A Flexible Real-Time Hierarchical Multimedia Archive

Maria Eva Lijding, Pierre Jansen, and Sape Mullender

Fac. of Computer Science, University of Twente
P.O.Box 217, 7500AE Enschede, The Netherlands
lijding@cs.utwente.nl

Abstract. We present a hierarchical multimedia archive that can serve complex
multimedia requests from tertiary storage. Requests can consist of multiple request
units of streamed and non-streamed data. The request units can have arbitrary
synchronization patterns.

Our scheduler Promote-IT promotes data from tertiary to secondary storage with
real-time guarantees. Promote-IT uses an on-line heuristic algorithm to compute
feasible schedules and a separate ASAP dispatcher to increase the efficiency of
the resource usage. The heuristic algorithm runs in polynomial time. Schedules
are optimized to give short response times to incoming requests.

Three major problems complicate this scheduling problem. First, the fragments
of requested real-time data and their synchronization are unpredictable. Second,
the medium switching times in tertiary storage are high, and the number of drives
and robots is low compared to the number of removable media. Third, the shared
resources in the tertiary storage system create resource contention problems.

1 Introduction

We present a flexible hierarchical multimedia archive (HMA) that can serve complex
requests for the real-time delivery of any combination of media files it stores. Such
requests can originate from any system that needs to combine multiple, separately stored
media files into a continuous presentation. The HMA can also be used for the more simple
case of a Video-on-Demand (VoD) application, where the requests are generally for only
a single media file—a movie—to be played from beginning to end. To the best of our
knowledge there is no other hierarchical storage system that provides flexible requests
and time constraints.

A request can consist of multiple streams and non-streamed data that are synchro-
nized sequentially or concurrently in arbitrary patterns. Examples are queries to multi-
media databases to assemble a TV documentary, or a computer generated play list for a
huge library of music videos and advertisement that produces a MTV-like program.

The multimedia data is stored in a tertiary-storage jukebox. Tertiary storage can
store large amounts of data in a cost-effective way, which makes it eminently suitable
for applications handling continuous-media files, large databases and backup data. A
jukebox is a large tertiary storage device whose removable storage media (RSM)—e.g.
CD, DVD, magneto-optical disk, tape—are loaded and unloaded from one or more drives
by one or more robots!]

! The acronym RSM stands both for the singular and the plural. In the literature, a jukebox is
sometimes called a Robotic Storage Library.

F. Boavida et al. (Eds.): IDMS/PROMS 2002, LNCS 2515, pp. 229-240] 2002.
(© Springer-Verlag Berlin Heidelberg 2002

230 M.E. Lijding, P. Jansen, and S. Mullender

emote
usirs
IHOTne
Memory in
Network Servers
(Primary Storage)

| Clockwise
Cache in hard-disks

Network (Secondary Storage)
servers
I'Promote-IT
Hierarchical Multimedia Permanent storage in robotic jukeboxes
Archive (Tertiary Storage)
(a) System overview. (b) Storage hierarchy.

Fig. 1. System overview with various application specific network servers and storage hierarchy
showing the promotion mechanisms.

The problem with tertiary storage is that RSM switching times are high and the
number of available drives and robots is low compared to the number of RSM. The RSM
switching time in a jukebox is in the order of seconds or tens of seconds. This implies that
multiplexing between two files stored in different RSM is many orders of magnitude
slower than doing the same in secondary storage. Therefore, it is very important to
schedule efficiently the use of the jukebox resources. On the other hand, the bandwidth
offered by the devices in a jukebox is generally much higher than the one required by
the end users. Thus, it makes good sense to stage data in secondary storage buffers from
where it is delivered to the applications.

The hierarchical multimedia archive acts as a real-time file system [8]] and, thus, does
not offer application specific services. We envision multiple network servers running
on top of the HMA where each provides a specific service to the users as shown in
Figure[I(a)] In the Distributed and Embedded Systems group at the University of Twente,
we are concerned with providing end-to-end quality of service to the users. Our solution
is to provide the in-time promotion of data from each level of the storage hierarchy to the
next. Figure [[(b) shows the storage hierarchy of the overall system and the mechanisms
used to promote data between contiguous storage levels.

The focus of this paper is Promote-IT (Promote In Time), the jukebox scheduler that
guarantees the in-time promotion of multimedia data from tertiary storage to secondary
storage. In turn Clockwise [2] provides real-time access to data stored in secondary
storage, which is used in HMA as cache, and finally HOTnet [[10] provides real-time
guarantees for the use of a local area network.

The main goal of Promote-IT is to guarantee that the data is buffered in secondary
storage by the time applications need it and guarantee uninterrupted access to the data.
Beyond this, Promote-IT tries to minimize the number of rejected requests, minimize
the response time for ASAP requests, maximize the number of simultaneous users, and
minimize the confirmation time. The scheduling problem to solve is N'P-hard. Therefore,
it is not possible to find an optimal solution on-line. So Promote-IT uses an heuristic
algorithm that computes near-optimal schedules in polynomial time.

A Flexible Real-Time Hierarchical Multimedia Archive 231

Promote-IT gains part of its efficiency by separating the scheduling and dispatch-
ing functionality, because their goals are different. Although separating scheduling and
dispatching seems a natural design decision, it has not been used in any other jukebox
scheduler. The goal of the scheduler is to find feasible schedules for the requested data.
Thus, the scheduler tries to build schedules as flexibly as possible and is not concerned
about the optimal use of the resources. The dispatcher, instead, is concerned about uti-
lizing the jukebox resources in an efficient manner. Thus, it dispatches the tasks to the
hardware controllers as soon as possible (ASAP). The dispatcher may modify the sched-
ules built by the scheduler as long as no task in the schedule is delayed and the sequence
and resource constraints are respected.

To achieve a high degree of flexibility when building the schedules, we model the
scheduling problem in a novel way. The model is a flexible flow shop [16] with three
stages. The first stage is to load the RSM into a drive, the second to read data from
the RSM, and the third is to unload the RSM. The model uses shared resources to
guarantee the mutual exclusive use of shared robots and RSM. Although solving this
scheduling problem is far from trivial, it allows to build efficient schedules that deal
with the resource contention problem correctly. Another advantage of this model is that
it allows us to schedule for any type of jukebox architecture, e.g. one robot, multiple
shared robots, dedicated robots, different drive models, etc.

The rest of this paper is organized as follows. Section 2 presents related work.
Section Blgives an overview of the system. Section Bl describes the jukebox scheduler.
Section Bldiscusses some important aspects of the implementation. Section [l presents
an evaluation of the system. Finally, Section[7] concludes the paper.

2 Related Work

Scheduling of tertiary storage has been studied mainly in the context of Video-on-
Demand (VoD) systems and in systems with no time constraints. An assumption in
typical VoD systems is that requests are for a single media file to be played continuously
from beginning to end. To the best of our knowledge there is no previous work with
flexible requests and time constraints.

Lau et al. [[14] present an aperiodic scheduler for VoD systems, which can use two
scheduling strategies: aggressive and conservative. When using the aggressive strategy
each job is scheduled and dispatched as early as possible, while when using the con-
servative strategy each job is scheduled and dispatched as late as possible. These two
strategies are similar to the strategies EDF (earliest deadline first) and LDL (latest dead-
line last) that we use in Promote-IT (see Section[d)). However, there are very important
differences. The most important difference is that their system dispatches the tasks ex-
actly in the same way in which they are scheduled. Thus, they make bad use of the
schedules built by the conservative strategy. The schedules they build are less efficient
than ours, because they handle the RSM switch (load+unload) as one task and they try
to schedule the reads only with the best drive. Furthermore, their scheduler can handle
only jukeboxes in which all the drives are identical and the load and unload time are
constant for every drive and every RSM. Promote-IT, instead, is able to handle any type
of jukebox architecture, including jukeboxes in which the drives are different.

232 M.E. Lijding, P. Jansen, and S. Mullender

< Hierarchical Multimedia Archive API >— Cache Manager
| I | Confirmation
Request (Starting Time)

Cache Manager i —1 Directory Jukebox

Unscheduled
Requests Scheduler
Acti
Scheduler £V Dispatcher

Jukebox Schedule

Promote-IT Controller -~

S Hardware |Jukebox
Model State Command
* B Jukebox Controller
Model
(a) Hierarchical Multimedia Archive. (b) Jukebox Scheduler.

Fig. 2. Architecture of the Hierarchical Multimedia Archive and the Jukebox Scheduler.

Chan et al. [5] stage a movie completely in secondary storage before it is displayed
to the user, because their goal is to provide interactive VoD services. The movies are
staged First-Come-First-Serve (FCFS), which in general provides bad response times.
This type of algorithm is not appropriate for the flexible type of requests that the HMA
handles, because a FCFS approach cannot deal with relative deadlines.

We now discuss briefly other approaches that, although they are interesting, do not
deal with the RSM contention problem, which means that they cannot guarantee that
an RSM is not assigned to two different drives during the same time period. Therefore,
these schedulers cannot be used for jukeboxes with multiple drives and are not suitable
to be used with most commercial big jukeboxes, which have multiple drives. Lau et al.
[LL5] propose two algorithms, the round-robin and the least-slack algorithm, which break
up the requests into time-slices and try to build a schedule with the time-slices of the
different requests. Golubchik et al. [9] propose a periodic scheduler called Rounds. Cha
et al. [4] use a jukebox scheduler based on a periodic EDF scheduler, which additionally
does not deal with the robot contention problem.

Prabhakar et al. [17] and Triantafillou et al. [19] schedule requests without real-
time deadlines in order to minimize the mean response time. The conclusion of their
work is that as much data as possible should be read from an RSM when the RSM is
loaded in the drive. This supports the approach we used in Promote-IT where we read
all the data requested from an RSM before the RSM is unloaded. Hillyer et al. [[13112]
11] compare different scheduling algorithms for retrieving data from a magnetic tape
without real-time requirements.

3 System Overview

This section gives an overview of the hierarchical multimedia archive (Figure 2(a)).
The data of the archive can be stored in multiple jukeboxes. Each jukebox has its own
scheduler and controller, thus providing scalability to the system, because the complexity
of the scheduler does not increase by incorporating more jukeboxes.

A Flexible Real-Time Hierarchical Multimedia Archive 233

A request arriving at the system is filtered by the cache manager, which checks
whether any of the requested data is already in the cache or scheduled for staging. It
then consults the directory to find out in which jukebox(es) the remaining data is stored
and sends the appropriate requests to them.

The cache manager may be physically distributed, as proposed by Brubeck et al.
[13], to avoid becoming a bottle-neck. The directory is a database that contains meta-data
about the contents of the jukeboxes and can easily be distributed or replicated. In this
paper, we do not address the cache manager and directory any further, but consider only
the scheduling of tertiary storage.

Figure [2(b)] shows the architecture of Promote-IT (Promote In Time), the jukebox
scheduler of our system. Promote-IT schedules incoming requests on-line, re-computing
the schedule every time a request arrives. It generates a new schedule to replace the
currently active schedule only if it can guarantee that including the new request does
not lead to missed deadlines. The dispatcher uses the active schedule to send commands
to the jukebox controller to move RSM and stage data into secondary storage. The
dispatcher guarantees that the tasks are sent to the controller in time.

Once the HMA accepts and confirms a request from a user, it is committed to provide
the service requested by the user. The confirmation includes the starting time assigned to
the request. The user can start consuming the data at the starting time, with the system’s
guarantee that the flow of data will not be interrupted. The request and the confirmation
are the contract between the user and the system.

3.1 Requests

The requests consist of a deadline and a set of request units u;; for individual files, or
part of files. The requests can represent any kind of static temporal relation between the
request units. Formally we represent a request r; with [; request units as:

= (CL, asap;, maxConf;, {u;1, Wiz, . . . , Wiz, })

uij = (Adij, mij, 045, 545, biz)

The deadline d; of the request is the time by which the user must have guaranteed
access to the data. The flag asap, indicates if the request should be scheduled as soon
as possible. The maximum confirmation time maxConf; is the time the user is willing
to wait in order to get a confirmation from the system, which indicates if the request
was accepted or rejected. The relative deadline of the request unit Ad,; is the time at
which the data of the request unit should be available, relative to the starting time of the
request. The other parameters of the request unit m;;, 0,5, $;; and b;; represent the RSM
where the data is stored, the offset in the RSM, the size of the data, and the bandwidth
with which the user wants to access the data, respectively.

The confirmation to the user indicates if the request is accepted or rejected. If the
request is accepted, the confirmation contains the starting time s¢; assigned to the request.
The starting time must be less or equal to the deadline of the request (st; < d;). If the
request is ASAP the scheduler tries to find the earliest value of sz; that will allow it to
accept the request. The system must provide a confirmation before maxConf;.

234 M.E. Lijding, P. Jansen, and S. Mullender

3.2 Hardware Model

Tertiary-storage jukeboxes are composed of the following hardware: drives to access the
data in the RSM, shelves where the RSM are kept and robots to move the RSM from the
shelves to the drives and vice versa.

In big jukeboxes the number of
shelves is at least two orders of
magnitude larger than the num-
ber of drives and the number of
robots. Our jukebox, for exam-
ple, has 720 shelves, 4 drives
and 1 robot. Jukeboxes are avail-
able for different types of RSM,
for example CD, DVD, magnetic
tape or magneto-optical disk.
Figure Bl shows the architecture
of a generic jukebox with four drives and one robot. The data from the drives can be
transferred directly to secondary storage through a high-bandwidth connection.

The time it takes to load and unload a drive depends on different factors: opening
and closing time of the drive, spin-up/-down time in the case of disks, rewind time for
tapes, and the distance between the drive and the shelf where the RSM is kept.

We use a model of the hardware to predict the time that the system will need for
operations on robots and drives. We have validated the model against our actual hardware
and use it both for constructing the schedules and as a simulator in our experiments.

Fig. 3. Jukebox architecture.

4 Promote-IT

Promote-IT is the jukebox scheduler of the hierarchical multimedia archive. It guaran-
tees that the data is promoted to secondary storage in time. Promote-IT schedules the
incoming requests on-line, building a new schedule that includes all the request units that
still need scheduling plus the request units of the new request. Promote-IT provides short
response times, short confirmation times and makes good use of the jukebox resources.

We now formalize the scheduling problem. Let us assume that at time £y request
arrives at a jukebox scheduler. At time ¢ the jukebox scheduler has a set of request units
from previous requests, I/, that have not yet been dispatched to the jukebox. The goal of
the scheduling algorithm is to find a feasible schedule for the new set ', which includes
the request units of the new request 7.

U C {uij | i <k, j<l}
U =UU {ugr, ug2, . .., U, }

The starting time of the request must not be later than its deadline, so st; < a?k. If
the request is ASAP, the scheduler assigns the request the earliest possible starting time
sty, that will allow it to be incorporated into the system. Thus, the scheduler must find
the minimum starting time st, that makes U’ schedulable. The scheduler tries different
candidate starting times st;, and selects the earliest feasible s7f. If the request is not

A Flexible Real-Time Hierarchical Multimedia Archive 235

ASAP, the scheduler assigns it the starting time corresponding to its deadline. If the
deadline of the request cannot be met, then the scheduler rejects the request.

Determining if the set’ is schedulable is an AP-hard problem and so is finding the
the minimum starting time that makes ¢/’ schedulable. We use a polynomial heuristic
algorithm to schedule the requests. In order to simplify the problem we assume that
the user can start consuming the data of a request unit only once all its data has been
buffered. In this way we can compute a deadline for each request unit in a request,
namely, (L-j = st; + A(L-j.

The scheduler uses an iterative algorithm to schedule a request. The algorithm keeps
a list of candidate starting times already analyzed and the schedules produced for them.
The structure of the algorithm is the following:

1. Generate a candidate starting time s¢7 and update the deadline of each request unit
so that dy,; = st¥ + Ady;. The algorithm uses a variation of the bisection method
for finding roots of mathematical functions.

2. Compute the medium schedules for the RSM corresponding to the request units in
U’'. The medium schedule determines the sequence in which the requested data of
an RSM is readE] We read all the requested data of an RSM at once. Therefore, there
is at most one medium schedule per RSM. As there may be different drive models
in the jukebox, we compute a medium schedule for each drive.

3. Model as a flexible flow shop scheduling problem with three stages (FF3) [16]. The
first stage is to load an RSM to a drive, the second stage is to read the data from the
RSM and the third is to unload the RSM. The scheduling problem is represented
as a set of jobs 7, where each job J; must execute one task corresponding to each
stage (J; = {T;,T>;,T5;}). There is at most one job for every RSM, because the
read task (7%;) involves reading all the requested data from the RSM.

4. Compute the resource assignment. The algorithm must incorporate each job J; € J
into the schedule. If the algorithm succeeds in finding a valid resource assignment,
the output of this step is a feasible schedule S*; otherwise S* = (). The pair (S*, s}’
is incorporated into the list of analyzed solutions.

5. Repeat from step 1 until the bisection stop-criteria is fulfilled for the list of can-
didates, i.e. the time difference between the last unsuccessful and first successful
candidate is smaller than a threshold.

6. Select the best solution. The algorithm selects the earliest candidate starting time for
which step 4 could compute a feasible schedule (min{szj | S* # 0}). If there is no
such st the request 7, is placed in the list of unscheduled requests to be scheduled
at a later time. Otherwise the scheduler confirms the starting time sz, to the user and
replaces the active schedule with the new feasible schedule.

The problem model we use allows us to to represent any kind of jukeboxes (e.g.
jukeboxes with one shared robot, multiple shared robots, multiple dedicated robots). We
use additional shared resources to guarantee the mutual exclusive use of the robots and
drives. The model imposes the restriction that all the data requested from an RSM must be

% Finding the optimal sequence is equivalent to solving the asymmetric traveling salesman prob-
lem with time windows [[]], and is thus an A/P-hard problem. We use an algorithm that finds a
near-optimal sequence.

236 M.E. Lijding, P. Jansen, and S. Mullender

read before the RSM is unloaded. This restriction results in a good system performance,
because with each switch effective bandwidth is lost. Prabhalkar [17]] shows that reading
all the requested data from an RSM at once is good even when the access time in a loaded
RSM dominates over the switching time.

In step 4 we use a branch-and-bound algorithm to prune the tree of possible assign-
ments of jukebox resources to the jobs in J. The branch-and-bound algorithm uses the
best-drive heuristic to choose which drive will be tried first to schedule a job and prune
from the tree the branches corresponding to drives which offer a worse solution. When
pruning the tree, the algorithm may be throwing away a feasible solution that an optimal
scheduler would find. But searching the whole tree of solutions is computationally im-
possible. For comparison, we have also implemented an optimal scheduler, but it can take
up to several days to compute a feasible schedule for one new request, in contrast to the
few milliseconds needed by Promote-IT. The complexity of our algorithm is O(m!n),
where m is the number of drives and n is the number of jobs in 7.

We have defined four strategies to incorporate the jobs to the schedule: earliest
deadline first (EDF), earliest starting time first (ESTF), latest deadline last (LDL)
and latest starting time last (LSTL). They are classified by two axes indicating the way
in which the jobs are incorporated to the schedule: Front-to-Back and Back-to-Front,
and the parameter of the tasks to use for sorting the jobs:deadline or latest starting time
(LST). The LST of a task is the latest time at which a task should start in order not to
miss its deadline. None of the strategies is absolutely better than the others, because
each strategy can find schedules that cannot be found by the others. However, their
performance varies considerably depending on the usage scenario.

Using the F2B strategy each job is scheduled as early as possible and the jobs are
incorporated to the front of the schedule in increasing order of ’restrictiveness’, in such
a way that the most ’restrictive’ jobs are incorporated to the schedule first. In addition
the tasks are also incorporated F2B, scheduling first the load 7', then the read T5; and
finally the unload T3;. When using the B2F strategy, each job is scheduled as late as
possible and the jobs are incorporated to the back of the schedule in decreasing order
of ’restrictiveness’. The tasks in turn are incorporated B2F, scheduling first the unload
T3;, then the read T5; and finally the load T ;. In both cases, the goal is that the most
restrictive tasks should be at the front of the resulting schedule, while the less restrictive
tasks should be at the back. We determine the ’restrictiveness’ of a job using either the
deadline or the LST of the read tasks.

Figure @shows an example of the schedules built for a set of four jobs with EDF and
LDL, and a jukebox with one robot and two identical drives. Both drives and the robot
are initially empty. For the sake of simplicity we assume in this example that the load
and unload time is constant for all drives and shelves.

Both strategies can build feasible schedules, but these schedules are quite different.
Many times LDL is more successful in finding feasible schedules than EDF because it
delays unloads as much as possible. In that way, the unloads tend to interfere less with
other jobs, as illustrated by the unloading of .J; in the example. If J2 would have only a
slightly earlier deadline, EDF would no longer find a feasible schedule because its load
would overlap J;’s unload. The LDL-schedule would not be affected by the change.

A Flexible Real-Time Hierarchical Multimedia Archive 237

The graphic at the bottom [22
shows the resource utiliza- Read 23]

. . . k =
tion resulting from using 3% —

the LDL-schedule with 5

the ASAP dispatcher. This ’

schedule is very compact R, (L1 [BHI1.2[1.3] [Si8] [Bi2[1.4] [34]

and makes excellent use o, 11BA31 [13[28733 [14[24 84

of the resources, specially " Y —r]

of the shared robot. The D D

dispatcher can easily fill the Ry [L1] [12] ISR 1.301.4]

holes in an LDL-schedule g < p, 1.12id 31 [1.3 23
by successively moving D, 13 e 35 Al 2a]
tasks to the front. The holes ~ jump —

in an EDF-schedule allow
no such optimization, ex-
cept by small amounts when
a task finished earlier than
predicted. In the dispatched
schedule there are two
places where the dispatcher
created a “jump’, changing
the order of the tasks in the robot schedule.

r, 112813 [Saslia) 34
p, L.1B1131(1.3[231]33

p, 12l 22] 32[14] 24 34

Dispatched
LDL

Fig. 4. Example of an EDF and LDL schedule. (¢, j of T;;; shown
in the boxes)

S Implementation and Simulation

We have implemented the HMA in Java 1.3 on Linux. The system can run the same code
when using a real jukebox and a simulation of a jukebox. When using a real jukebox,
the jukebox controller sends commands to the jukebox and waits for the replies. When
using simulated hardware, it places an event on the event queue simulator indicating the
time at which it should be woken up. The drive controller uses the Java Native Interface
(JNI) to call C functions in order to open and close the drives and get drive specific
information. We use the same hardware models to simulate the behavior of the jukebox
and to estimate the processing time needed for the different tasks to schedule.

Atpresent the cache manager uses a Linux file system to store the data, which does not
provide real-time guarantees. However, it seems to be good enough for the applications
we have tested and it is of no relevance when simulating. The network servers use the
Java Media Framework [18] to stream data to the remote users. Although JMF cannot
provide real-time guarantees, it is useful for building prototype network servers. The
next step is to integrate Clockwise and HOTnet into the HMA.

6 Evaluation

In this section we present a brief evaluation of the jukebox scheduler. We compare the
different scheduling strategies used in Promote-IT and show the superiority of Promote-

238 M.E. Lijding, P. Jansen, and S. Mullender

IT over the scheduling strategies proposed by Lau et al. [14]@ On one hand we show the
effectivity of the ASAP dispatcher by comparing the LDL strategy against the conserva-
tive strategy. On the other hand we show that EDF performs better than the aggressive
strategy. We also show how the performance of the system improves considerably by
specifying concrete deadlines for the ASAP requests.

For Figures and B(b)] we used

120 the hardware model of our DAX juke-

LR box [7], which has 720 shelves, 1

100 - T On 1 robot and 4 drives—three CD read-
= Aggressive ers (1.75 MBps) and one 8X CD

80 o Conservative / 1 reader/writer (1.17 MBps). The average
w | switch time is 44 seconds. For Figure
we assume that the jukebox has four

10 16X DVD drives. The DVD drives use
P i CAV technology (constant angular veloc-

20 S ‘ ‘ ity) and the transfer speed is 6.45 MBps

30 40 50 60 70 80 90 at the inner track and 19.53 MBps at the
outer track.

The test set used consist of 1000
ASAP requests for audio, video and

(a) Infinite deadline

il E——r ‘ ‘ ‘ discrete-data. The data requested follows
P Tor 7 a Zipf distribution, because this type of
——————— LSTL o ’ distribution represents correctly the pat-

e Aggressive. o
35 | =< Conservafive = 4 tern of requests on storage systems [6].
' o7 "4 In the first case the deadline of the re-
30 quests is infinite, so the system does not
reject any request and the response times
25 e can become very high. In the second and
g third case the requests have a deadline of
20 ‘ ‘ ‘ ‘ ‘ 5 minutes and a maximum confirmation

30 40 50 60 70 80 90 .
time of 30 seconds, so if the scheduler

(b) 5 minute deadline does not succeed within that limit it re-

jects the request.
Fig. 5. Mean response time (y-axis; seconds) over The cache manager uses least recently
system load (req./hour) with CD jukebox. used (LRU) policy. The capacity of the

cache is 10% of the jukebox capacity. The
cache is preloaded with the results of another simulated run. The requested data pro-
duced in average 57% cache hits when using the CD jukebox and 60% when using the
DVD jukebox. This did not change significantly when varying the system load or the
scheduling strategy.
Figure clearly shows that the conservative strategy performs very badly, even
when the system load is not very high, because it makes a poor use of the jukebox
resources by dispatching as late as possible. The graphic also shows that EDF performs

3 We have extended their aggressive and conservative strategies for jukeboxes with different drive
characteristics.

A Flexible Real-Time Hierarchical Multimedia Archive 239
better than the aggressive strategy. This is mainly noticeable when the system load is
low, because the aggressive strategy leaves the drives loaded until they are needed again
by the system. Thus, when the system load is low, the robot is left idle while it could be
unloading an RSM and freeing a drive. Leaving the drives loaded could be a good idea
if the probability of receiving new requests for an RSM loaded in a drive would be high,
but given the big number of RSM in the jukebox the probability is very low.

Figure[5(b)] shows a considerable improvement in the response time of Promote-IT
when the requests have deadlines and the scheduler is able to reject some requests. The
improvement is considerable, even if the percentage of rejected requests is less than 2%.
The aggressive strategy does not improve much, because it leaves the drives loaded. The
rejection ratio of the conservative strategy is high (between 1 and 11%).

Figure [] shows the performance

. . 40 i ;
of the different scheduling strate- e ESTF
gies of Promote-IT and the aggres- 35 | Egi S
sive strategy when using the DVD ~--=-- LSTL
30 - = Aggressive

jukebox. This graphic does not show
the conservative strategy, because its
rejection ratio is so high, that the
mean response time is not compa-

25

20

rable to the others. In this architec-
ture the robot is the clear bottleneck 15 ¥
in the system. The utilization of the 0 ‘ ‘ ‘ ‘ ‘ ‘

robot reaches nearly 95%, while the 60 70 8 90 100 110 120
utilization of the drive is less than
35%. The two Back-to-Front strate-
gies show the best performance as
the load increases, because Back-to-
Front makes better use of the robot.

130

Fig. 6. Mean response time (y-axis; seconds) over sys-
tem load (req./hour) with DVD jukebox and 5 min
deadline.

7 Conclusions and Future Work

We present a hierarchical multimedia archive that provides flexible real-time access
to large volumes of data stored in tertiary storage. Promote-IT guarantees the in-time
promotion of data from tertiary to secondary storage. Promote-IT is a key component
in the end-to-end real-time delivery system that spans from tertiary storage to end-user
applications.

We describe a polynomial heuristic algorithm to solve the scheduling problem, whose
optimal solution is NP-hard to find. Promote-IT provides short response times while
using the jukebox resources efficiently and performs better than comparable schedulers.
At present we are comparing the performance of Promote-IT against that of an optimal
scheduler. The results obtained so far indicate that Promote-IT performs very near the
optimal. We are also comparing the performance of Promote-IT against a new periodic
scheduler that uses the robot in a cyclic way, called cached early quantum scheduler
(CEQS). Promote-IT performs clearly better that CEQS with all jukebox architectures
and request sets we have tested so far.

240 M.E. Lijding, P. Jansen, and S. Mullender

A distinguishing feature of Promote-IT is the separation of scheduling and dispatch-

ing. The scheduler can build flexible schedules with holes in which the resources are
scheduled to be idle, while the ASAP dispatcher dispatches each task as soon as possible.
This feature makes the Back-to-Front strategy, where each task is scheduled as late as
possible, a competitive strategy.

References

1

R

10.

11.

12.

13.

14.

16.
17.

18.
19.

. N. Ascheuer, M. Fischetti, and M. Grotschel. Solving the asymmetric travelling salesman
problem with time windows by branch-and-cut. Math. Program., 90(3):475-506, 2000.

. P. Bosch. Mixed-media file systems. PhD thesis, University of Twente, June 1999.

. D. W. Brubeck and L. A. Rowe. Hierarchical storage management in a distributed vod system.
IEEE Multimedia, 3(3):37-47, 1996.

. H.Cha,J. Lee, J. Oh, and R. Ha. Video server with tertiary storage. In Proc. of the Eighteenth
1IEEE Symposium on Mass Storage Systems, April 2001.

. S.-H. G. Chan and F. A. Tobagi. Designing hierarchical storage systems for interactive on-
demand video services. In Proc. of IEEE Multimedia Applications, Services and Technologies,
June 1999.

. A.L. Chervenak. Tertiary Storage: An Evaluation of New Applications. PhD thesis, Dept. of
Comp. Science, University of California, Berkeley, December 1994.

. Chess Engineering bv. DAX Software Architecture Manual, Version 0.5, March 1998.

. D. Gemmel, H. Vin, D. Kandlur, P. Rangan, and L. Rowe. Multimedia storage servers: A
tutorial and survey. IEEE Computer, 28(5):40-49, November 1995.

. L. Golubchik and R. K. Rajendran. A study on the use of tertiary storage in multimedia

systems. In Proc. of Joint NASA/IEEE Mass Storage Systems Symposium, March 1998.

F. Hanssen, P. Hartel, T. Hattink, P. Jansen, J. Scholten, and J. Wijnberg. A Real-Time ethernet

network at home. In M. G. Harbour, editor, Research report 36/2002, pages 5-8, Vienna,

Austria, June 2002. Real-Time Systems Group, Vienna Univ. of Technology.

B. K. Hillyer, R. Rastogi, and A. Silberschatz. Scheduling and data replication to improve

tape jukebox performance. In Proc. of International Conference on Data Engineering, pages

532-541, 1999.

B. K. Hillyer and A. Silberschatz. Random I/O scheduling in online tertiary storage systems.

In Proc. of the 1996 ACM SIGMOD International Conference on Management of Data, pages

195-204, June 1996.

B. K. Hillyer and A. Silberschatz. Scheduling non-contiguous tape retrievals. In Proc. of

Joint NASA/IEEE Mass Storage Systems Symposium, pages 113 — 123, March 1998.

S.-W. Lau and J. C. Lui. Scheduling and replacement policies for a hierarchical multimedia

storage server. In Proc. of Multimedia Japan 96, International Symposium on Multimedia

Systems, March 1996.

. S.-W. Lau, J. C. Lui, and P. Wong. A cost-effective near-line storage server for multimedia

system. In Proc. of the 11th International Conference on Data Engineering, pages 449-456,

March 1995.

M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.

S. Prabhakar, D. Agrawal, A. E. Abbadi, and A. Singh. Scheduling tertiary I/O in database

applications. In Proc. of the 8th International Workshop on Database and Expert Systems

Applications, pages 722727, September 1997.

Sun Microsystems. Java Media Framework API Guide, November 1999.

P. Triantafillou and I. Georgiadis. Hierarchical scheduling algorithms for near-line tape li-

braries. In Proc. of the 10th International Conference and Workshop on Database and Expert

Systems Applications, pages 50-54, 1999.

	Introduction
	Related Work
	System Overview
	Requests
	Hardware Model

	Promote-IT
	Implementation and Simulation
	Evaluation
	Conclusions and Future Work

