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Abstract. The recent interest in three dimensional graph drawing has
been motivating studies on how to extend two dimensional techniques to
higher dimensions. A common approach for computing a 2D orthogonal
drawing of a graph separates the task of defining the shape of the drawing
from the task of computing its coordinates. First results towards finding
a three-dimensional counterpart of this approach are presented in [8)9],
where characterizations of orthogonal representations of paths and cycles
are studied. In this note we show that the known characterization for
cycles does not immediately extend to even seemingly simple graphs such
as theta graphs. A sufficient condition for recognizing three-dimensional
orthogonal representations of theta graphs is also presented.

1 Introduction

The recent interest in three-dimensional graph drawing has been motivating
studies on how to extend two dimensional techniques to 3D space. Work in this
direction includes extensions of simulated annealing techniques, spring embedder
techniques, and incremental techniques (see e.g., [BIS/ITI5]). However, while a
rich body of literature is devoted to three-dimensional orthogonal drawings, little
is known on the challenging task of extending to 3D the well-known topology-
shape-metrics approach [18].

In order to reach such an ambitious research target, a crucial step is to find
a three-dimensional counterpart of the well-known two-dimensional characteri-
zation of orthogonal representations (see, e.g. [I8I19]). More precisely, a solution
to the following problem has to be found.

Let G be a graph such that each edge is directed and labeled with a label
in the set {Up, Down, East, West, North, South}. Does a three-dimensional or-
thogonal drawing of G exist such that no two edges intersect and each edge has
a direction consistent with its associated label?

This question has been addressed by Di Battista et al. [7l89] for simple
classes of graphs, namely paths and cycles. The goal of this note is to shed
some more light on the above basic question. Namely, we show that the known
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characterization for cycles does not immediately extend to even seemingly simple
graphs such as theta graphs, that is, graphs composed by two nodes of degree
three and three disjoint paths, of length at least two, joining them. Also, we give a
sufficient condition for recognizing three-dimensional orthogonal representations
of theta graphs.

We remark that theta graphs have been studied extensively in the litera-
ture. For example, they arise in problems concerning graph planarity (see, e.g.,
[1J4]17]), graph bandwidth (see, e.g., [[2[1416]), and chromatic polynomials (see,
e.g., 2]).

2 Preliminaries

We assume familiarity with basic graph drawing terminology (see, e.g. [6]). A
direction label is a label in the set {U, D, E,W, N, S} specifying the directions
Up, Down, East, West, North, South, respectively. Three distinct labels are also
used to identify an octant of the reference system, which is assumed to be open.

Let e be an undirected edge of a graph whose end-vertices are u and v. We
use the term darts for the two possible orientations (u,v) and (v,u) of edge e.
A 8D shape graph v is an undirected labeled graph such that (i) each dart is
associated with one direction label; (ii) the two darts of the same edge have
opposite labels; and (iii) each label in the set {U, D, E, W, N, S} appears at least
once in .

A three dimensional orthogonal drawing of a graph is such that vertices are
mapped to grid points of an integer three dimensional grid and edges are seg-
ments along the integer grid lines connecting the end points. An intersection in
a three dimensional orthogonal drawing is a pair of edges that overlap in at least
a point that does not correspond to a common end-vertex.

A 3D shape graph ~ is simple if there exists an orthogonal drawing I" of
~ such that no two edges of I' intersect and each oriented edge satisfies the
direction constraint defined by the direction labels associated with its darts.
The simplicity testing problem for a 3D shape graph + is to decide whether ~ is
simple.

Obviously, if v is simple, no vertex of « has two entering (or leaving) darts
with the same label. For example, this implies that no vertex of v can have
degree greater than six. Also, we restrict our attention to the class of shape
graphs that do not have vertices of degree two whose entering darts are given
opposite direction labels, since it can be shown (we omit the details for the
sake of brevity) that each instance for which this property does not hold has an
equivalent instance in this class.

Let v be a 3D shape graph. A flat F' C 7y is a connected subgraph of - that
is maximal with respect to the property that in every orthogonal drawing with
the shape of ~ all edges in F' are co-planar. Observe that the labels of v come
from the union of two oppositely directed pairs of directions. Also, the definition
above extends the analogous definitions given in [7J8]9].
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Let m be a 3D shape path with vertices pi,pa,...,pr and suppose to walk
along 7 from p; to px. The label path of w, denoted by o, is the sequence of
labels associated with darts (p1,p2), .., (Pi; Pix1)s - - ->(PE—1, Pk ). Similarly, let
C be a 3D shape cycle with vertices p1,pa, ..., pr and suppose to walk along
C from p; to pr. The label cycle of C, denoted by o¢, is the sequence of label
associated with darts (p1,pa), -« -, (PisDit1), -« -5 (Pr—1,Dk), (PksD1)-

Given a label path or cycle o, a not necessarily consecutive subsequence
7 C o, where 7 consists of k elements, is a canonical sequence [98] provided
that: (i) 1 < k < 6; (ii) the labels of 7 are distinct; (iii) no flat of o contains
more than three labels of 7; and (iv) if a flat F' of o contains one or more labels
of 7, then 7 N F' form a consecutive subsequence of o.

The following basic result for paths is given in [9]:

Theorem 1. [9] Let w be a 3D shape path with vertices p1,pa,...,pr and let
o be the label path associated with the sequence of darts (p1,p2), - - -, (Pi,Pi+1),
ooy (Pk—1,pK)- Shape path m admits an intersection free orthogonal drawing with
p1 at the origin and py in the UNE octant if and only if o, contains a canonical
sequence of three labels in the set {U, N, E}.

A characterization of simple shape cycles is given in [§]:

Theorem 2. [§] A 3D shape cycle C' described by a sequence of direction labels
oc 1s simple if and only if it contains a canonical sequence of length siz.

A theta graph is a graph with two non adjacent nodes of degree three and
all other nodes of degree two [I3]. Thus, a theta graph consists of two nodes of
degree three and three disjoint paths, of length at least two, joining them. We
will call 3D theta shape a 3D shape for a theta graph.

In the following we will denote by p and ¢ the two degree-three nodes of a
theta shape. Also, given a shape path 7, from p to ¢, and a shape path m, from
q to p, we denote C; , the shape cycle obtained by joining 7, and m,. Observe
that given a theta shape, three paths 7, m,, and 7, and three cycles C; 4, C .,
and Cy ., are defined.

3 A Forbidden Theta Shape

In this section we show that the simplicity of the cycles composing a theta shape
does not imply the simplicity of the theta shape itself. We use the following
notation: given a shape path 7 (say DWUNE) we will denote by 7 (DWUNE
in the example) the shape path obtained by orienting each edge in the opposite
direction and changing its label with the opposite one (DWUNE = WSDEU).
Also, we will use a dot to denote a series composition of paths (for example
m = 7 - T3). Given two distinct vertices v and w of a shape path (shape
cycle, theta shape, respectively) ~, we say that v is Y with respect to w, where
Y € {U,D,E,W,N,S}, if in any drawing of ~, denoted II, and IT,, the two
planes orthogonal to Y containing v and w respectively, the two planes may be
joined by a segment oriented from II,, to IT, which has direction Y. Observe
that, if v is Y with respect to w, w is Y with respect to v.
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Fig. 1. (a) A not simple theta shape and (b) the definition of §(B, e, X).

Theorem 3. There exists a 3D shape graph that is not simple even if all its
induced cycles are simple.

Proof. Let 9 be the theta shape composed by the three paths: 1, = WNUED,
7o = DWUNE, and 73 = NUEN (see Fig. [[la). The three cycles C; 2, C1 3,
and (5 3 defined by ¥ are simple. Namely, we have:

Cip=WNUED -DWUNE =WNUEDWSDEU
Ci3=WNUED - NUEN =WNUEDSWDS
Co3=DWUNE - NUEN = DWUNESW DS

and each of them satisfies the hypotheses of Theorem [2. In fact, Cy > con-
tains, for example, the canonical sequence identified by the checked labels in the
sequence WNUEDW SDEU: (1,3 contains, for example, the canonical sequence
identified by the checked labels in the sequence W NUFEDSW DS; and (5,3 con-
tains, for example, the canonical sequence identified by the checked labels in the
sequence DWUNESW DS.

Suppose for a contradiction that ¥ is simple. Consider a non intersecting
orthogonal drawing I" of 9. Let o be the label path ENUENW from a to b.
By Theorem [I], since the only canonical sequences of length three contained in
o are of type NUW or NUE, then b is NUW or NUE with respect to a in each
non intersecting drawing of o. Let ¢’ be the label path NUEDW from a to
b. By Theorem [, since the only canonical sequences of length three contained
in ¢/ are of type NUE, NDE, or NDW, then b is NUE, NDE, or NDW with
respect to a in each non intersecting drawing of ¢’. Let ¢” be the label path
EDWUN from a to b. By Theorem [, since the only canonical sequences of
length three contained in ¢” are of type NUW, NDE, or NDW, then b is NUW,
NDE, or NDW with respect to a in each non intersecting drawing of o”’. We have
a contradiction, the three conditions above can not be simultaneously verified
and thus one intersection necessarily occurs.
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4 Triply Expanding Drawings

Let w1, mo, ..., m, be n shape paths starting from a common point p. Denote by
m; the number of edges of m;, and by e; 5, with h = 1,...,m;, the h-th edge
of m; starting from p. An expanding drawing of 7y, 7o, ..., 7, is a simple 3D
orthogonal drawing for which edges €1,m,, €2,ms,---,€n,m, can be replaced by
arbitrarily long segments without creating any intersection with the drawing.
The bounding boz of an expanding drawing is the bounding box of the drawing
when edges €1,m,,€2,my, - - - s €n,m, are removed. In [§] Di Battista et al. showed
the following sufficient condition for the existence of an expanding drawing of
two paths (doubly ezpanding drawing).

Theorem 4. [§] A shape path m with n edges admits a doubly expanding drawing
if it either comsists of exactly two edges or contains at least two flats.

A triply expanding drawing is an expanding drawing of three paths. The next
theorem extends Theorem H] to triply expanding drawings.

Theorem 5. Let 7, m,, and 7, be three shape paths starting from a common
point p. If the paths T - my, Ty - 7., and Ty, - T, consist of exactly two edges or
contain at least two flats, then my, my, and 7, admit a triply expanding drawing.

Due to space limitations we omit the proof of Theorem [l and refer to [10] the
interested reader. Roughly, the theorem can be proved by construction, after a
suitable case analysis, and by using the following lemma.

Lemma 1. A shape graph ~y that admits a three dimensional orthogonal drawing
such that no intersection occurs between two edges of the same flat is simple.

Proof. The statement can be proved by construction. Namely, given a three
dimensional orthogonal drawing I" such that no intersection occurs between two
edges of the same flat, an iterative process can be used to produce an orthogonal
drawing I’ without intersections. Consider an intersection between two edges e;
and e; that do not belong to the same flat. The following technique eliminates
the intersection, without introducing a new one. Consider a plane p common to
e1 and ey and a direction d orthogonal to p. Move one unit in the d direction
all the nodes in the open half-space determined by p and d, the end-points of
e1, and the end-points of all the edges of the flat F' of e; perpendicular to d, if
any. It can be shown that the obtained drawing is a 3D orthogonal drawing of ~,
that the intersection between e; and e, has been removed, and that no other
intersection has been introduced (see [10] for details).

By virtue of the preceding lemma, intersections occurring between edges (and
nodes) that do not share a flat can be neglected, assuming that they could be
easily eliminated in a post processing step.
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5 A Sufficient Condition for Theta Shapes Simplicity

Let © be a theta shape composed by three shape paths 71, 72, and 73 from point
p to point g. Let e;;, with 7 = 1,...,m;, the j-th edge of m;. In the following we
denote by I;; the label associated with e;; when directed according to ;. Recall
that when ; is reversed, as in C}, ; = 7}, - ;, the label associated with e;; is the
opposite of I;;, that is I;;.

Theorem 6. Let © be a theta shape composed by three shape paths w1, T, and
w3 from point p to point q. If for each m; there exist three edges e;1, €;2, and
ei3, such that for each pair of paths m; and 7, 1,5 =1,2,3, i # j, the siz labels
li1, Ui, lis, 571, ZTQ, and 173 form a canonical sequence T;; for the shape cycle
C;; = -7, then O is simple .

Proof. By using the canonicity of 71 2, 71 3, and 72 3, the following properties for
labels [;; can be verified:

1. The labels l;; of the same path are different, i.e., l;; # lix, 1,5,k = 1,2,3,
J# k. _

2. No two labels I;; of the same path are opposite, i.e., l;; # ik, 7,5,k = 1,2, 3,
J# k. _

3. No two labels [;; of different paths are opposite, i.e., l;; # Ik, %, 7, h, k =
1,2,3, i # h.

It follows that, for each ¢ = 1,2, 3, labels l;1 ;5 [;3 are a permutation of the same
three labels, one for each oppositely directed pair. We assume, without loss of
generality, that l;; € {U,N,E} with 4,5 = 1,2, 3.

The nine edges e;; (4,7 = 1,2,3) bound eight connected subgraphs of the
theta graph. We call G;; the subpath of m; from e;; to e;q1y, (i = 1,2,3,
j =1,2). Further, we call G, the subgraph composed by the three paths from p
to e;1 with ¢ = 1,2,3, and G, the subgraph composed by the three paths from
e;3 with ¢ =1,2,3 to q.

Observe that G; ;, with ¢ = 1,2,3, and j = 1,2 admits a doubly expanding
drawing. In fact, since the labels associated with e;; and e;(;41) are canonical, it
follows that, if they are not consecutive, they do not share a flat, and Theorem
applies. Also, observe that G, admits a triply expanding drawing. In fact, since,
for each pair 7, 7, e;1 and e;; are canonical in Cj j, it follows that, if they are not
consecutive, they do not share a flat, and Theorem [l applies. Analogously, G,
admits a triply expanding drawing.

We draw a doubly expanding drawing [ ; for each G; ;, with i =1,2,3, and
j =1,2.Theorem Hl Let L be the maximum length of a side of a bounding box
of the drawings obtained above. We draw a triply expanding drawing I}, of G),
and a triply expanding drawing I, of G,.

Now we show how to set the lengths A;;, 7,5 = 1,2, 3, of the part of each
edge e;; that is not contained in the bounding box of any expanding drawing,
since the actual lengths of the edges can be easily computed from it.

Denote by B, By, and B; j, with ¢ = 1,2,3 and j = 1, 2, the bounding boxes
of Iy, Iy, and I ;, respectively. Since edges e;1, with ¢ = 1,2, 3, have labels in
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{U, N, E}, there are three pairwise orthogonal sides of B, from which edges e;;
may come out. Denote by vp, the only point common to these sides. Denote by
vp, the point common to the analogous sides of B;. Place the drawings I, and
I’y in such a way that vp, has coordinates (—2L —1,—-2L —1,—-2L —1) and vp,
has coordinates (2L + 1,2L + 1,2L + 1).

Now we show how to add the drawing of I; ; and I o, for i = 1,2,3. Given a
bounding box B, an edge e protruding from it, and a direction label X orthogonal
to e, we denote by d(B,e, X) the distance of e from the side of B in the X
direction (see Figure [[lb). We determine \;;, with 4,5 = 1,2,3, by considering
the following equalities.

>\i,1 =4I + 2 + 5(Bq, eig,l“) — 5(B¢&81‘3, li1)+

+0(Bi 2, €2,li1) — 0(Bi.1,€i2,lin) (1)

>\i,2 =4L + 2 + 5(Bp, €1, 112) + 5(3(1,7813711-72)—
—0(Bi, €i1,liz) — 6(Bi 2, €3, li2) (2)

Xig =4L +2+6(Bp,ei1,liz) — 0(Bi1, €1, lis)+
+0(Bi1, €i2,liz) — 0(Bi 2, €2, 1i3) (3)

Now we show that no intersection between edges sharing a flat has been
introduced in the drawing. By Theorems @] and [ no intersection occurs in each
(doubly or triply) expanding drawing.

There is no intersection between two edges of the same m;. In fact, since
0 < 4(B;j,e,X) < L, and by equations 1, 2, and 3, each \;;, with 4,5 =1,2,3
is at least 2L 4 2 and each one of By, By, B; 1, and B; 5 is in a different octant.

Intersections between edges belonging to different paths involve edges that
do not share a flat, and thus, by Lemma [I, can be removed. Indeed, suppose
for a contradiction that e, and e, are two intersecting edges belonging to two
different paths 7, and 7, and that e, and e, are on the same flat F. Edges e,
and e, do not belong to the same expanding drawing, since otherwise they could
not intersect.

There must exist a path 7* joining e, and e, entirely contained in F', and
containing p or ¢. In 7* there can be at most three of the edges e;;, with i = z, y,
and j = 1,2, 3, since otherwise there would be more than three canonical labels
on the same flat for the cycle C,,,, contradicting the hypothesis that 7, , is
a canonical sequence. Since edges e;; in 7* are on the same flat F' and are
canonical, they are necessarily adjacent, and thus if they are consecutive they
are orthogonal with each other. If e, and e, coincide with two edges e;;, then they
can not intersect since they are parallel or adjacent and orthogonal. Otherwise,
since edges e;; are the only ones to transition between octants, then e, and e,
belong to two different octants and they can not intersect.
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