertex gadget where some Pi remains free together with
some Nj . Similarly, if the disk P1 remains empty, the corresponding variable will
be assigned the true value.

Finally, clause gadgets are shown in the section d). At least one of the three or
two, resp., dashed disks cannot be left free to saturate the adjacent connector’s
end.
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Fig. 4. Gadgets for the S1-DR problem on disks.

The entire discussion follows in the exactly same manner as in the case of
squares.

4 Conclusion

In higher dimensions, the construction of connectors and variable and clause
gadgets is similar as in the plane. We avoid it here due to space limitations and
a somewhat technical aspect of the argument.

We also believe that both above constructions can be adjusted for other
fixed values of q < 1. We present as an open problem what is the computational
complexity for the Sq-DR geometric problem with the Euclidean or Manhattan
metrics for q in the range (1,∞).

Finally, we believe that a uniform proof can be derived for the NP-hardness
of the Sq-DR problem for unit balls in the d-dimensional Euclidean space for all
Lp metrics (q > 0, d ≥ 2, p ≥ 1),

It also remains as an open question whether the Sq-DR problem for unit
balls belongs to the class NP. It is not straightforward to see whether the coor-
dinates of the representatives — if they exist — can be described and verified
in polynomial space and time.
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