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3 Rényi Institute of the Hungarian Academy of Sciences,
H-1364 Budapest, P.O.B. 127, Hungary

tardos@renyi.hu
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Abstract. Let G be a geometric graph with n vertices, i.e., a graph
drawn in the plane with straight-line edges. It is shown that if G has no
self-intersecting path of length 3, then its number of edges is O(n logn).
This result is asymptotically tight. Analogous questions for curvilinear
drawings and for longer paths are also considered.

1 Introduction

A geometric graph is a graph drawn in the plane so that its vertices are points and
its edges are possibly crossing straight-line segments. We assume, for simplicity,
that the points are in general position, i.e., no three points are on a line and no
three edges pass through the same point. Topological graphs are defined similarly,
except that now the edges are not necessarily rectilinear; every edge can be
represented by an arbitrary continuous arc which does not pass through any
vertex different from its endpoints. Throughout this paper, we also assume that
any two edges have a finite number of common interior points and they properly
cross at each of them. Clearly, every geometric graph is also a topological graph.

Using this terminology, the fact that every planar graph with n vertices has
at most 3n − 6 edges can be rephrased as follows: any topological graph with n
vertices and more than 3n− 6 edges must have two edges that cross each other.
This result is tight even for geometric graphs.
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In the mid-sixties Avital and Hanani [AH66], Erdős, and Perles initiated,
later Kupitz [K79] and many others continued the systematic study of extremal
problems for geometric graphs. In particular, they proposed the following general
question. Let H be a so-called forbidden geometric configuration or a class of
forbidden configurations. For example, H may consist of k pairwise crossing
edges or may be the class of all configurations of k+1 edges, one of which crosses
all the others, etc.What is the maximum number of edges that a geometric graph
with n vertices can have without containing any forbidden subconfiguration? If
H consists of k = 2 (pairwise) crossing edges, then, according to the previous
paragraph, the answer is 3n − 6. For k = 3, this maximum is linear in n (see
[AAPPS97]), but for larger values of k the best known bound due to Valtr is only
O(n log n) [V98]. It is an exciting open problem to decide whether one can get
rid of the logarithmic factor here. If H is the class of all configurations consisting
of k+1 edges, one of which crosses all the others, then the maximum number of
edges is equal to (k + 2)(n − 3), provided that k = 1, 2, 3, and the maximum is
O(

√
kn) for large values of k (cf. [PT97]). For a survey of many similar results

in Geometric Graph Theory, consult [P99].
The above questions can also be regarded as geometric analogues of the

fundamental problem of Extremal Graph Theory [B78]: determine the maximum
number of edges of all K-free graphs on n vertices, i.e., all graphs which do not
contain a subgraph isomorphic to a fixed graph K. Denote this maximum by
ex(n,K).

In the present note, we consider the special instance of the above question
when H consists of all self-intersecting straight-line drawings of a fixed graph
K. In other words, what is the maximum number excr(n,K) of edges that a
geometric graph with n vertices can have, if it contains no self-intersecting copy
of K? Obviously, we have excr(n,K) ≥ ex(n,K), because if a graph contains no
copy of K, then it cannot contain a self-intersecting copy either. Therefore, if K
is not a bipartite graph, then excr(n,K) is quadratic in n. The question is more
exciting for bipartite planar graphs. What happens if K = Pk (or K = Ck), a
path (or a cycle) of (an even) length k? The case where K = C4 is discussed in
[PR02].

We analyze the case when K = P3. The corresponding graph property is a
relaxation of planarity: the geometric graphs satisfying the condition are allowed
to have two crossing edges, but if this is the case, no endpoint of one of these
edges can be joined to an endpoint of the other. Is it still true that the number
of edges of such geometric graphs is O(n)? The following theorem provides a
negative answer to this question.

Theorem 1. The maximum number of edges of a geometric graph with n ver-
tices, containing no self-intersecting path of length 3, satisfies

excr(n, P3) ≤ cn log n,

for a suitable constant c. Apart from the value of the constant, this bound cannot
be improved.



Geometric Graphs with No Self-intersecting Path of Length Three 297

The proof of this result (presented in three different versions in the next three
sections) applies to a slightly more general situation. Theorem 1 remains true for
topological graphs whose edges are continuous functions defined on subintervals
of the x-axis, i.e., every line perpendicular to the x-axis intersects each edge in
at most one point. The topological graphs satisfying this condition are usually
called x-monotone.

On the other hand, a construction in Section 3 shows that Theorem 1 cannot
be improved even for geometric graphs all of whose edges are crossed by a straight
line.

What happens if we drop the requirement of x-monotonicity? We do not have
any example of a topological graph with n vertices and more than constant times
n log n edges, in which every path of length 3 is simple, i.e., non-self-intersecting.
The best upper bound we have is the following.

Theorem 2. The maximum number of edges of a topological graph with n ver-
tices, containing no self-intersecting path of length 3, is O(n3/2).

As was pointed out by Tutte [T70], parity plays an important role in deter-
mining the possible crossing patterns between the edges of a topological graph.
This may well be a consequence of the Jordan Curve Theorem: every Jordan
arc connecting an interior point and an exterior point of a simple closed Jordan
curve must cross this curve an odd number of times. In particular, Tutte showed
that every topological graph with n vertices and more than 3n−6 edges has two
edges that not only cross each other, but (i) they cross an odd number of times,
and (ii) they do not share an endpoint. (See also [H34].)

This may suggest that Theorem 2 and perhaps any other bound of this type
can be sharpened as follows.

Theorem 3. The maximum number of edges of a topological graph with n ver-
tices, containing no path of length 3 whose first and last edges cross an odd
number of times, is O(n3/2).

In Section 5 we prove this stronger statement. Somewhat surprisingly (to the
authors), it turns out that this last result is asymptotically tight. More precisely,
in Section 6 we establish

Theorem 4. Let G be a bipartite graph on n vertices, containing no cycle of
length 4. Then G can be drawn in the plane as an x-monotone topological graph
with the property that any two edges belonging to a path of length 3 cross an even
number of times.

It is well known that there are C4-free bipartite graphs of n vertices and at
least constant times n3/2 edges (see e.g. [B78]).

In Section 7, we consider geometric and x-monotone topological graphs with
no self-intersecting path of length five. In this case, Theorem 9 provides a slightly
stronger bound on the number of edges than those obtained for graphs with no
self-intersecting P3. We do not believe that Theorem 9 is tight. However, a recent
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construction of Tardos [T02] shows that excr(n, Pk) is superlinear in n, for any
fixed value k ≥ 3.

In the final section, we discuss a few related results and open problems.

2 A Davenport-Schinzel Bound for Double Arrays

In this section, we discuss the special case of Theorem 1 when G is a bipartite
geometric (or x-monotone topological) graph, whose vertices are divided by the
y-axis into two classes, A and B, and all edges of G run between these classes.
We assume, for simplicity, that no two edges of G cross the y-axis at the same
point.

Let a1b1, a2b2, . . . , ambm be the edges of G listed from top to bottom, in the
order of their intersections with the y-axis, where ai ∈ A and bi ∈ B for every i.
Consider the corresponding double array (2× m matrix)

M =
(
a1 a2 . . . am

b1 b2 . . . bm

)

It is easy to verify that if G is a geometric graph (or an x-monotone topo-
logical graph) without any self-intersecting path of length three, then the corre-

sponding matrixM does not contain any submatrix of the form F1 =
(
u v u v
∗ x x ∗

)

or F2 =
( ∗ u u ∗
x y x y

)
, where u �= v, x �= y and ∗ stands for an unspecified entry

(see Fig. 1(a)).

u

y

u
y

x

(a) (b)

x

Fig. 1. (a) F2 is forbidden, (b) not necessarily forbidden if adjacent edges may cross

In what follows, we show that if a 2×m matrix M having at most n distinct
entries does not contain any forbidden submatrix of the above two types, then
its number of columns is O(n log n). Therefore, the number of edges of G is at
most O(n log n), as required by Theorem 1.
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If G is an x-monotone topological graph whose adjacent edges are allowed to
cross, and we only require that the first and last edges of every path of length
three must be disjoint, then the situation is slightly more complicated, because
M may contain submatrices of the above forms (see Fig. 1(b)). However, in this
case the following 2 × 6 submatrices are forbidden:

(
v ↔ u v u v ↔ u
∗ ∗ x x ∗ ∗

)
(1)

and ( ∗ ∗ u u ∗ ∗
y ↔ x y x y ↔ x

)
. (2)

Here the signs ↔ indicate that the order of the first two columns and the order
of the last two columns are not specified.

Theorem 5. Let M be a 2 × m matrix with at most n distinct entries, all of
whose columns are different. If M has no 2 × 6 submatrix of types (1) or (2),
then m ≤ 17n log2 n.

It follows from the construction at the end of Section 3, that the bound in
Theorem 5 is tight apart from the value of the constant. In fact, for any n there
exist a 2×m matrix with at most n distinct entries having neither F1 nor F2 as
a submatrix with m ≥ n log2 n/4.
Proof. We need some definitions. Let

M =
(
a1 a2 . . . am

b1 b2 . . . bm

)

For any 1 ≤ i ≤ m, we say that ai is a leftmost (or rightmost) entry if ak �= ai

for every k < i (or k > i, resp.). Accordingly, ai is called a second leftmost (or
second rightmost) entry if ak = ai for precisely one index k < i (or precisely one
index k > i, resp.). Analogous terms are used for the entries bi in the second
row of M .

A set of consecutive columns of M is called a block. A block is said to be pure
if all elements in the first row of the block are distinct and the same is true for
the elements in the second row.

Assume the columns of M are partitioned into l pure blocks. Consider now
two consecutive pure blocks, B1 andB2, consisting of the columns i+1, i+2, . . . , j
and j + 1, j + 2, . . . , k, resp., for some 0 ≤ i < j < k ≤ n. Suppose that there
is an element which appears in the first row of B1 as well as in the first row of
B2. That is, ap = aq for some i < p ≤ j and j < q ≤ k. We claim that either
bq is a leftmost, second leftmost or rightmost entry, or bp is a rightmost, second
rightmost or leftmost entry. Indeed, otherwise, using the fact that bq is neither a
leftmost nor a second leftmost entry, we obtain that there exists an index r ≤ i
such that br = bq. Since bq is not a rightmost entry, there is an index s > k such
that bs = bq. Similarly, in view of the fact that bp is neither a rightmost nor a
second rightmost entry, we can conclude that bs′ = bp for some s′ > k. Since
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bp is not leftmost, there is a r′ ≤ i such that br′ = bp. Observe that now the
columns r, r′ < p < q < s, s′ form a forbidden submatrix of type

( ∗ ∗ u u ∗ ∗
y ↔ x y x y ↔ x

)
,

a contradiction.
A symmetric argument shows that if bp = bq for some i < p ≤ j and j <

q ≤ k, then either aq is a leftmost, second leftmost or rightmost entry, or ap is a
rightmost, second rightmost or leftmost entry. Thus, if we delete from M (and
from its block decomposition) every column whose upper or lower element is a
leftmost, second leftmost, rightmost, or second rightmost entry, the union of the
remainders of any two consecutive blocks becomes pure.

There are at most n distinct entries, each may appear in the first row and in
the second row, so the number of deleted columns is at most 8n. The resulting
matrix M ′ can be decomposed into 
l/2� pure blocks. Repeating this process at
most 
log2 l� times, we end up with a matrix consisting of at least m−8n
log2 l�
columns that form a single pure block. Thus, we have

m − 8n
log2 l� ≤ n.

Applying the above procedure to the initial partition of M into l = m pure
blocks, each consisting of a single column, the upper bound follows. �

For many other Davenport-Schinzel type results for matrices, consult [FH92].
As we have pointed out before, the last theorem implies that every geometric

or x-monotone topological graph with n vertices and no path of length three
whose first and last edges cross each other, has at most constant times n log n
edges, provided that all of its edges can be stabbed by a line. Thus, we immedi-
ately obtain

Corollary 1. The maximum number of edges of an x-monotone topological
graph with n vertices, containing no path of length 3 whose first and last edges
cross, is O(n log2 n).

This result is slightly weaker than the bound in Theorem 1.

3 Proof of Theorem 1

We prove the following more general statement.

Theorem 6. Let G be an x-monotone topological graph of n vertices, which has
no self-intersecting path of length 3. Then G has at most constant times n log n
edges.

We assume without loss of generality that no two edges that share an end-
point cross each other. Otherwise, the two non-common endpoints of these edges
must be of degree 1 or 2, because G has no self-intersecting path of length 3. So
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we can delete these endpoints, and complete the argument by induction on the
number of vertices.

It will be convenient to use the following terminology. If a vertex v is the left
(resp. right) endpoint of an edge e, then e is said to be a right (resp. left) edge at
v. It follows from our assumption on adjacent edges that the left and the right
edges at a given vertex can be ordered from bottom to top.

Let e1 = vu1 and e2 = vu2 be two right edges at a vertex v such that the
x-coordinate of u1 is at most as large as the x-coordinate of u2. We define the
right triangle determined by them as the bounded closed region bounded by e1, a
segment of e2,, and a segment of the vertical line passing through u1. The vertex
v is called the apex of this triangle. Analogously, we can introduce the notion of
left triangle.

Construct a sequence of subgraphs G0, G1, G2, . . . of G, as follows. Let G0 =
G. If Gi has already been defined for some i, then let Gi+1 be the topological
graph obtained from Gi by deleting at each vertex the bottom 2 and the top 2
left and right edges (if they exist). We delete at most 8 edges per vertex.

Claim. For any k ≥ 0, every triangle determined by two edges of Gk contains at
least 2k pairwise different triangles of G.

Proof of Claim. By induction on k. Obviously, for k = 0, the claim is true,
because every triangle contains itself. Assume that the claim holds for k−1 (k >
0). Consider, e.g., a right triangle T in Gk, determined by the edges e1 = vu1 and
e2 = vu2, where the x-coordinate of u1 is at most as large as the x-coordinate
of u2. Suppose without loss of generality that e1 lies below e2. Using the fact
that e1 ∈ E(Gk), we obtain that at u1 there are at least two left edges f1, f2 ∈
E(Gk−1) which lie above e1. Both of these edges must be entirely contained in
T , otherwise we could find a self-intersecting path of length 3. Suppose that f1
lies below f2.

Let T1 and T2 denote the left triangles with apex u1, determined by e1 and
f1, and by f1 and f2, resp. Clearly, T1 and T2 both belong to Gk−1, and they
have disjoint interiors. By the induction hypothesis, both T1 and T2 contain
2k−1 pairwise different triangles. It follows that T contains 2k pairwise different
triangles, as required. �

Now we can easily complete the proof of Theorem 6. Since every triangle is
specified by a pair of edges meeting at its apex, the total number of different
triangles is at most n3. Hence, for k > 3 log2 n, the graph Gk cannot determine
any triangle, and its number of edges is smaller than n. On the other hand, we
have that |E(Gk)| ≥ |E(G0)| − 8kn. Therefore, |E(G)| = |E(G0)| ≤ 25n log2 n,
completing the proof of Theorem 6.

We close this section by showing that, up to the value of the constant c,
Theorem 1 (and hence Theorem 6, too) is best possible. Let n = 2k be fixed. We
will recursively construct a sequence of bipartite geometric graphs Gi = G

(k)
i ,

i = 1, 2, . . . , k, such that Gi has 2i vertices, (i + 1)2i−2 edges, and contains no
self-intersecting path of length 3. Furthermore, we will maintain the following
properties for every i.
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1. The vertices of Gi have distinct x-coordinates, which are all integers in the
closed intervals [−2k,−2k+2i −1] and [0, 2i −1]. Vertices with x-coordinates
in the first (resp. second) interval are called left (resp. right).

2. Every edge of Gi connects a left vertex to a right vertex, and hence it must
cross the vertical line (x = − 1

2 ).
3. The horizontal edges of Gi are of length 2k and form a perfect matching. If

two vertices of u, v ∈ V (Gi), are connected by a horizontal edge, than they
are said to form a pair.

4. For any vertex v of Gi, the order of the edges incident to v according to their
slopes coincides with the order according to the lengths of their projections
to the x-axis.

Let G1 consist of two vertices, (−2k, 0) and (0, 0), connected by an edge.
Obviously, this meets the requirements.

Assuming that we have already constructed Gi for some i, we show how to
obtain Gi+1. Let G′

i denote the translate of Gi by a vector (2i−1, Yi), where Yi

is a very large positive integer to be specified later. Let Gi+1 be the union of Gi

and G′
i, together with the following 2i−1 “new” edges: connect every left vertex

v ∈ V (Gi) to the right vertex v + (2k + 2i−1, Yi) ∈ V (G′
i), that is, to the right

vertex forming a pair with the translate of v. See Fig. 2.
Choose Yi so large that the slope of the new edges exceeds the slope of any

line induced by the points of Gi (or by the points of G′
i).

We have to check that Gi+1 has the required properties. We have |V (Gi+1)| =
2|V (G)| = 2i+1 and |E(Gi+1)| = 2|E(Gi)| + 2i−1 = (i + 2)2i−1. Properties 1,
2, 3 and 4 are all inherited from Gi. To see that property 4 is maintained, it is
sufficient to recall that both the slope and length of the x-projection of every
new edge between Gi and G′

i is larger than the corresponding values for the old
edges.

It remains to verify that Gi+1 does not contain a self-intersecting path of
length 3. Assume to the contrary that there is such a path P in Gi+1, and
denote its edges by e1 = uv, e2 = vw, and e3 = wz. Since Gi (and thus G′

i) does
not contain a self-intersecting path of length 3, at least one of these edges must
run between Gi and G′

i. Note that there cannot be two such edges, because all
edges of Gi+1 running between Gi and G′

i are parallel. It is also clear that e2 is
not such an edge.

Assume, without loss of generality, that e1 runs between Gi and G′
i, and that

we have u ∈ V (Gi) and v ∈ V (G′
i). Thus, e2 and e3 belong to G′

i. As v is a right
vertex, w must be a left vertex, and both e2 and e3 are to the right of w. Since
e3 crosses e1, the slope of e3 must be smaller than that of e2. In view of property
4, we conclude that the x-coordinate of z is smaller than the x-coordinate of v.
This implies that the slope of the line connecting z and v is larger than the slope
of e2, contradicting our assumption.
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Fig. 2. The construction of Gi (i = 3)

4 A Strengthening of Theorem 6

The aim of this section is to establish the following stronger form of Theorem 6.

Theorem 7. The maximum number of edges of an x-monotone topological graph
with n vertices, containing no path of length 3 whose first and last edges cross,
is O(n log n).

Proof. Let G be an x-monotone topological graph with n vertices and m edges,
containing no path of length 3 whose first and last edges cross. Our goal is to
construct another topological graph G′ with n′ = 2n vertices and m′ ≥ m/2−n
edges, with the property that G′ has no path of length 3 whose first and last
edges cross, and no two adjacent edges of G′ cross each other. Applying Theorem
6 to G′, the statement follows.

First, we split each vertex of G into into two vertices, one of them just a bit
left to the other, so that every original edge e becomes an edge connecting the
right copy of the left endpoint of e to the left copy of its right endpoint. The
resulting x-monotone topological graph G0 has n′ = 2n vertices and m edges, it
has no self-intersecting path of length three, and the right endpoint of any edge
of G0 is distinct from the left endpoint of any other edge.

In the rest of this section, the length of an edge means the length of its
projection to the x-axis, and the terms shorter and longer will be used in the
same sense. We write e = uv for an edge of G0, whose left and right endpoints
are u and v, resp. We call an edge e = uv long if it is the longest either among
all edges uv′ or among all edges u′v ∈ E(G0). Clearly, G0 has fewer than n′ long
edges. Let e and e′ be two edges of G, where e is shorter than e′, and we have
either e = uv and e′ = uw, or e = vu and e′ = wu. We say that e is above e′

if v is above e′. Similarly, we say e is below e′ if v is below e′ . Note that if e is
above or below e′ then e is shorter, but e and e′ may cross several times.

Let e = uv be an edge of G0 which is not long. By definition, there exist two
edges, e′ = uw and e′′ = zv ∈ E(G0), such that both of them are longer than
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e. So e is either above or below e′ and e is also above or below e′′. However, e
cannot be above both e′ and e′′. Indeed, otherwise u is above e′′ while v is above
e′, so e′ and e′′ cross, contradicting our assumption on G. Similarly, e cannot be
below both e′ and e′′. Thus, each edge e = uv ∈ E(G0) which is not long either
satisfies that e is above every longer edge uw and below every longer edge zv, or
it satisfies that e is below every longer edge uw and above every longer edge zv.
We can assume, by symmetry, that the former condition (which will be referred
to as the monotonicity condition) holds for m′ ≥ (m − n′)/2 = m/2 − n edges.
Let G1 be the subgraph of G0 formed by these edges.

We are now in a position to define G′. As an abstract graph, G′ is identical
to G1. The locations of the vertices will coincide, too. For any edge e ∈ E(G1),
denote by ê the corresponding edge of G′. We draw the edges of G′ one by one,
in decreasing order of length. If e in G1 is neither above nor below another edge,
set ê = e. If e = uv is above (below) at least one other edge, let e− be the
shortest edge such that e is above e− (let e+ be the shortest edge such that e is
below e+, resp.). Draw ê in such a way that all of its internal points lie strictly
above ê− and below ê+ (if these edges exist). Notice that, if they exist, e+ and
e− are longer than e, so ê+ and ê− are already defined. We make sure during the
construction that, if e+ exists, it passes above u, if e− exists, it passes below v
(see property 2 below), and if both of them exist, they are disjoint (see property
4 below). We define ê to follow e, except in the intervals where ê+ is below e or
ê− is above e. In these intervals, let ê run just below ê+ or just above ê−, close
enough not to intersect any further edges and going on the same side of every
vertex. See Fig. 3.

^

^

ê

e

e

e+

-

Fig. 3. The construction of the edge ê in G′
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We claim that the resulting graph G′ has the following properties.

1. If e is below (above) e′ in G1, then every interior point of ê is below (above,
resp.) ê′.

2. If e′ is below (above) e in G1, then the endpoint of e′ which is not an endpoint
of e is below (above, resp.) ê.

3. If e, e′, and e′′ form a path in G1 and e is longer than e′, then ê and e′′ do
not cross.

4. If e, e′, and e′′ form a path in G1 then ê and ê′′ do not cross.

We verify these properties by showing that if they hold for the partially
drawn graph, they do not get violated when we add an extra edge ê.

(1) By the monotonicity, if there exists at least one edge f such that e is below
f , then the shortest among them, e+, must be below all others. Similarly, e− (if
exists) must be above all other edges that e is above. Therefore, as property 1
has held so far, it does not get violated now, provided that ê is in between ê−
and ê+, which is the case.

(2) Let e = uv and assume that e′ = uw is above e. By definition, w is
above e and, by the monotonicity condition, w is above e−, if the latter exists.
As property 2 has held so far, w is above ê−, so w must be above ê. Similarly, if
e′ = zv is below e, then z is below ê.

(3) Note that e′ is above or below e. By symmetry, we can assume without
loss of generality that e′ is below e. By monotonicity, this means that they share
their right endpoints. Here e and e′′ do not cross, as they are first and last edges
of a path of length 3, and the left endpoint of e′′ is below e. So every point of e′′

must be below e or to the right of the right endpoint of e. If e+ exists, we can
apply property 3 to the edges e+, e′, e′′, and find that ê+ does not cross e′′. By
the construction, wherever ê runs below e, it follows ê+, so ê is disjoint from e′′.

(4) We consider two cases.
If both e and e′′ are shorter than e′, then one of them is below and the other

is above e′ (monotonicity). Thus, by property 1, ê′ (drawn before the other two)
separates ê from ê′′, so they cannot cross.

We may assume that e is shorter than e′′, so in the remaining case e′′ is
longer than e′. The edge e′ is below or above e′′, and we can again assume, by
symmetry, that e′ is below e′′. Applying property 3 to the path e′′, e′, e, we find
that e is disjoint from ê′′. By property 2, the left endpoint of e lies below ê′′.
Thus, all points of e must be below ê′′ or to the right of its right endpoint. As
ê follows ê− wherever it runs above e, it is enough to show that if e− exists,
ê− is disjoint from ê′′. If e− = e′, this follows from property 1, otherwise, from
property 4 of the initial configuration (before ê has been drawn).

Observe that, by property 1, no two adjacent edges of G′ cross each other
and, by property 4, the same is true for second neighbors. Hence, we can indeed
apply Theorem 6 to G′, and Theorem 7 follows. �
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5 Forbidden Subgraphs – Proof of Theorem 3

For any k ≥ 2, let Fk denote a graph with vertex set

V (Fk) = {x, y} ∪ {bi : 1 ≤ i ≤ k} ∪ {cij : 1 ≤ i < j ≤ k}
and edge set

E(Fk) = {xbi, ybi : 1 ≤ i ≤ k} ∪ {cijbi, cijbj : 1 ≤ i < j ≤ k}.
We need the following theorem, which can be obtained by a straightforward
generalization of a result of Füredi [F91].

Theorem 8. For any fixed integer k ≥ 2, let ex(n, Fk) denote the maximum
number of edges of an Fk-free graph with n vertices. Then we have ex(n, Fk) =
O(n3/2). �

Let G be a topological graph with n vertices, containing no path of length 3
whose first and last edges cross an odd number of times. To establish Theorem 3,
it is sufficient to verify that the abstract graph obtained from G by disregarding
how the edges are drawn does not have a subgraph isomorphic to F4. In fact, it
is enough to concentrate to a the subgraph F ′

4 of F4 induceed by the vertex set
{x, y} ∪ {bi : 1 ≤ i ≤ 4} ∪ {cij : 1 ≤ i < j ≤ 3}. Notice that F ′

4 is a subdivision
of K5: it can be obtained from K5 by replacing four of its edges (a triangle and
an edge not incident to the triangle) by paths of length two. This means that a
topological graph isomorphic to F ′

4 can be also considered as a topological graph
isomorphic to K5 (simply remove the subdividing points). As K5 is not a planar
graph, any topological graph isomorphic to it must have at least one crossing.
Furthermore, by Tutte’s theorem [T70], there must exist two non-adjacent edges
that cross an odd number of times. Thus, any topological graph isomorphic to
F ′
4 has two edges that cross an odd number of times and they are either non-

adjacent edges of the underlying K5 or portions of two such edges. However,
any two edges with this property can be extended to a self-intersecting path of
length 3. Consequently, F ′

4 is not isomorphic to a subgraph of G, and Theorem
3 follows.

6 Drawing C4-Free Graphs – Proof of Theorem 4

Let G be a C4-free bipartite graph with vertex set V (G) = A ∪ B, where A =
{a1, a2, . . . , an} and B = {b1, b2, . . . , bn}. The edge set of G is denoted by E(G).

We now construct a drawing of G. Pick 2n points, a1, . . . , an, b1, . . . bn, on
the x-axis, from left to right in this order. These points will be identified with
the vertices of G. For every edge aibj ∈ E(G), draw an x-monotone arc eij

connecting ai to bj , according to the following rules:
(i) for any k > i, the arc eij passes above ak if and only if akbj �∈ E(G);
(ii) for any l < j, the arc eij passes above bl if and only if aibl ∈ E(G);
(iii) no two distinct arcs “touch” each other (internal crossings are proper).
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Notice that, unless two arcs share an endpoint, the parity of their number of
intersections is determined by these rules.

Take two non-adjacent edges aibj , akbl ∈ E(G) that belong to a path of
length 3. We have to distinguish four different cases:

1. i < k, j < l, and akbj ∈ E(G);
2. i < k, j < l, and aibl ∈ E(G);
3. i < k, l < j, and aibl ∈ E(G);
4. i < k, l < j, and akbj ∈ E(G).

Consider the first case. By drawing rule (i), the arc eij passes below ak. By
rule (ii), ekl passes above bj . In view of rule (iii), this implies that eij and ekl

cross an even number of times, as required. The second case can be treated
similarly and is left to the reader.

In the third case, applying rule (i), we obtain that ak lies above eij . It is
sufficient to show that the same is true for bl. At this point, we use that G is
C4-free: since aibj , bjak, akbl ∈ E(G), we have aibl �∈ E(G). By rule (ii), this
implies that bl is above eij , as required. The last case follows in the same way,
by symmetry.

So far we have checked that in our drawing any two non-adjacent edges cross
an even number of times. It is not hard to extend the same property to all pairs
of edges, even if they share endpoints. To this end, we slightly modify the arcs
eij in some very small neighborhoods of their endpoints. Clearly, this will not
effect the crossing patterns of non-adjacent pairs.

Fix a vertex ai. Redraw the arcs eij incident to ai so that the counter-
clockwise order of their initial pieces in a small neighborhood of ai will be the
same as the order of x-coordinates of their right endpoints. Consider now two
arcs, eij , eil, (l < j), incident to ai. By rule (ii), bl lies below eij . On the other
hand, after performing the local change described above, the initial piece of eil

will also lie below eij . This guarantees that eij and eil cross an even number of
times. Repeating this procedure for each vertex ai, and its symmetric version
for each bj , we obtain a drawing which meets the requirements of Theorem 4.

7 Paths of Length Five

If we exclude self-intersecting paths of length five (rather than three), we can
establish a slightly better upper bound on the number of edges of a geometric
or x-monotone topological graph.

Theorem 9. Let G be an x-monotone topological graph of n vertices with no
self-intersecting path of length 5. Then G has at most constant times n log n/ log
log n edges.

We modify the proof of Theorem 6, and use the same notation. We call an
edge a left edge at its right endpoint and a right edge at its left endpoint.

Suppose G has nm edges with m ≥ 8. Construct a sequence of subgraphs
G, G0, G′

0, G
′′
0 , G1, G

′
1, G

′′
1 , G2, . . . of G, as follows. Let G0 be the topological
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graph obtained from G by deleting each vertex of degree at most m
2 . Notice that

no two edges of G0 that share an endpoint cross each other. Otherwise, since
all degrees are at least 5, those two edges could be extended to a crossing path
of length 5. Thus, the left and the right edges at a vertex are naturally ordered
from top to bottom. Similarly, no path of length 3 or 4 is self-intersecting.

1. If Gi has already been defined for some i, let G′
i denote the topological graph

obtained from Gi by deleting the bottom and the top left and right edges at
each vertex (if they exist). We delete at most four edges per vertex.

2. If G′
i has already been defined for some i, let G

′′
i denote the topological graph

obtained from G′
i by deleting the bottom and the top left and right edges at

every vertex (if they exist). We delete at most four edges per vertex.
3. If G′′

i has already been defined for some i, let Gi+1 be the topological graph
obtained from G′′

i by deleting recursively each vertex of degree at most m
2 ,

so that all vertices of Gi+1 have degree higher than m
2 . Clearly, as long as

the average degree of G′′
i is at least m, it cannot decrease in this step.

Let ai denote the average degree in Gi. It is easy to see that a0 ≥ 2m and
ai ≥ ai−1 − 16 as long as ai−1 − 16 ≥ m. So, we have a� m

16 � ≥ m. Therefore,
G� m

16 � still determines at least one (actually, many) triangle(s).
Recall that a left (right) triangle at a vertex is determined by two left (right,

resp.) edges of the vertex, and it is the region bounded by one of the edges, a
piece of the other edge, and a vertical interval.

It is sufficient to establish the following.

Claim. For any 0 ≤ k ≤ m
16 , every triangle determined by two edges of Gk

contains at least
(

m
2 − 2

)k pairwise different triangles of G.

Indeed, assuming that the Claim is true, a triangle determined by G� m
16 �

contains at least
(

m
2 − 2

)� m
16 � triangles, and this number is at most n3. It follows

that m ≤ c log n/ log log n, as required by the theorem.
Proof of Claim. By induction on k. Obviously, for k = 0, the assertion is
true, because every triangle contains itself. Assume that the claim holds for
k − 1 (k > 0). Consider a right triangle T in Gk, determined by the edges
e1 = vu1 and e2 = vu2, where the x-coordinate of u1 is at most as large as
the x-coordinate of u2. Suppose without loss of generality that e1 lies below e2.
Since e1 ∈ E(G′′

k−1), there is at least one left edge, f1 ∈ E(G′
k−1), at u1 above

e1. This edge, f1 = w1u1, must entirely be contained in T , otherwise we could
find a self-intersecting path of length 3. Since f1 ∈ E(G′

k−1), there is at least
one right edge, f2 ∈ E(Gk−1), at w1 below f1. Similarly, this edge, f2 = w1w,
must be entirely contained in the triangle determined by e1 and f1. Therefore,
f2 must also lie in T . See Fig. 4. The degree of w in Gk−1 is at least m

2 . In view
of the fact that there is no self-intersecting path of length 5 or shorter, none
of these edges can cross e1, e2, f1, and f2. Therefore, all of them are entirely
inside T . They determine at least m

2 −2 triangles with pairwise disjoint interiors,

each of which contains at least
(

m
2 − 2

)k−1 further triangles, and we are done
by induction. �
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u

u

w

1

2

v

Fig. 4. The edges at w are all in T

8 Related Problems

A. Theorems 1 and 6 easily imply

Corollary 2. For any tree T other than a star, there exists a constant c(T )
such that every geometric (or x-monotone topological) graph G with n vertices
and more than c(T )n log n edges contains a self-intersecting copy of T . That is,
we have

excr(n, T ) ≤ c(T )n log n.

Indeed, deleting one-by-one every vertex of G whose degree is smaller than
|V (T )|, we end up with a graph G′ having at most n vertices and at least
(c(T ) log n − |V (T )|)n edges. If c(T ) is sufficiently large, then G′ has a self-
intersecting path of length 3. Using the fact that the degree of every vertex in
G′ is at least |V (T )|, this path can be extended to a copy of T in G′ (and hence
in G).

B. A slight modification of the proof of Theorem 1 gives

Corollary 3. For any positive integer k, there exists a constant ck with the prop-
erty that every geometric graph with n vertices and at least ckn log n edges has
two adjacent vertices, u and v, and 2k edges incident to them, uu1, uu2, . . . , uuk

and vv1, vv2, . . . , vvk, such that uui crosses vvj for every pair 1 ≤ i, j ≤ k.

C. We conjecture that Theorem 1 can be generalized to all topological graphs
with with no self-intersecting path of length 3. Recently, we have proved that if G
is an x-monotone topological graph with n vertices, all of whose edges cross the y-
axis, and G has no self-intersecting path of length 4, then |E(G)| = O(n log1/2 n).
It is interesting to note that one cannot guarantee the existence of any specific
crossing pattern of a path of length 4, even if the number of edges is at least
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Ω(n log n). Indeed, the construction in Section 3 provides such a geometric graph
with no self-intersecting path of length 3. On the other hand, a convex, balanced,
complete bipartite geometric graph, all of whose edges cross the y-axis, has no
path of length 4, whose only self-intersection occurs between its first and last
edges.
D. Any drawing of K3,3, a complete bipartite graph with 3 vertices in each of
its classes, has two non-adjacent edges that cross each other. Clearly, any two
edges belong to a cycle of length 4, so

excr(n,C4) ≤ ex(n,K3,3) = O(n5/3).

This bound has been recently improved to O(n8/5) by Pinchasi and Radoičić
[PR02]. It seems likely that the best possible bound is close to n3/2.

It also follows from Theorem 8 that excr(n,C6) = O(n3/2), and it generalizes
to topological graphs. On the other hand, we have excr(n,C6) ≥ ex(n,C6) ≥
cn4/3, for a suitable constant c > 0 (see [BS74]). For C4-free graphs this bound
is almost tight.

Theorem 10. Let G be a C4-free geometric (or x-monotone topological) graph
on n vertices. If G has no self-intersecting cycle of length 6, then G has O(n4/3

log2/3 n) edges.

Proof. Assume without loss of generality that the left end of an edge is not the
right end of another edge in G. This can be achieved by splitting the vertices
in two as in the proof of Theorem 7. Let G have n vertices and |E(G)| = m >

c′n4/3 log2/3 n edges. For p = 2cn log n
|E(G)| < 1, color randomly and independently

with probability p each vertex of G red. Let G′ be the subgraph of G induced
by the red vertices.

Let i(G′) denote the number of self-intersecting paths of length 3 in G′. Delet-
ing one edge from each such path, we obtain a graph with no self-intersecting
path of length 3. Thus, in view of Theorem 1, we have

|E(G′)| − i(G′) < c|V (G′)| log |V (G′)|,

for some positive c. Taking expected values, this yields

p2|E(G)| − p4i(G) < cpn log n.

We obtain i(G) > |E(G)|3
8c2n2 log2 n

. If c′ is large enough, then i(G) >
(
n
2

)
, and there

must exist two self-intersecting paths of length 3 connecting the same pair of
vertices. These paths cannot share an internal vertex as that would lead to a
C4. Therefore, putting them together, we get a C6 which intersects itself at least
twice. �
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