Skip to main content

On the Learnability of Vector Spaces

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2533))

Included in the following conference series:

Abstract

The central topic of the paper is the learnability of the recursively enumerable subspaces of V /V , where V is the standard recursive vector space over the rationals with countably infinite dimension, and V is a given recursively enumerable subspace of V . It is shown that certain types of vector spaces can be characterized in terms of learnability properties: V /V is behaviourally correct learnable from text iff V is finitely dimensional, V /V is behaviourally correct learnable from switching type of information iff V is finite-dimensional, 0-thin, or 1-thin. On the other hand, learnability from an informant does not correspond to similar algebraic properties of a given space. There are 0-thin spaces W 1 and W 2 such that W 1 is not explanatorily learnable from informant and the infinite product (W 1) is not behaviourally correct learnable, while W 2 and the infinite product (W 2) are both explanatorily learnable from informant.

Valentina Harizanov was partially supported by the UFF grant of the George Washington University.

Frank Stephan was supported by the Deutsche Forschungsgemeinschaft (DFG) Heisenberg grant Ste 967/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenny Adleman and Manuel Blum. Inductive inference and unsolvability. The Journal of Symbolic Logic, 56(3):891–900, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  2. Dana Angluin. Learning regular sets from queries and counter-examples. Information and Computation, 75:87–106, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ganesh Baliga, John Case and Sanjay Jain. Language learning with some negative information. Journal of Computer and System Sciences, 51(5):273–285, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. Rod G. Downey and Geoffrey R. Hird, Automorphisms of supermaximal spaces. The Journal of Symbolic Logic, 50(1):1–9, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  5. Rod G. Downey and Jeffrey B. Remmel, Computable algebras and closure systems: coding properties. In: Handbook of Recursive Mathematics, volume 2, pages 977–1039. Elsevier, Amsterdam, 1998.

    Article  MathSciNet  Google Scholar 

  6. Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer, Stuart Kurtz, Mark Pleszkoch, Theodore Slaman, Robert Solovay and Frank Stephan. Extremes in the degrees of inferability. Annals of Pure and Applied Logic, 66:231–276, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Mark Gold. Language identification in the limit. Information and Control, 10: 447–474, 1967.

    Article  MATH  Google Scholar 

  8. Geoffrey R. Hird. Recursive properties of relations on models. Annals of Pure and Applied Logic, 63:241–269, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. Sanjay Jain and Arun Sharma. On the non-existence of maximal inference degrees for language identification. Information Processing Letters, 47:81–88, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. Sanjay Jain and Frank Stephan. Learning by switching type of information. In: Algorithmic Learning Theory: Twelfth International Conference (ALT 2001), volume 2225 of Lecture Notes in Artificial Intelligence, pages 205–218. Springer-Verlag, Heidelberg, 2001.

    Google Scholar 

  11. Iraj Kalantari and Allen Retzlaff. Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces. The Journal of Symbolic Logic, 42(4):481–491, 1977.

    Article  MathSciNet  Google Scholar 

  12. Michael Machtey and Paul Young. An Introduction to the General Theory of Algorithms. North Holland, New York, 1978.

    Google Scholar 

  13. Wolfgang Merkle and Frank Stephan. Refuting learning revisited. Technical Report Forschungsberichte Mathematische Logik 52/2001, Mathematisches Institut, Universität Heidelberg, 2001.

    Google Scholar 

  14. George Metakides and Anil Nerode, Recursively enumerable vector spaces. Annals of Mathematical Logic, 11:147–171, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  15. George Metakides and Anil Nerode, Recursion theory on fields and abstract dependence. Journal of Algebra, 65:36–59, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  16. Tatsuya Motoki. Inductive inference from all positive and some negative data. Information Processing Letters, 39(4):177–182, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  17. Anil Nerode and Jeffrey Remmel, Recursion theory on matroids. In: Patras Logic Symposium, Studies in Logic and the Foundations of Mathematics, volume 109, pages 41–65. North-Holland, 1982.

    Google Scholar 

  18. Anil Nerode and Jeffrey Remmel, Recursion theory on matroids II. In: Southeast Asian Conference on Logic, pages 133–184. North-Holland, 1983.

    Google Scholar 

  19. Anil Nerode and Jeffrey Remmel, A survey of lattices of r.e. substructures. In: Proceedings of Symposia in Pure Mathematics, volume 42, pages 323–375. American Mathematical Society, 1985.

    Google Scholar 

  20. Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

    Google Scholar 

  21. Daniel Osherson, Michael Stob and Scott Weinstein. Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

    Google Scholar 

  22. Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967. Reprinted, MIT Press, 1987.

    Google Scholar 

  23. Arun Sharma. A note on batch and incremental learnability. Journal of Computer and System Sciences, 56(3):272–276, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  24. Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, Heidelberg, 1987.

    Google Scholar 

  25. Frank Stephan and Yuri Ventsov. Learning Algebraic Structures from Text using Semantical Knowledge. Theoretical Computer Science-Series A, 268:221–273, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  26. Rolf Wiehagen. Identification of formal languages. In: Mathematical Foundations of Computer Science, volume 53 of Lecture Notes in Computer Science, pages 571–579. Springer-Verlag, 1977.

    Google Scholar 

  27. C. E. M. Yates. Three theorems on the degree of recursively enumerable degrees. Duke Mathematical Journal, 32:461–468, 1965.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harizanov, V.S., Stephan, F. (2002). On the Learnability of Vector Spaces. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds) Algorithmic Learning Theory. ALT 2002. Lecture Notes in Computer Science(), vol 2533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36169-3_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-36169-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00170-6

  • Online ISBN: 978-3-540-36169-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics