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ABSTRACT v

Abstract

Data Mining, also called Knowledge Discovery in Databases, is a rather
young research area, which has emerged in response to the flood of data
we are faced with nowadays. It has taken up the challenge to develop
techniques that can help humans to discover useful patterns in their data.
One such technique—which certainly is among the most important, since it
can be used for frequent data mining tasks like classifier construction and
dependence analysis—are graphical models (also called inference networks)
and especially learning such models from a dataset of sample cases. In
this thesis I review the basic ideas of graphical modeling, with a special
focus on the recently introduced possibilistic networks, for which I try to
provide a clearer semantical foundation. Furthermore, I study the principles
of learning graphical models from data and discuss several algorithms that
have been suggested for this task. The main achievements of this thesis
are enhancements of such learning algorithms: A projection method for
database induced possibility distributions, a naive Bayes style possibilistic
classifier, and several new evaluation measures and search methods.

Zusammenfassung

Data Mining, oder auch Wissensentdeckung in Datenbanken, ist ein noch
recht junges Forschungsgebiet, das als Antwort auf die Datenflut entstanden
ist, der wir uns heute gegeniibersehen. Es widmet sich der Herausforderung,
Techniken zu entwickeln, die Menschen helfen kénnen, niitzliche Muster in
ihren Daten zu finden. Eine dieser Techniken — und sicher eine der wichtig-
sten, da sie fiir so haufige Data-Mining-Aufgaben wie die Konstruktion von
Klassifikatoren und die Abhéngigkeitsanalyse eingesetzt werden kann —
sind graphische Modelle (auch Schlufifolgerungsnetze genannt) und beson-
ders das Lernen solcher Modelle aus einem Datensatz von Beispielféllen.
In dieser Arbeit stelle ich die Ideen der graphischen Modellierung dar,
wobei ich mich auf die erst kiirzlich eingefithrten possibilistischen Netze
konzentriere, fiir die ich eine bessere semantische Begriindung zu liefern ver-
suche. Weiter untersuche ich die Prinzipien des Lernens graphischer Modelle
aus Daten und bespreche verschiedene Algorithmen, die fiir diese Aufgabe
vorgeschlagen wurden. Die wesentlichen Leistungen dieser Arbeit beste-
hen in Verbesserungen und Erweiterungen dieser Algorithmen: Ich schlage
eine Projektionsmethode fiir datenbankinduzierte Possibilitatsverteilungen,
einen naiv-Bayes-artigen possibilistischen Klassifikator und mehrere neue
Bewertungsmafle und Suchmethoden vor.



He deals the cards to find the answer,
The sacred geometry of chance,

The hidden law of a probable outcome.
The numbers lead a dance.

Sting: “The Shape of My Heart”
from the album “Ten Summoner’s Tales”



Chapter 1

Introduction

Due to modern information technology, which produces ever more power-
ful computers every year, it is possible today to collect, transfer, combine,
and store huge amounts of data at very low costs. Thus an ever-increasing
number of companies and scientific and governmental institutions can af-
ford to build up huge archives of tables, documents, images, and sounds in
electronic form. The thought is compelling that if you only have enough
data, you can solve any problem—at least in principle.

A closer inspection reveals, though, that data alone, however volumi-
nous, are not sufficient. We may say that in large databases you cannot see
the wood for the trees. Although any single bit of information can be re-
trieved and simple aggregations can be computed (for example, the average
monthly sales in the Frankfurt area), general patterns, structures, and regu-
larities usually go undetected. However, often these patterns are especially
valuable, e.g. because they can easily be exploited to increase turnover. For
instance, if a supermarket discovers that certain products are frequently
bought together, the number of items sold can sometimes be increased by
appropriately arranging these products in the shelves of the market (they
may, for example, be placed adjacent to each other in order to invite even
more customers to buy them together).

However, to find these patterns and thus to exploit more of the infor-
mation contained in the available data turns out to be fairly difficult. In
contrast to the abundance of data there is a lack of tools to transform these
data into useful knowledge. As John Naisbett remarked [Fayyad et al. 1996]:

We are drowning in information, but starving for knowledge.
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As a consequence a new area of research has emerged, which has been named
Knowledge Discovery in Databases (KDD) or Data Mining (DM) and which
has taken up the challenge to develop techniques that can help humans to
discover useful patterns in their data.

In this introductory chapter I provide a brief overview on knowledge
discovery in databases and data mining, which is intended to show the
context of this thesis. In a first step, I try to capture the difference between
“data” and “knowledge” in order to attain precise notions by which it can
be made clear why it does not suffice just to gather data and why we must
strive to turn them into knowledge. As an illustration I am going to discuss
an example from the history of science. Secondly, I explain the process
of discovering knowledge in databases (the KDD process), of which data
mining is just one, though very important, step. I characterize the standard
data mining tasks and position the work of this thesis by pointing out for
which tasks the discussed methods are well-suited.

1.1 Data and Knowledge

In this thesis I distinguish between data and knowledge. Statements like
“Columbus discovered America in 1492.” or “Mrs Jones owns a VW Golf.”
are data. For these statements to qualify as data, I consider it to be irrele-
vant whether I already know them, whether I need these specific pieces of
information at this moment etc. The essential property of these statements
is that they refer to single events, cases, objects, persons etc., in general, to
single instances. Therefore, even if they are true, their range of validity is
very restricted and thus is their usefulness.

In contrast to the above, knowledge consists of statements like “All
masses attract each other.” or “Every day at 17:04 there runs an Inter-
Regio from Magdeburg to Braunschweig.”. Again I neglect the relevance of
the statement for my current situation and whether I already know it. The
essential point is that these statements do not refer to single instances, but
are general laws or rules. Therefore, provided they are true, they have a
wide range of validity, and, above all else, they allow us to make predictions
and are thus very useful.

It has to be admitted, though, that in daily life statements like “Colum-
bus discovered America in 1492.” are also called knowledge. However, I
disregard this way of using the term “knowledge”, regretting that full con-
sistency of terminology with daily life cannot be achieved. Collections of
statements about single instances do not qualify as knowledge.
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Summarizing, data and knowledge can be characterized as follows:
Data

e refer to single instances
(single objects, persons, events, points in time etc.)

e describe individual properties

e are often available in huge amounts
(databases, archives)

e are usually easy to collect or to obtain
(e.g. cash registers with scanners in supermarkets, Internet)

e do not allow us to make predictions

Knowledge

e refers to classes of instances
(sets of objects, persons, events, points in time etc.)

describes general patterns, structures, laws, principles etc.

consists of as few statements as possible
(this is an objective, see below)

is usually hard to find or to obtain
(e.g. natural laws, education)

e allows us to make predictions

From these characterizations we can clearly see that usually knowledge is
much more valuable than (raw) data. It is mainly the generality of the
statements and the possibility to make predictions about the behavior and
the properties of new cases that constitute its superiority.

However, not just any kind of knowledge is as valuable as any other. Not
all general statements are equally important, equally substantial, equally
useful. Therefore knowledge must be assessed. The following list, which I
do not claim to be complete, names some important criteria:

Criteria to Assess Knowledge

correctness (probability, success in tests)

generality (range of validity, conditions for validity)

usefulness (relevance, predictive power)

comprehensibility (simplicity, clarity, parsimony)

novelty (previously unknown, unexpected)
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In science correctness, generality, and simplicity (parsimony) are at the focus
of attention: One way to characterize science is to say that it is the search
for a minimal correct description of the world. In business and industry
higher emphasis is placed on usefulness, comprehensibility, and novelty:
the main goal is to get a competitive edge and thus to achieve higher profit.
Nevertheless, none of the two areas can afford to neglect the other criteria.

Tycho Brahe and Johannes Kepler

Tycho Brahe (1546-1601) was a Danish nobleman and astronomer, who
in 1576 and in 1584, with the financial support of King Frederic II, built
two observatories on the island of Ven, about 32 km to the north-east of
Copenhagen. Using the best equipment of his time (telescopes were un-
available then—they were used only later by Galileo Galilei (1564-1642)
and Johannes Kepler (see below) for celestial observations) he determined
the positions of the sun, the moon, and the planets with a precision of less
than one angle minute, thus surpassing by far the exactitude of all mea-
surements carried out before. He achieved in practice the theoretical limit
for observations with the unaided eye. Carefully he recorded the motions
of the celestial bodies over several years [Greiner 1989, Zey 1997].

Tycho Brahe gathered data about our planetary system. Huge amounts
of data, at least from a 16th century point of view. However, he could
not discern the underlying structure. He could not combine his data into a
consistent scheme, partly because be adhered to the geocentric system. He
could tell exactly in what position Mars had been on a specific day in 1585,
but he could not relate the positions on different days in such a way as to
fit his highly accurate observational data. All his hypotheses were fruitless.
He developed the so-called Tychonic planetary model, according to which
the sun and the moon revolve around the earth and all other planets revolve
around the sun, but this model, though popular in the 17th century, did not
stand the test of time. Today we may say that Tycho Brahe had a “data
mining” or “knowledge discovery” problem. He had the necessary data, but
he could not extract the knowledge contained in it.

Johannes Kepler (1571-1630) was a German astronomer and mathemati-
cian and assistant to Tycho Brahe. He advocated the Copernican planetary
model and during his whole life he endeavored to find the laws that gov-
ern the motions of the celestial bodies. He strived to find a mathematical
description, which, in his time, was a virtually radical approach. His start-
ing point were the catalogs of data Tycho Brahe had set up and which he
continued in later years.
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After several unsuccessful trials and long and tedious calculations,
Johannes Kepler finally managed to combine Tycho Brahe’s data into three
simple laws, which have been named after him. Having discovered in 1604
that the course of Mars is an ellipse, he published the first two laws in
“Astronomia Nova” in 1609, the third ten years later in his principal work
“Harmonica Mundi” [Greiner 1989, Zey 1997, Feynman et al. 1963].

1. Each planet moves around the sun in an ellipse, with the sun at one
focus.

2. The radius vector from the sun to the planet sweeps out equal areas
in equal intervals of time.

3. The squares of the periods of any two planets are proportlonal to the
cubes of the semi-major axes of their respective orbits: T ~ as.

Tycho Brahe had collected a large amount of celestial data, Johannes Kepler
found the laws by which they can be explained. He discovered the hidden
knowledge and thus became one of the most famous “data miners” in history.

Today the works of Tycho Brahe are almost forgotten. His catalogs
are merely of historical value. No textbook on astronomy contains extracts
from his measurements. His observations and minute recordings are raw
data and thus suffer from a decisive disadvantage: They do not provide
us with any insight into the underlying mechanisms and therefore they do
not allow us to make predictions. Kepler’s laws, however, are treated in
all textbooks on astronomy and physics, because they state the principles
that govern the motions of planets as well as comets. They combine all of
Brahe’s measurements into three simple statements. In addition, they allow
us to make predictions: If we know the position and the velocity of a planet
at a given moment, we can compute, using Kepler’s laws, its future course.

1.2 Knowledge Discovery and Data Mining

How did Johannes Kepler discover his laws? How did he manage to extract
from Tycho Brahe’s long tables and voluminous catalogs those simple laws
that revolutionized astronomy? Only little do we know about it. He must
have tested a large number of hypotheses, most of them failing. He must
have carried out long and complicated computations. Presumably, out-
standing mathematical talent, tenacious work, and a considerable amount
of good luck finally led to success. We may safely guess that he did not
know a universal method to discover physical or astronomical laws.
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Today we still do not know such a method. It is still much simpler to
gather data, by which we are virtually swamped in todays “information
society” (whatever that means), than to obtain knowledge. Today we even
need not work diligently and perseveringly any more for several years, as
Tycho Brahe did, in order to collect data. Automatic measurement devices,
scanners, digital cameras, and computers have taken this load from us.
The advances in database technology enable us to store an ever-increasing
amount of data. It is just as John Naisbett said in the remark quoted above:
We are drowning in information, but starving for knowledge.

If it took such a distinguished thinker like Johannes Kepler several years
to evaluate the data gathered by Tycho Brahe, which today seem to be
negligibly few and from which he even selected only the data on the course
of Mars, how can we hope to cope with the huge amounts of data available
today? “Manual” analysis has long ceased to be feasible. Simple aids like,
for example, representations of data in charts and diagrams soon reach their
limits. If we refuse to simply surrender to the flood of data, we are forced
to look for intelligent computerized methods by which data analysis can be
automated at least partially. These are the methods that are sought for
in the research areas called Knowledge Discovery in Databases (KDD) and
Data Mining (DM). 1t is true, these methods are still very far from replacing
people like Johannes Kepler, but it is not entirely implausible that he, if
supported by these methods, would have reached his goal a little sooner.

Often the terms Knowledge Discovery and Data Mining are used inter-
changeably. However, I distinguish them here. By Knowledge Discovery
in Databases (KDD) I mean a process consisting of several steps which is
usually characterized as follows [Fayyad et al. 1996]:

Knowledge discovery in databases is the nontrivial process of
identifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data.

One step of this process, though definitely one of the most important, is
Data Mining. In this step modeling and discovery techniques are applied.

1.2.1 The KDD Process

In this section I structure the KDD process into two preliminary and five
main steps or phases. However, this structure is by no means binding.
A unique scheme has not yet been agreed upon in the scientific community.
A recent suggestion and detailed exposition of the KDD process, which
is close to the scheme presented here and which can be expected to have
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considerable impact, since it is backed by several large companies like NCR,
and DaimlerChrysler, is the CRISP-DM model (CRoss Industry Standard
Process for Data Mining) [Chapman et al. 1999].

Preliminary Steps

e estimation of potential benefit
e definition of goals, feasibility study

Main Steps

check data availability, data selection, if necessary, data collection
e preprocessing (60-80% of total overhead)
— unification and transformation of data formats
— data cleaning
(error correction, outlier detection, imputation of missing values)
— reduction / focusing
(sample drawing, feature selection, prototype generation)

Data Mining (using a variety of methods)

visualization
(also in parallel to preprocessing, data mining, and interpretation)

e interpretation, evaluation, and test of results
e employment and documentation

The preliminary steps mainly serve the purpose to decide whether the main
steps should be carried out. Only if the potential benefit is high enough
and the demands can be met by data mining methods, it can be expected
that some profit results from the usually expensive main steps.

In the main steps the data to be analyzed for hidden knowledge are
first collected (if necessary), appropriate subsets are selected, and they are
transformed into a unique format that is suitable for applying data mining
techniques. Then they are cleaned and reduced to improve the performance
of the algorithms to be applied later. These preprocessing steps usually
consume the greater part of the total costs. Depending on the data mining
task that was identified in the goal definition step (see below for a list), data
mining methods are applied (see below for a list), the results of which, in or-
der to interpret and evaluate them, can be visualized. Since the desired goal
is rarely achieved in the first go, usually several steps of the preprocessing
phase (e.g. feature selection) and the application of data mining methods
have to be reiterated in order to improve the result. If it has not been
obvious before, it is clear now that KDD is not a completely automated,
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but an interactive process. A user has to evaluate the results, check them
for plausibility, and test them against hold-out data. If necessary, he or she
modifies the course of the process to make it meet his or her requirements.

1.2.2 Data Mining Tasks

In the course of time typical tasks have been identified, which data min-
ing methods should be able to solve (although, of course, not every single
method is required to be able to solve all of them—it is the combination
of methods that makes them powerful). Among these are especially those
named in the—surely incomplete—list below. I tried to characterize them
not only by their name, but also by a typical question [Nakhaeizadeh 1998b].

e classification
Is this customer credit-worthy?

e segmentation, clustering
What groups of customers do I have?

e concept description
Which properties characterize fault-prone vehicles?

e prediction, trend analysis
What will the exchange rate of the dollar be tomorrow?

e dependence/association analysis
Which products are frequently bought together?

e deviation analysis
Are there seasonal or regional variations in turnover?

Classification and prediction are the most frequent tasks, since their solution
can have a direct effect, for instance, on the turnover and the profit of a
company. Dependence and association analysis come next, because they
can be used, for example, to do shopping basket analysis, i.e., to discover
which products are frequently bought together, and are therefore also of
considerable commercial interest.

1.2.3 Data Mining Methods

Research in data mining is highly interdisciplinary. Methods to solve the
tasks named in the preceding section have been developed in a large variety
of research areas including, to name only the most important, statistics,
artificial intelligence, machine learning, and soft computing. As a conse-
quence there is an arsenal of methods that are based on a wide range of
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ideas. To give an overview, I list below some of the more prominent data
mining methods. Each list entry refers to a few publications on the method
and points out for which data mining tasks the method is especially suited.
Of course, this list is far from being complete. The references are necessarily
incomplete and may not always be the best ones possible, since I am clearly
not an expert for all of these methods and since, obviously, I cannot name
everyone who has contributed to the one or the other.

classical statistics (discriminant analysis, time series analysis etc.)
[Larsen and Marx 1986, Everitt 1998]

classification, prediction, trend analysis

decision/classification and regression trees

[Breiman et al. 1984, Quinlan 1986, Quinlan 1993]

classification, prediction

naive Bayes classifiers

[Good 1965, Duda and Hart 1973, Langley et al. 1992]
classification, prediction

probabilistic networks (Bayesian networks/Markov networks)

[Pearl 1988, Lauritzen and Spiegelhalter 1988, Heckerman et al. 1995]
classification, dependence analysis

artificial neural networks

[Anderson 1995, Rojas 1993, Hertz et al. 1991, Zell 1994]
classification, prediction, clustering (Kohonen feature maps)
neuro-fuzzy rule induction

[Wang and Mendel 1992, Nauck and Kruse 1997, Nauck et al. 1997]
classification, prediction

k-nearest neighbor/case based reasoning

[Dasarathy 1990, Aha 1992, Kolodner 1993, Wettschereck 1994]
classification, prediction

inductive logic programming

[Muggleton 1992, de Raedt and Bruynooghe 1993]

classification, association analysis, concept description

association rules

[Agrawal et al. 1993, Agrawal et al. 1996, Srikant and Agrawal 1996]
association analysis

hierarchical and probabilistic cluster analysis

[Bock 1974, Everitt 1981, Cheeseman et al. 1988, Mucha 1992]
segmentation, clustering
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e fuzzy cluster analysis
[Bezdek and Pal 1992, Bezdek et al. 1999, Hoppuer et al. 1999]
segmentation, clustering

e conceptual clustering
[Michalski and Stepp 1983, Fisher 1987, Hanson and Bauer 1989]
segmentation, concept description

e and many more

Although for each data mining task there are several reliable methods to
solve it, there is, as already indicated above, no single method that can solve
all tasks. Most methods are tailored to solve a specific task and each of
them exhibits different strengths and weaknesses. In addition, usually sev-
eral methods must be combined in order to achieve good results. Therefore
commercial data mining products like, for instance, Clementine (Integral
Solutions Ltd./SPSS, Basingstoke, United Kingdom), DataEngine (Man-
agement Intelligenter Technologien GmbH, Aachen, Germany), or Kepler
(Dialogis GmbH, Sankt Augustin, Germany) offer several of the above meth-
ods under an easy to use graphical interface.! However, as far as I know
there is currently no tool that contains all of the methods mentioned above.
A recent survey of data mining tools can be found in [Gentsch 1999].

1.3 Graphical Models

This thesis deals with two data mining tasks, namely dependence analysis
and classification. These tasks are, of course, closely related, since classifi-
cation can be seen as a special case of dependence analysis: It concentrates
on specific dependences, namely on how a distinguished attribute—the class
attribute—depends on other, descriptive attributes. It tries to exploit these
dependences to classify new cases. Within the set of methods that can be
used to solve these tasks, I focus on techniques to induce graphical models
or, as I will also call them, inference networks from data.

[Lauritzen 1996] traces the ideas of graphical models back to three ori-
gins, namely statistical mechanics [Gibbs 1902], genetics [Wright 1921], and
the analysis of contingency tables [Bartlett 1935]. Originally, they were

11 selected these systems as examples, because I am well acquainted with them. For
Clementine I developed the association rule program underlying its “apriori node” and
the DataEngine plug-in “DecisionXpert” is based on a decision tree induction program I
wrote [Borgelt 1998]. The latter program has recently also been incorporated into Kepler.
Of course, this does not imply that these systems are superior to any other on the market.
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developed as means to build models of a domain of interest. The ratio-
nale underlying them is that, since high-dimensional domains tend to be
unmanageable as a whole—and the more so, if imprecision and uncertainty
are involved—, it is necessary to decompose the available information. In
graphical modeling [Whittaker 1990, Kruse et al. 1991, Lauritzen 1996] such
a decomposition is based on (conditional) dependence and independence re-
lations between the attributes used to describe the domain under consider-
ation. The structure of these relations is represented as a network or graph
(hence the names graphical model and inference network), often called a
conditional independence graph. In such a graph each node stands for an
attribute and each edge for a direct dependence between two attributes.

However, this graph turns out to be not only a convenient way to rep-
resent the content of a model. It can also be used to facilitate reasoning
in high-dimensional domains, since it reduces inferences to computations in
lower-dimensional subspaces. Propagating evidence about the values of ob-
served attributes to unobserved ones can be implemented by locally commu-
nicating node processors and therefore is very efficient. As a consequence,
graphical models are often used in expert and decision support systems
[Neapolitan 1990, Kruse et al. 1991, Cowell 1992, Castillo et al. 1997]. In
such a context, i.e., if graphical models are used to draw inferences, I prefer
to call them inference networks in order to emphasize their objective.

Using inference networks to facilitate reasoning in high-dimensional do-
mains has originated in the probabilistic setting. Bayesian networks [Pearl
1986, Pearl 1988, Jensen 1996], which are based on directed conditional
independence graphs, and Markov networks [Isham 1981, Lauritzen and
Spiegelhalter 1988, Pearl 1988, Lauritzen 1996], which are based on undi-
rected graphs, are the most prominent examples. Early efficient implemen-
tations of these types of networks include HUGIN [Andersen et al. 1989] and
PATHFINDER [Heckerman 1991]. Among the best-known applications of
probabilistic graphical models are the interpretation of electromyographic
findings (the MUNIN program) [Andreassen et al. 1987], blood group de-
termination of Danish Jersey cattle for parentage verification (the BOBLO
network) [Rasmussen 1992], and troubleshooting non-functioning devices
like printers and photocopiers [Heckerman et al. 1994].

However, graphical modeling has also been generalized to be usable with
other uncertainty calculi than probability theory [Shafer and Shenoy 1988,
Shenoy 1992b, Shenoy 1993], for instance, in the so-called valuation-based
networks [Shenoy 1992a] and has been implemented, for example, in PUL-
CINELLA [Saffiotti and Umkehrer 1991]. Due to their connection to fuzzy
systems, which in the past have successfully been applied to solve control
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problems, recently possibilistic networks gained some attention, too. They
can be based on the context model interpretation of a degree of possibility,
which focuses on imprecision [Gebhardt and Kruse 1993a, Gebhardt and
Kruse 1993b], and have been implemented, for example, in POSSINFER
[Gebhardt and Kruse 1996a, Kruse et al. 1994].

For some time the standard approach to construct a graphical model has
been to let a human domain expert specify the dependences in the consid-
ered domain. This provided the network structure. Then the human domain
expert had to estimate the necessary conditional or marginal distribution
functions that represent the quantitative information about the domain.
This approach, however, can be tedious and time consuming, especially, if
the domain under consideration is large. In some situations it may even
be impossible to carry it out, because no or only vague expert knowledge
is available about the (conditional) dependence and independence relations
that hold in the considered domain. Therefore recent research has con-
centrated on learning graphical models from databases of sample cases (cf.
[Herskovits and Cooper 1990, Cooper and Herskovits 1992, Buntine 1994,
Heckerman et al. 1995, Jordan 1998] for learning probabilistic networks
and [Gebhardt and Kruse 1995, Gebhardt and Kruse 1996b, Gebhardt and
Kruse 1996¢, Borgelt and Kruse 1997a, Borgelt and Kruse 1997b, Borgelt
and Gebhardt 1997] for learning possibilistic networks). Thus graphical
models entered the realm of data mining methods.

Graphical models have several advantages when applied to knowledge
discovery and data mining problems. In the first place, as already pointed
out above, the network representation provides a comprehensible qualitative
(network structure) and quantitative description (associated distribution
functions) of the domain under consideration, so that the learning result
can be checked for plausibility against the intuition of human experts. Sec-
ondly, learning algorithms for inference networks can easily be extended to
incorporate the background knowledge of human experts. In the most sim-
ple case a human domain expert specifies the dependence structure of the
domain to be modeled and automatic learning is used only to determine the
distribution functions from a database of sample cases. More sophisticated
approaches take a prior model of the domain and modify it (add or remove
edges, change the distribution functions) w.r.t. the evidence provided by
a database of sample cases [Heckerman et al. 1995]. Finally, although the
learning task has be shown to be NP-complete in the general case [Chicker-
ing et al. 1994, Chickering 1995], there are several good heuristic approaches
which have proven to be successful in practice and which lead to very effi-
cient learning algorithms.
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In addition to these practical advantages, graphical models provide a
framework for some of the data mining methods named above: Naive Bayes
classifiers are probabilistic networks with a special, star-like structure (cf.
chapter 6). Decision trees can be seen as a special type of probabilistic
network in which there is only one child attribute and the emphasis is on
learning the local structure of the network (cf. chapter 8). Furthermore there
are some interesting connections to fuzzy clustering [Borgelt et al. 1999] and
neuro-fuzzy rule induction [Nirnberger et al. 1999] through naive Bayes
classifiers, which may lead to powerful hybrid systems.

1.4 Outline of this Thesis

This thesis covers three types of graphical models: relational, probabilistic,
and possibilistic networks, with relational networks mainly being drawn on
to provide more comprehensible analogies. In the following I give an outline
of this thesis, in which I try to point out my own achievements.

In chapter 2 I review very briefly relational and probabilistic reasoning
and then concentrate on possibility theory, for which I provide a detailed
semantical introduction based on the context model [Gebhardt and Kruse
1993a, Gebhardt and Kruse 1993b]. In this chapter I clarify and at some
points modify the context model interpretation of a degree of possibility
where I found its foundations to be weak or not spelled out clearly enough.

In chapter 3 I study how relations and probability and possibility dis-
tributions, under certain conditions, can be decomposed. By starting from
the simple relational networks, which are usually neglected entirely in in-
troductions to graphical modeling, I try to make the theory of graphical
models and reasoning in graphical models more easily accessible [Borgelt
and Kruse 1998a]. In addition, by developing a peculiar formalization of
relational networks a very strong formal similarity can be achieved to pos-
sibilistic networks. In this way possibilistic networks can be introduced as
simple “fuzzyfications” of relational networks.

In chapter 4 T explain the connection of decompositions of distributions
to graphs that is brought about by the notion of conditional independence.
In addition I briefly review two of the best-known propagation algorithms for
inference networks. My own contributions here are a proof of the equivalence
of the local and the global directed Markov property that is based exclusively
on the semi-graphoid axioms and a derivation of the polytree propagation
formulae that is based on the notion of evidence factors.
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With chapter 5 I turn to learning graphical models from data. I study
a fundamental learning operation, namely how to estimate projections, i.e.,
marginal distributions, from a database of sample cases. Although trivial for
the relational and the probabilistic case, this operation is a severe problem
in the possibilistic case. Therefore I explain and formally justify an efficient
method for computing maximum projections of database-induced possibility
distributions [Borgelt and Kruse 1998c].

In chapter 6 I derive a possibilistic classifier in direct analogy to a naive
Bayes classifier [Borgelt and Gebhardt 1999].

In chapter 7 I proceed to qualitative or structural learning, i.e., how to
induce a network structure from a database of sample cases. Following an
introduction to the principles of global structure learning, which is intended
to provide—like the greater part of chapter 3—an intuitive background, I
discuss some well-known and suggest some new evaluation measures for
learning probabilistic as well as possibilistic networks [Borgelt and Kruse
1997a, Borgelt and Kruse 1998b, Borgelt and Kruse 1999b]. Furthermore,
I review some well-known and suggest some new search methods.

In chapter 8 I extend qualitative network induction to learning local
structure. I explain the connection to decision trees and decision graphs
and suggest a modification of an approach by [Chickering et al. 1997] to
local structure learning for Bayesian networks [Borgelt and Kruse 1998d].

In chapter 9 I study the causal interpretation of learned Bayesian net-
works and in particular the so-called inductive causation algorithm [Pearl
and Verma 1991a, Pearl and Verma 1991b]. Based on [Borgelt and Kruse
1999a] I study carefully the assumptions underlying this approach and reach
the conclusion that the strong claims made about this algorithm cannot be
justified, although it provides useful heuristics.

In chapter 10 I briefly report about an application of learning probabilis-
tic networks at the DaimlerChrysler corporation and point out some open
problems that may provide directions for my future research.

Looking back, this thesis has become longer than originally intended.
However, although it is true that, as C.F. von Weizsédcker remarked in a
lecture, anything ultimately understood can be said briefly, it is also clear
that anything said so briefly is likely to be incomprehensible to anyone who
has not yet understood completely. Since my main aim was comprehensi-
bility, I hope that a reader is remunerated for the length of this thesis by an
exposition that is clear and thus easy to read. However, whether I achieved
this aim is not for me to decide.



Chapter 2

Imprecision and
Uncertainty

Since this thesis is about graphical models and reasoning with them, I start
by saying a few words about reasoning in general, with a focus on infer-
ences under imprecision and uncertainty and the calculi to model these (cf.
[Borgelt et al. 1998a]). The standard calculus to model imprecision is, of
course, relational algebra and its special case (multi-dimensional) interval
arithmetics. However, these calculi neglect that the available information
may be uncertain. On the other hand, the standard calculi to model uncer-
tainty for decision making purposes are probability theory and its extension
utility theory. However, these calculi cannot deal very well with imprecise
information—seen as set-valued information—in the absence of knowledge
about the certainty of the possible alternatives. Therefore, in this chapter, I
also provide an introduction to possibility theory in a specific interpretation
that is based on the context model[Gebhardt and Kruse 1992, Gebhardt and
Kruse 1993a, Gebhardt and Kruse 1993b]. In this interpretation possibility
theory can handle imprecise as well as uncertain information.

2.1 Modeling Inferences
The essential feature of inference is that a certain type of knowledge—
knowledge about truth, probability, (degree of) possibility etc.—is trans-

ferred from given propositions, events, states etc. to other propositions,
events, states etc. For example, in a logical argument the knowledge about

15
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the truth of the premises is transferred to the conclusion; in probabilistic in-
ference the knowledge about the probability of an event is used to calculate
the probability of other, related events and is thus transferred to these.

For the transfer carried out in an inference three things are necessary:
Knowledge to start from (for instance, the knowledge that a given proposi-
tion is true), knowledge that provides a path for the transfer (for example,
an implication), and a mechanism to follow the path (for instance, the rule
of modus ponens to establish the truth of the consequent of an implication
of which the antecedent is known). Only if all three are given and fit to-
gether, an inference can be carried out. Of course, the transfer need not
always be direct. In logic, for example, arguments can be chained by using
the conclusion of one as the premise for another, and several such steps may
be necessary to arrive at a desired conclusion.

From this description the main problems of modeling inferences are ob-
vious. They consist in finding the paths along which knowledge can be
transferred and in providing the proper mechanisms for following them. (In
contrast to this, the knowledge to start from is usually readily available,
e.g. from observations.) Indeed, it is well-known that automatic theorem
provers spend most of their time searching for a path from the given facts to
the desired conclusion. The idea underlying graphical models or inference
networks is to structure the paths along which knowledge can be trans-
ferred or propagated as a metwork or a graph in order to simplify and, of
course, speed up the reasoning process. Such a representation can usually
be achieved, if the knowledge about the modeled domain can be decomposed,
with the network or graph representing the decomposition.

Definitely symbolic logic (see, for example, [Reichenbach 1947, Carnap
1958, Salmon 1963]) is one of the most prominent calculi to represent knowl-
edge and to draw inferences. Its standard method to decompose knowledge
is to identify (universally or existentially quantified) propositions consisting
of only few atomic propositions or predicates. These propositions can often
be organized as a graph, which reflects possible chains of arguments that
can be formed using these propositions and observed facts. However, clas-
sical symbolic logic is not always the best calculus to represent knowledge
and to model inferences. If we confine ourselves to a specific reasoning task
and if we have to deal with imprecision, it is often more convenient to use
a different calculus. If we have to deal with uncertainty, it is necessary.

The specific reasoning task I confine myself to is to identify the true
state wgy of a given section of the world within a set € of possible states.
The set Q of all possible states I call the frame of discernment or the universe
of discourse. Throughout this thesis I assume that possible states w € )
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of the domain under consideration can be described by stating the values
of a finite set of attributes. Often I identify the description of a state w by
a tuple of attribute values with the state w itself, since its description is
usually the only way by which we can refer to a specific state w.

The task to identify the true state wgy consists in combining prior or
generic knowledge about the relations between the values of different at-
tributes (derived from background expert knowledge or from databases of
sample cases) and evidence about the current values of some of the at-
tributes (obtained, for instance, from observations).! The goal is to find
a description of the true state wg that is as specific as possible, that is, a
description which restricts the set of possible states as much as possible.

As an example consider medical diagnosis. Here the true state wy is the
current state of health of a given patient. All possible states can be described
by attributes describing properties of patients (like sex or age) or symptoms
(like fever or high blood pressure) or the presentness or absence of diseases.
The generic knowledge reflects the medical competence of a physician, who
knows about the relations between symptoms and diseases in the context of
other properties of the patient. It may be gathered from medical textbooks
or reports. The evidence is obtained from medical examination and answers
given by the patient, which, for example, reveal that she is 42 years old and
has a temperature of 39°C. The goal is to derive a full description of her state
of health in order to determine which disease or diseases she suffers from.

2.2 Imprecision and Relational Algebra

Statements like “This ball is green or blue or turquoise.” or “The velocity
of the car was between 50 and 60 km/h.” I call imprecise. What makes
them imprecise is that they do not state one value for a property, but a set
of possible alternatives. In contrast to this, a statement that names only
one value for a property I call precise. An example of a precise statement
is “The patient has a temperature of 39.3°C.”?

Imprecision enters our considerations due to two reasons. In the first
place, the generic knowledge about the dependences between attributes can

Instead of “evidence” often the term “evidential knowledge” is used to complement
the term “generic knowledge”. However, this term is not in line with the distinction
I made between data and knowledge in the first chapter, since it refers to individual
properties of a single instance. Therefore, in this thesis, I use the term “evidence”.

20f course, there is also what may be called an implicit imprecision due to the fact
that the temperature is stated with a finite precision, i.e., actually all values between
39.25°C and 39.35°C are possible. However, I neglect such subtleties here.
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be relational rather than functional, so that knowing exact values for the
observed attributes does not allow us to infer exact values for the other
attributes, but only sets of possible values. For example, in medical di-
agnosis a given body temperature is compatible with several physiological
states. Secondly, the available information about the observed attributes
can itself be imprecise. That is, it may not enable us to fix a specific value,
but only a set of alternatives. For example, we may have a measurement
device that can determine the value of an attribute only with a fixed error
bound, so that all values within the interval determined by the error bound
have to be considered possible. In such situations we can only infer that the
current state wg lies within a set of alternative states, but without further
information we cannot single out the true state wy from this set.

It is obvious that imprecision, interpreted as set-valued information,
can easily be handled by symbolic logic: For finite sets of alternatives we
can simply write a disjunction of predicates (e.g. “color(ball) = blue Vv
color(ball) = green V color(ball) = turquoise” to represent the first example
statement given above). For intervals, we may introduce a predicate to
compare values (for example, the predicate < in “50 km/h < velocity(car)
A velocity(car) < 60 km/h” to represent the second example statement).

Trivially, since imprecise statements can be represented in symbolic
logic, we can draw inferences using the mechanisms of symbolic logic. How-
ever, w.r.t. the specific reasoning task I consider here, it is often more conve-
nient to use relational algebra for inferences with imprecise statements. The
reason is that the operations of relational algebra can be seen as a special
case of logical inference rules that draw several inferences in one step.

Consider a set of geometrical objects about which we know the rules

Vx : color(x) = green — shape(z) = triangle,
Va : color(x) = red —  shape(x) = circle,
Va: color(x) =blue  — shape(z) = circle,
Vx : color(z) = yellow — shape(z) = square.

In addition, suppose that any object must be either green, red, blue, or
yellow and that it must be either a triangle, a circle, or a square. That
is, we know the domains of the attributes “color” and “shape”. All these
pieces of information together form the generic knowledge.

Suppose also that we know that the object o is red, blue, or yellow, i.e.,
color(o) = red V color(o) = blue V color(o) = yellow. This is the evidence. If
we combine it with the generic knowledge above we can infer that the object
must be a circle or a square, i.e., shape(o) = circle V shape(o) = square.
However, it takes several steps to arrive at this conclusion.
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In relational algebra (see, e.g., [Ullman 1988]) the generic knowledge as
well as the evidence is represented as relations, namely:

color shape color
Generic green | triangle Evidence | red
Knowledge | red circle blue
blue circle yellow
yellow | square

Each tuple is seen as a conjunction, each term of which corresponds to an
attribute (represented by a column) and asserts that the attribute has the
value stated in the tuple. The tuples of a relation form a disjunction. For
the evidence this is obvious. For the generic knowledge this becomes clear
by realizing that from the available generic knowledge we can infer

Vo (color(xz) = green A shape(x) = triangle)
vV (color(z) = red A shape(z) = circle)
V  (color(z) =blue A shape(x) = circle)
V' (color(z) = yellow A shape(x) = square).

That is, the generic knowledge reflects the possible combinations of attribute
values. Note that the generic knowledge is universally quantified, whereas
the evidence refers to a single instance, namely the observed object o.

The inference is drawn by projecting the natural join of the two relations
to the column representing the shape of the object. The result is:

shape

Inferred | circle
Result square

That is, we only need two operations, independent of the number of terms
in the disjunction. The reason is that the logical inferences that need to
be carried out are similar in structure and thus they can be combined. In
section 3.2 reasoning with relations is studied in more detail.

2.3 Uncertainty and Probability Theory

In the preceding section I implicitly assumed that all statements are certain,
i.e., that all alternatives not named in the statements can be excluded. For
example, I assumed that the ball in the first example is definitely not red
and that the car in the second example was definitely faster than 40 km/h.
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sex

female | male | >
color- | yes | 0.001 | 0.025 | 0.026
blind | no | 0.499 | 0.475 | 0.974
> 0.5 05 |1

Table 2.1: Generic knowledge about the relation of sex and color-blindness.

If these alternatives cannot be excluded, then the statements are uncertain,
because they are false, if one of the alternatives not named in the statement
describes the actual situation. Note that both precise and imprecise state-
ments can be uncertain. What makes a statement certain or uncertain is
whether all possible alternatives are listed in the statement or not.

The reason why I assumed up to now that all statements are certain is
that the inference rules of classical symbolic logic (and, consequently, the
operations of relational algebra) can be applied only, if the statements they
are applied to are known to be definitely true: The prerequisite of all logical
inferences is that the premises are true.

In applications, however, we rarely find ourselves in such a favorable
position. To cite a well-known example, even the commonplace statement
“If an animal is a bird, then it can fly.” is not absolutely certain, because
there are exceptions like penguins, ostriches etc. Nevertheless we would
like to draw inferences with such statements, since they are “normally” or
“often” correct. In addition, we frequently find ourselves in the position that
we cannot exclude all but one alternative, but nevertheless have to decide on
one. In such a situation, of course, we would like to decide on that precise
statement that is “most likely” to be true. If, for example, the symptom
fever is observed, then various disorders may be its cause and usually we
cannot exclude all but one alternative. Nevertheless, in the absence of other
information a physician may prefer a severe cold as a diagnosis, because it
is a fairly common disorder.

To handle uncertain statements in (formal) inferences, we need a way
to assess the certainty of a statement. This assessment may be purely com-
parative, resulting only in preferences between the alternative statements.
More sophisticated approaches quantify these preferences and assign degrees
of certainty, degrees of confidence, or degrees of possibility to the alternative
statements, which are then treated in an adequate calculus.
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The most prominent approach to quantify the certainty or the possibil-
ity of statements is, of course, probability theory (see, e.g., [Feller 1968]).
Probabilistic reasoning usually consists in conditioning a given probability
distribution, which represents the generic knowledge. The conditions are
supplied by observations made, i.e., by the evidence about the domain.

As an example consider table 2.1, which shows a probability distribution
about the relation between the sex of a human and whether he or she is
color-blind. Suppose that we have a male patient. From table 2.1 we can
compute that the probability that he is color-blind as

P(color-blind(z) = yes | sex(z) = male)
P(color-blind(z) = yes Asex(x) = male)  0.025

P(sex(z) = male) - 05 0.05.

Often the generic knowledge is not given as a joint distribution, but as
marginal and conditional distributions. For example, we may know that
the two sexes are equally likely and that the probabilities for a female and
a male to be color-blind are 0.002 and 0.05, respectively. In this case the
result of the inference considered above can be read directly from the given
generic knowledge. If, however, we know that a person is color-blind, we
have to compute the probability that the person is male using Bayes’ rule:

P(sex(x) = male | color-blind(z) = yes)
P(color-blind(x) = yes | sex(z) = male) P(sex(z) = male)
P(color-blind(z) = yes)

0.05- 0.5
= o~ 096

where P(color-blind = yes) is computed as

P(color-blind(x) = yes)
= P(color-blind(x) = yes | sex(z) = female) - P(sex(z) = female)
+ P(color-blind(x) = yes | sex(z) = male) - P(sex(z) = male)
= 0.002-0.5+0.05-5 = 0.026.

In section 3.3 reasoning with (multi-variate) probability distributions is
studied in more detail.

As a final remark let me point out that with a quantitative assessment
of certainty, certainty and precision are usually complementary properties.
A statement can often be made more certain by making it less precise and
it can be made more precise by making it less certain.
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2.4 Possibility Theory and the Context Model

Relational algebra and probability theory are well-known calculi, so I re-
frained from providing an introduction and confined myself to recalling what
it means to draw inferences in these calculi. The case of possibility theory,
however, is different. Although it has been aired for some time now, it is
less well known than probability theory. In addition, there is still an intense
discussion going on about its interpretation. Therefore this section provides
an introduction to possibility theory that focuses on the interpretation of
its key concept, namely a degree of possibility.

In colloquial language the notion (or, to be more precise, the modality,
cf. modal logic) “possibility”, like “truth”, is two-valued: either an event, a
circumstance etc. is possible or it is impossible. However, to define degrees
of possibility, we need a quantitative notion. Thus our intuition, exemplified
by how the word “possible” is used in colloquial language, does not help us
much, if we want to understand what may be meant by a degree of possi-
bility. Unfortunately, this fact is often treated too lightly in publications on
possibility theory. It is rarely easy to pin down the exact meaning that is
given to a degree of possibility. To avoid such problems, I explain in detail
a specific interpretation that is based on the context model [Gebhardt and
Kruse 1992, Gebhardt and Kruse 1993a, Gebhardt and Kruse 1993b]. In
doing so, I distinguish carefully between a degree of possibility and the re-
lated notion of a probability, both of which can be seen as quantifications of
possibility. Of course, there are also several other interpretations of degrees
of possibility, like the epistemic interpretation of fuzzy sets [Zadeh 1978,
the theory of epistemic states [Spohn 1990], and the theory of likelihoods
[Dubois et al. 1993], but these are beyond the scope of this thesis.

2.4.1 Experiments with Dice

As a first example, consider five dice shakers containing different kinds of
dice as indicated in table 2.2. The dice, which are Platonic bodies, are
shown in figure 2.1. Shaker 1 contains a tetrahedron (a regular four-faced
body) with its faces labeled with the numbers 1 through 4 (when throwing
the die, the number on the face the tetrahedron lies on counts). Shaker 2
contains a hexahedron (a regular six-faced body, usually called a cube)
with its faces labeled with the numbers 1 through 6. Shaker 3 contains
an octahedron (a regular eight-faced body) the faces of which are labeled
with the numbers 1 through 8. Shaker 4 contains an icosahedron (a regular
twenty-faced body). On this die, opposite faces are labeled with the same
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0o 8 &

tetrahedron  hexahedron  octahedron  icosahedron dodecahedron

Figure 2.1: Five dice with different ranges of possible numbers.

shaker 1 shaker 2 shaker 3 shaker 4 shaker 5
tetrahedron | hexahedron | octahedron | icosahedron | dodecahedron
1-4 1-6 1-8 1-10 1-12

Table 2.2: The five dice shown in figure 2.1 in five shakers.

number, so that the die shows the numbers 1 through 10. Finally, shaker 5
contains a dodecahedron (a regular twelve-faced body) with its faces labeled
with the numbers 1 through 12.% In addition to the dice in the shakers there
is another icosahedron on which groups of four faces are labeled with the
same number, so that the die shows the numbers 1 through 5. Suppose the
following random experiment is carried out: First the additional icosahedron
is thrown. The number it shows indicates a shaker to be used. The number
thrown with the die from this shaker is the result of the experiment.

Let us consider the possibility that a certain number is the result of this
experiment. Obviously, before the shaker is fixed, any of the numbers 1
through 12 is possible. Although smaller numbers are more probable (see
below), it is not impossible that the number 5 is thrown in the first step,
which enables us to use the dodecahedron in the second. However, if the
additional icosahedron has already been thrown and thus the shaker is fixed,
certain results may no longer be possible. For example, if the number 2 has
been thrown, we have to use the hexahedron (the cube) and thus only the
numbers 1 through 6 are possible. Because of this restriction of the set of
possible outcomes by the result of the first step, it is reasonable to define as
the degree of possibility of a number the probability that it is still possible
after the additional icosahedron has been thrown.

Obviously, we have to distinguish five cases, namely those associated
with the five possible results of throwing the additional icosahedron. The

3Dice as these are not as unusual as one may think. They are commonly used in
fantasy role games and can be bought at many major department stores.
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numbers degree of possibility normalized to sum 1
1-4 | t+1+1+1+2=1| 3% =0125

5-6 t+it+i+i=%2|4=01

7-8 il l=3123-0075

9-10 14l=212-005

11-12 t=11]4=0025

Table 2.3: Degrees of possibility in the first dice example.

numbers 11 and 12 are only possible as the final result, if we throw the
1

number 5 in the first step. The probability of this event is . Therefore
the probability of their possibility, i.e., their degree of possibility, is % The
numbers 9 and 10 are possible, if throwing the additional tetrahedron re-
sulted in one of the numbers 4 or 5. It follows that their degree of possibility
is % Analogously we can determine the degrees of possibility of the num-
bers 7 and 8 to be %, those of the numbers 5 and 6 to be %, and those of the
numbers 1 through 4 to be 1, since the latter are possible independent of the
result of throwing the additional icosahedron. These degrees of possibility
are listed in the center column of table 2.3.

The function that assigns a degree of possibility to each elementary event
of a given sample space (in this case to the twelve possible outcomes of the
described experiment) is often called a possibility distribution and the degree
of possibility it assigns to an elementary event F is written 7(F). However,
if this definition of a possibility distribution is checked against the axiomatic
approach to possibility theory [Dubois and Prade 1988], which is directly
analogous to the axiomatic approach to probability theory?, it turns out
that it leads to several conceptual and formal problems. The main reasons
are that in the axiomatic approach a possibility distribution is defined for a
random variable, but we only have a sample space yet, and that there are, of
course, random variables for which the possibility distribution is not an as-
signment of degrees of possibility to the elementary events of the underlying
sample space. Therefore I deviate from the terminology mentioned above
and call the function that assigns a degree of possibility to each elemen-
tary event of a sample space the basic or elementary possibility assignment.

Analogously, I speak of a basic or elementary probability assignment. This

4This axiomatic approach is developed for binary possibility measures in section 3.2.5
and can be carried over directly to general possibility measures.



2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 25

deviation in terminology goes less far, though, than one might think at first
sight, since a basic possibility or probability assignment is, obviously, identi-
cal to a specific possibility or probability distribution, namely the one of the
random variable that has the sample space as its range of values. Therefore
I keep the notation w(E) for the degree of possibility that is assigned to an
elementary event F by a basic possibility assignment. In analogy to this, I
use the notation p(E) for the probability that is assigned to an elementary
event by a basic probability assignment (note the lowercase p).

The function that assigns a degree of possibility to all (general) events,
i.e., to all subsets of the sample space, is called a possibility measure. This
term, fortunately, is compatible with the axiomatic approach to possibility
theory and thus no change of terminology is necessary here. A possibility
measure is usually denoted by a II, i.e., by an uppercase w. This is directly
analogous to a probability measure, which is usually denoted by a P.

In the following I demonstrate, using the simple dice experiment, the
difference between a degree of possibility and a probability in two steps.
In the first step I compute the probabilities of the numbers for the dice
experiment and compare them to the degrees of possibility. Here the most
striking difference is the way in which the degree of possibility of (general)
events—i.e., sets of elementary events—is computed. In the second step I
modify the dice experiment in such a way that the basic probability assign-
ment changes significantly, whereas the basic possibility assignment stays
the same. This shows that the two concepts are relatively unrelated.

The probabilities of the outcomes of the dice experiment are easily com-
puted using the product rule of probability P(ANB) = P(A | B) P(B) where
A and B are events. Let O;, 1 = 1,...,12, be the events that the final out-
come of the dice experiment is the number ¢ and let S;, j =1,...,5, be the
event that the shaker j was selected in the first step. Then it is

P(0;) = 25:13(01‘ A Sj) = ZS:P(Oi | S;)P(S))

Since we determine the shaker by throwing the additional icosahedron, it is
P(S;) = %, independent of the number j of the shaker. Hence it is
1 . . .
=, if1<i<2j+2,
P(O; | 85) =<4 2** .

0, otherwise.
The reason is that shaker j contains a die labeled with the numbers 1
through 25 + 2. The resulting probabilities are listed in table 2.4. The
difference to the degrees of possibility of table 2.3 is evident.
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numbers probability
1-4 |+ (G+e+s+5+5)=2=0145
5.6 |3 (GHsTists) =30 = 0.0%
7-8 | L (t+L+4) =25 =0.0616
9-10 | & (15 + 15) = 395 = 0.036
11-12 | & () = g = 0.016

Table 2.4: Probabilities in the first dice example.

However, one may conjecture that the difference results from the fact
that a basic probability assignment is normalized to sum 1 (since 4 - % +
2. % +2- % +2- % +2- 45 = 1) and that the difference vanishes, if
the basic possibility assignment is normalized by dividing each degree of
possibility by s :4-1—1—2-%—1—2-%—1—2-%—1—2- % = 8. The right column of
table 2.3 shows, though, that this is not the case, although the differences
are not very large. In addition, such a normalization is not meaningful—at
least from the point of view adopted above. The normalized numbers can
no longer be interpreted as the probabilities of the possibility of events.

The difference between the two concepts becomes even more notice-
able, if we consider the probability and the degree of possibility of (general)
events, i.e., of sets of elementary events. For instance, we may consider the
event “The final outcome of the experiment is a 5 or a 6.” Probabilities
are additive in this case (cf. Kolmogorov’s axioms), i.e., the probability of
the above event is P(Os U Og) = P(O5) + P(Og) = 5% = 0.19. A de-
gree of possibility, on the other hand, behaves in an entirely different way.
According to the interpretation I laid down above, one has to ask: What
is the probability that after throwing the additional icosahedron it is still
possible to get a 5 or a 6 as the final outcome? Obviously, a 5 or a 6 are
still possible, if throwing the additional icosahedron resulted in a 2, 3, 4,
or 5. Therefore the degree of possibility is II(O5 U Og) = 1 and thus the
same as the degree of possibility of each of the two elementary events.

It is easy to verify that in the dice example the degree of possibility of a
set of elementary events always is the maximum of the degrees of possibility
of the elementary events contained in it. However, the reason for this lies
in the specific structure of this experiment. In general, this need not be the
case. When discussing measures of possibility in more detail below, I show
what conditions have to hold.



2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 27

number probability
1 5 (16 + 36 T 52 + 100 + 1) = 7000 ~ 0-0246
2 2 (f5 + 35 + 51+ 100 T 147) = 3000 ~ 0-0737
3| B itk g+ k) — 2 ~ 01228
4 I (5t % +a+1s+ g = s ~0.1720
5 2. (E+ &+t )= o2 ~0.1086
6 u, et T ) = a2 &~ 0.1328
7 % (6_14_|_ﬁ+ﬁ):%z0.0847
s | (L 4oL )= 169 00977
o |1 (s + ) = 4987~ 0.0576
0 |2 (- + L) = 159~ 0 0644
no | () = 505 ~0.0292
|z Ly= 2 ~00319

Table 2.5: Probabilities in the second dice example.

In the following second step I slightly modify the experiment to demon-
strate the relative independence of a basic probability and a basic possibility
assignment. Suppose that instead of only one die, there are now two dice
in each of the shakers, but two dice of the same kind. It is laid down that
the higher number thrown counts. Of course, with this arrangement we get
a different basic probability assignment, because we now have

el i1 <i <25 +2,

P(0: | 5)) ={ ) |

0, otherwise.
To see this, notice that there are 2 — 1 pairs (r,s) with 1 < r,s < 2j+2
and max{r,s} = 4, and that in all there are (2j + 2)? pairs, all of which
are equally likely. The resulting basic probability assignment is shown in
table 2.5. The basic possibility assignment, on the other hand, remains
unchanged (cf. table 2.3). This is not surprising, because the two dice in
each shaker are of the same kind and thus the same range of numbers is
possible as in the original experiment. From this example it should be clear
that the basic possibility assignment entirely disregards any information
about the shakers that goes beyond the range of possible numbers.
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If we compare the probabilities and the degrees of possibility in the ta-
bles 2.3, 2.4, and 2.5, we can see the following interesting fact: Whereas in
the first experiment the rankings of the outcomes are the same for the basic
probability and the basic possibility assignment, they differ significantly for
the second experiment. Although the number with the highest probability
(the number 4) is still among those having the highest degree of possibil-
ity (numbers 1, 2, 3, and 4), the number with the lowest probability (the
number 1) is—surprisingly enough—also among them. It follows that from
a high degree of possibility one cannot infer a high probability.

It is intuitively clear, though, that the degree of possibility of an event, in
the interpretation adopted here, can never be less than its probability. The
reason is that computing a degree of possibility can also be seen as neglecting
the conditional probability of an event given the context. Hence a degree
of possibility of an event can be seen as an upper bound for the probability
of this event [Dubois and Prade 1992], which is derived by distinguishing
a certain set of cases. In other words, we have at least the converse of
the statement found to be invalid above, namely that from a low degree
of possibility we can infer a low probability. However, beyond this weak
statement no generally valid conclusions can be drawn.

2.4.2 The Context Model

It is obvious that the degree of possibility assigned to an event depends
on the set of cases or contexts that are distinguished. These contexts are
responsible for the name of the already mentioned context model [Gebhardt
and Kruse 1992, Gebhardt and Kruse 1993a, Gebhardt and Kruse 1993b].
In this model the degree of possibility of an event is the probability of the set
of those contexts in which it is possible—in accordance to the interpretation
used above: It is the probability of the possibility of an event.

In the above example I chose the shakers as contexts. However, I
could have chosen differently, relying on some other aspect of the experi-
ment. For example, three of the Platonic bodies—tetrahedron, octahedron,
and icosahedron—have triangular faces, so we may decide to group them,
whereas each of the other two forms a context by itself. Thus we have three
contexts, with the group of tetrahedron, octahedron, and icosahedron hav-
ing probability % and each of the other two contexts having probability %
The resulting basic possibility assignment is shown in table 2.6. This choice
of contexts also shows that the contexts need not be equally likely. As a
third alternative we could use the initial situation as the only context and
thus assign a degree of possibility of 1 to all numbers 1 through 12.
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numbers | degree of possibility
1-6 t+i+i=1
7-10 S+i=¢
1112 i=1

Table 2.6: Degrees of possibility derived from grouped dice.

It follows that it is very important to specify which contexts are used
to compute the degrees of possibility. Different sets of contexts lead, in
general, to different basic possibility assignments. Of course, if the choice
of the contexts is so important, the question arises how the contexts should
be chosen. From the examples just discussed, it is plausible that we should
make the contexts as fine-grained as possible to preserve as much informa-
tion as possible. If the contexts are coarse, as with the grouped dice, fewer
distinctions are possible between the elementary events and thus informa-
tion is lost, as can be seen clearly from the tables 2.3 and 2.6 where the
former permits us to make more distinctions.

From these considerations it becomes clear that I actually cheated a
bit (for didactical reasons) by choosing the shakers as contexts. With the
available information, it is possible to define a much more fine-grained set of
contexts. Indeed, since we have full information, each possible course of the
experiment can be made its own context. That is, we can have one context
for the selection of shaker 1 and the throw of a 1 with the die from this
shaker, a second context for the selection of shaker 1 and the throw of a 2,
and so on, then a context for the selection of shaker 2 and the throw of a 1
etc. We can choose these contexts, because with the available information
they can easily be distinguished and assigned a probability (cf. the formulae
used to compute table 2.4). Tt is obvious that with this set of contexts the
resulting basic possibility assignment coincides with the basic probability
assignment, because there is only one possible outcome per context.

These considerations illustrate in more detail the fact that the degree
of possibility of an event can also be seen as an upper bound for the prob-
ability of this event, derived from a distinction of cases. Obviously, the
bound is tighter if the sets of possible values per context are smaller. In
the limit, for one possible value per context, it reaches the underlying basic
probability assignment. They also show that degrees of possibility essen-
tially model negative information: Our knowledge about the underlying
unknown probability gets more precise the more values can be excluded per
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context, whereas the possible values do not convey any information (indeed:
that they are possible we already know from the domain definition). There-
fore, we must endeavor to exclude as many values as possible in the contexts
to make the bound on the probability as tight as possible.

As just argued, the basic possibility assignment coincides with the basic
probability assignment if we use a set of contexts that is sufficiently fine-
grained, so that there is only one possible value per context. If we use
a coarser set instead, so that several values are possible per context, the
resulting basic possibility assignment gets less specific (is only a loose bound
on the probability) and the basic probability assignment is clearly to be
preferred. This is most obvious if we compare the tables 2.3 and 2.5, where
the ranking of the degrees of possibility actually misleads us. So why bother
about degrees of possibility in the first place? Would we not be better off
by sticking to probability theory? A superficial evaluation of the above
considerations suggests that the answer must be a definite “yes”.

However, we have to admit that we could compute the probabilities in
the dice example only, because we had full information about the experi-
mental setup. In applications, we rarely find ourselves in such a favorable
position. Therefore let us consider an experiment in which we do not have
full information. Suppose that we still have five shakers, one of which is
selected by throwing an icosahedron. Let us assume that we know about
the kind of the dice that are contained in each shaker, i.e., tetrahedrons in
shaker 1, hexahedrons in shaker 2 and so on. However, let it be unknown
how many dice there are in each shaker and what the rule is by which the
final outcome is determined, i.e., whether the maximum number counts, or
the minimum, or if the outcome is computed as an average rounded to the
nearest integer number, or if it is determined in some other, more compli-
cated, way. Let it only be known that the rule is such that the outcome is
in the range of numbers present on the faces of the dice.

With this state of information, we can no longer compute a basic prob-
ability assignment on the set of possible outcomes, because we do not have
an essential piece of information needed in these computations, namely the
conditional probabilities of the outcomes given the shaker. However, since
we know the possible outcomes, we can compute a basic possibility assign-
ment, if we choose the shakers as contexts (cf. table 2.3 on page 24). Note
that in this case choosing the shakers as contexts is the best we can do. We
cannot choose a more fine-grained set of contexts, because we lack the neces-
sary information. Of course, the basic possibility assignment is less specific
than the best one for the original experiment, but this is not surprising,
since we have much less information about the experimental setup.
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2.4.3 The Insufficient Reason Principle

I said above that we cannot compute a basic probability assignment with
the state of information I assumed in the modified dice example. A more
precise formulation is, of course, that we cannot compute a basic probability
assignment without adding information about the setup. It is clear that we
can always define conditional probabilities for the outcomes given the shaker
and thus place ourselves in a position in which we have all that is needed to
compute a basic probability assignment. The problem with this approach
is, obviously, that the conditional probabilities we lay down appear out of
the blue. In contrast to this, basic possibility assignments can be computed
without inventing information (but at the price of being less specific).

It has to be admitted, though, that for the probabilistic setting there is
a well-known principle, namely the so-called insufficient reason principle,
which prescribes a specific way of fixing the conditional probabilities within
the contexts and for which a very strong case can be made. The insufficient
reason principle states that if you can specify neither probabilities (quan-
titative information) nor preferences (comparative information) for a given
set of (mutually exclusive) events, then you should assign equal probabili-
ties to the events in the set, because you have insufficient reasons to assign
to one event a higher probability than to another. Hence the conditional
probabilities of the events possible in a context should be the same.

A standard argument in favor of the insufficient reason principle is the
permutation invariance argument: In the absence of any information about
the (relative) probability of a given set of (mutually exclusive) events, per-
muting the event labels should not change anything. However, the only
assignment of probabilities that remains unchanged under such a permuta-
tion is the uniform assignment.

Note that the structure of the permutation invariance argument is the
same as the structure of the argument by which we usually convince our-
selves that the probability of an ace when throwing a (normal, i.e., cube-
shaped) die is %. We argue that the die is symmetric and thus permuting
the numbers should not change the probabilities of the numbers. This struc-
tural equivalence is the basis for the persuasiveness of the insufficient reason
principle. However, it should be noted that the two situations are funda-
mentally different. In the case of the die we consider the physical parameters
that influence the probability of the outcomes and find them to be invariant
under a permutation of the face labels. In the case of the insufficient reason
principle we consider, as we may say, our ignorance about the obtaining sit-
uation and find that it stays the same if we permute the event labels. That
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is, in the former case, we conclude from the presence of (physical) informa-
tion that the probabilities must be the same, in the latter we conclude from
the absence of information, that equal probabilities are the best choice.’

Of course, this does not invalidate the insufficient reason principle, but
it warns us against an unreflected application. Note also that the permuta-
tion invariance argument assumes that probabilities reflect our knowledge
about a situation and are no “physical” parameters, i.e., it presupposes a
subjective or personalistic interpretation of probability. Hence it may be
unacceptable to an empirical or frequentist interpretation of probability.
Although an approach based on this principle is the toughest competitor of
a possibilistic approach, I do not consider the insufficient reason principle
any further. The reason is that whether the methods discussed in this the-
sis are useful or not does not depend on the answer given to the question
whether an insufficient reason principle approach or a possibilistic approach
is to be preferred. Although I study possibilistic networks, I argue that the
decomposition and propagation operations used in these networks can be
justified for a purely probabilistic approach as well. However, I take up the
insufficient reason principle again in section 10.2, in which I point out open
problems in connection to a possibilistic approach.

2.4.4 Overlapping Contexts

The examples discussed up to now may have conveyed the idea that the
contexts must be (physically) disjoint, because the selection of a shaker
excludes all events associated with another shaker. (Note that we should
not be deceived by the fact that the same outcome can be produced with
two different shakers. In this case only the outcome is the same, but the
courses of the experiment leading to it are different.) However, this is not
necessary. In order to illustrate what I mean by non-disjoint or overlapping
contexts, I consider yet another modification of the dice experiment.
Suppose that the shakers are marked with colors. On each shaker there
are two colored spots: one on the front and one on the back. There are
five colors: red, green, yellow, blue, and white, each of which has been used
twice. The full assignment of colors to the shakers is shown in table 2.7.

5Note, however, that in the case of the die the theoretically introduced probability is,
strictly speaking, only a hypothesis which has to be verified empirically, since there is no
a priori knowledge about reality [Reichenbach 1944].

6For a brief comparison of the three major interpretations of probability—Ilogical,
empirical (or frequentistic), and subjective (or personalistic)—see, for instance, [Savage
1954, von Weizsicker 1992].
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shaker 1 2 3 4 5
front red white blue yellow | green
back green | yellow | white blue red

Table 2.7: The shakers marked with colors.

event P || event event

red % red or green red or green or yellow
green % red or yellow red or green or blue
yellow % red or blue red or green or white
blue % red or white red or yellow or blue
white % green or yellow red or yellow or white

green or blue red or blue or white

green or white green or yellow or blue
yellow or blue green or yellow or white
any four | 1 || yellow or white

all five 1 || blue or white

green or blue or white

yellow or blue or white

Gl Gllee G G il Gl Gt s ol ol | Ny
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Table 2.8: The probabilities of all possible sets of colors.

Obviously, in connection with a red or a green spot all numbers in the
range 1 through 12 are possible, whereas in connection with a yellow or a
blue spot only the numbers 1 through 10 are possible, and in connection
with a white spot only the numbers 1 through 8 are possible. Let us assume
that we do not know about the shakers and how they are selected, but that
we do know the probabilities that can be derived from the selection process
for sets of colors. These probabilities are shown in table 2.8.

In this situation we should choose the colors as contexts, because they
provide the most fine-grained distinction of cases that is available to us.
Apart from this the only difference is that we can no longer compute the
degree of possibility of an outcome as the sum of the probabilities of the
contexts in which it is possible. Instead, we have to look up the probability
of this set of contexts in the table of probabilities. The resulting basic
possibility assignment is shown in table 2.9. Note that this basic possibility
assignment is less specific than the one shown in table 2.6 (it is less restrictive
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numbers | degree of possibility
1-8 1
4
9-10 5
2
11 - 12 £

Table 2.9: Degrees of possibility in the example with color-marked shakers.

for the numbers 7 and 8 and the numbers 11 and 12), which reflects that
we have less specific information about the experimental setup.

Although in the previous example we could handle overlapping contexts,
it points out a problem. If the contexts overlap and we do not know the full
probability measure on the set of contexts, but only, say, the probability of
single contexts, we can no longer compute the degree of possibility of an
outcome. Suppose, for instance, that w.r.t. the connection of colors and
outcomes we have the same information as in the previous example, but of
the probability measure on the set of colors we only know that each color
has a probability of % Unfortunately, there is an assignment of colors to the
shakers that is consistent with this information, but in which the contexts
overlap in a different way, so that the probability measure on the set of
colors differs. This assignment is shown in table 2.10, the corresponding
probabilities of sets of colors are shown in table 2.11. The resulting basic
possibility assignment—which, of course, we could compute only, if we knew
the probabilities of the sets of colors shown in table 2.11, which we assume
not to know—is shown in table 2.12.

A simple way to cope with the problem that we do not know the prob-
abilities of sets of colors is the following: If we know the probabilities of
the contexts, we can compute upper bounds for the probabilities of sets of
context using P(AU B) < P(A) + P(B). That is, we may use the sum of
the probabilities of the contexts in a set (bounded by 1, of course) instead
of the (unknown) probability of the set. However, in this case we have to
reinterpret a degree of possibility as an upper bound on the probability of the
possibility of an event. This is acceptable, since a degree of possibility can be
seen as an upper bound for the probability of an event anyway (see above)
and using an upper bound for the probability of a context only loosens the
bound. In the example at hand such a computation of the degrees of pos-
sibilities leads to the basic possibility assignment shown in table 2.13. Of
course, due to the simplicity of the example and the scarcity of the infor-
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shaker 1 2 3 4 5
front blue red white | yellow | green
back green | white | yellow | blue red

Table 2.10: Another possible color assignment.

event P || event event

red % red or green red or green or yellow
green % red or yellow red or green or blue
yellow % red or blue red or green or white
blue % red or white red or yellow or blue
white % green or yellow red or yellow or white

green or blue red or blue or white

green or white green or yellow or blue
yellow or blue green or yellow or white
any four | 1 || yellow or white green or blue or white

all five 1 || blue or white

G = = ol = ol ol ol = | Ry

yellow or blue or white

Table 2.11: The probabilities of all possible sets of colors as they can be
derived from the second possible color assignment.

mation left, which is not sufficient to derive strong restrictions, this basic
possibility assignment is highly unspecific and thus almost useless. In more
complex situation the basic possibility assignment resulting from such an
approach may still be useful, though.

In the following I do not consider the approach using upper bounds any
further, but assume that the contexts are disjoint or that the probability
measure on the set of contexts is known. For the domains of application I
am concerned with in this thesis, this is usually a reasonable assumption, so
that I can spare myself the formal and semantical complications that would
result from an upper bounds approach. Note, by the way, that the situation
just described cannot be handled by the insufficient reason principle alone,
since the missing information about the probabilities of sets of contexts
cannot be filled in using it.
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numbers | degree of possibility
1-10 1
11 - 12

o

Table 2.12: Degrees of possibility in the second example with color-marked
shakers.

numbers | degree of possibility
1-10 1
11 - 12

(S

Table 2.13: Degrees of possibility computed from upper bounds on context
probabilities.

2.4.5 Mathematical Formalization

The context model interpretation of a degree of possibility I adopted in the
above examples can be formalized by the notion of a random set [Nguyen
1978, Hestir et al. 1991]. A random set is simply a set-valued random vari-
able: In analogy to a standard, usually real-valued random variable, which
maps elementary events to numbers, a random set maps elementary events
to subsets of a given reference set. Applied to the dice experiments this
means: The sample space consists of five elementary events, namely the five
shakers. Each of them is mapped by a random set to the set of numbers that
can be thrown with the die or dice contained in it. Formally, a random set
can be defined as follows [Nguyen 1978, Nguyen 1984, Kruse et al. 1994]:

Definition 2.1 Let (C,2%, P) be a finite probability space and let Q be a
nonempty set. A set-valued mapping T' : C — 2 is called a random set.”
The sets T'(c), ¢ € C, are called the focal sets of T'.

The set C, i.e., the sample space of the finite probability space (C,2¢, P),
is intended to model the contexts. The focal set I'(¢) contains the values
that are possible in context c¢. It is often useful to require the focal set I'(¢c)
to be nonempty for all contexts c.

"For reasons unknown to me a random set is usually defined as the pair (P, T') whereas
a standard random variable is identified with the mapping. However, a random set is
merely a set-valued random variable, so there seems to be no need for a distinction.
Therefore I identify a random set with the set-valued mapping.
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A context ¢ may be defined, as illustrated above, by physical or obser-
vational frame conditions. It may also be, for example, an observer or a
measurement device. The probability P can state the probability of the
occurrence (how often shaker i is used) or the probability of the selection of
a context (how often a certain color is chosen to accompany the outcome),
or a combination of both. An interpretation that is less bound to proba-
bility theory may also choose to see in the probability measure P a kind of
quantification of the relative importance or reliability of observers or other
information sources [Gebhardt and Kruse 1998].

Note that this definition implicitly assumes that the contexts are disjoint,
since they are made the elementary events of a probability space. At first
sight, this seems to prevent us from using overlapping contexts, like those
of the color-marked shakers example. However, it should be noted that
overlapping contexts can always be handled by introducing artificial con-
texts, combinations of which then form the actual contexts. These artificial
contexts are only a mathematical device to get the probability arithmetics
right. For example, in the color-marked shakers example, we may introduce
five contexts ¢; to cs, each having a probability of %, and then define that
the contexts “red” and “green” both correspond to the set {c1,c5}, “yellow”
corresponds to {ca, ¢4}, “blue” corresponds to {cs,cs}, and “white” corre-
sponds to {cz,c5}. Actually, with these assignments, the contexts ¢; to cs
can be interpreted as the shakers 1 to 5. However, it is clear that they can
also be constructed without knowing about the shakers as a mathematical
tool. In the same way, appropriate focal sets can be found.

A basic possibility assignment is formally derived from a random set by
computing the contour function [Shafer 1976] or the falling shadow [Wang
1983a] of a random set on the set 2. That is, to each element w € § the
probability of the set of those contexts is assigned that are mapped by I' to
a set containing w [Kruse et al. 1994].

Definition 2.2 Let I' : C — 2% be a random set. The basic possibility
assignment induced by I is the mapping

m:Q — [0,1],
w +— P{ceClweTl(q}).

With this definition the informal definition given above is made formally
precise: The degree of possibility of an event is the probability of the possi-
bility of the event, i.e., the probability of the contexts in which it is possible.

In the following I will consider mainly basic possibility assignments on
finite sets ) to avoid some technical complications.
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2.4.6 Normalization and Consistency

Often it is required that a basic possibility assignment is normalized, where
normalization is defined as follows:

Definition 2.3 A basic possibility assignment is called normalized iff
JweQ:m(w) =1.

The reason for this requirement can be seen from the corresponding require-
ment for the underlying random set [Kruse et al. 1994]:

Definition 2.4 A random set T': C' — 2% is called consistent iff

(T # 0.

ceC

That is, a random set is consistent if there is at least one element of {2 that
is contained in all focal sets. Obviously, the basic possibility assignment
induced by a random set is normalized only if the random set is consistent.
With an inconsistent random set no element of 2 can have a degree of
possibility of 1, because each element is excluded from at least one context.

What is the intention underlying these requirements? Let us consider a
simple example: Two observers, which form the contexts, are asked to esti-
mate the value of some measure, say, a length. Observer A replies that the
value lies in the interval [a, b], whereas observer B replies that it lies in the
interval [c,d]. If a < b < ¢ < d, then there is no value that is considered to be
possible by both observers, i.e., the two observers contradict each other. We
can infer directly from the structure of the available information—without
knowing the true value of the measure—that (at least) one observer must
be wrong. Hence requiring consistency is meant to ensure the compatibility
of the information available in the different observation contexts.

However, the question arises whether this is always reasonable. In the
first place, it should be noted that requiring consistency is plausible only
if the contexts are observers or measurement devices or other sources of
information. All of these contexts should also refer to the same underlying
physical situation, in order to make it reasonable to assume that there is one
fixed true value for the considered measure, which, at least, can be expected
to be considered as possible in all contexts. Otherwise it would not be clear
why it is a contradiction if no element of €2 is contained in all focal sets. For
example, if the contexts are determined by physical frame conditions, we
may face a situation in which under certain circumstances (of which we do
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numbers degree of possibility
1 1 1 1 _ 4

-4 1 5+5+5t5 =3
6| deiel =1
1 1 _ 2

-8 sts =3
9-10 t+i=1%
1 _ 1

1112 1=1

Table 2.14: Degrees of possibility of an inconsistent random set.

not know whether they obtain) one set of values is possible, whereas under
other circumstances (which we also have to take into account) a different
set of values is possible. In this case there is no contradiction if the two sets
are disjoint, but rather an either/or situation.

To make this more precise, let us consider yet another version of the dice
experiment. Suppose that we have the usual five shakers with an unknown
number of tetrahedrons in the first, hexahedrons in the second, and so on,
but with the dodecahedrons in the fifth shaker replaced by tetrahedrons.
These tetrahedrons differ, though, from those in shaker 1 as their faces
are labeled with the numbers 9 through 12. From this information we can
compute the basic possibility assignment shown in table 2.14.

Since there is no outcome that is possible independent of the shaker that
gets selected, the corresponding random set is inconsistent. However, it is
not clear where there is a contradiction in this case. The “inconsistency”
only reflects that for each outcome there is at least one context in which it
is impossible. But this is not surprising, since the contexts are defined by
physical frame conditions. The events that are considered in each context
are entirely unrelated. Under these conditions it would actually be more
surprising if there were an outcome that is possible in all cases.

However, even if we restrict the requirement of a normalized basic pos-
sibility assignment and a consistent random set to observations and mea-
surements, they are semantically dubious. Although the intention to avoid
contradictions—if the contexts are observers that refer to the same physical
situation, we actually have a contradiction—is understandable, we should
check what is achieved by these requirements. In symbolic logic contradic-
tions are avoided, because contradictions point out errors in the theory. On
the other hand, if there are no contradictions, the theory is correct—at least
formally. Can we say the same about a consistent random set?
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To answer this question, let us reconsider the simple example of the two
observers, who gave the intervals [a,b] and [c,d] as sets of possible values
for some measure. Let a < ¢ < b < d. Since both observers consider
it to be possible that the value of the measure lies in the interval [c,b],
the corresponding random set is consistent. However, it is clear that this
does not exclude errors. If the actual value lies in the interval [a,c), then
observer 1 was right and observer 2 erred. If the actual value lies in the
interval (b, d], it is the other way round. In addition, both observers could
be wrong. The fact that errors are still possible, is not important, though.
A consistent theory can also be proven wrong, namely if it turns out that
it does not fit the experimental facts (obviously, formal correctness does
not imply factual correctness). Likewise, a consistently estimating set of
observers may be proven (partly) wrong by reality.

The important point to notice here is that by using basic possibility
assignments we always expect such errors. Why do we assign a degree of
possibility greater than zero to the intervals [a,c) and (b, d], although one
observer must have been wrong, if the actual value lies within these inter-
vals? Obviously, because we are not sure that neither made a mistake. If we
were sure of their reliability, we could intersect the two intervals and thus
restrict our considerations to the interval [c,b]. Actually, by the probabili-
ties we assign to the observers we model their reliability, i.e., we state the
probability with which we expect their estimates to be correct. However, if
we always expect errors to be found, it is not clear why we try to exclude
those cases in which we know from the structure of the available informa-
tion that there must be a (hidden) error. The ways in which we have to
deal with this case and those in which there is no structural indication of an
error—at least not right from the start—should not be so different. Thus,
in this respect, the normalization and consistency requirements turn out to
be highly dubious. Therefore, and since I use contexts mainly to distinguish
between physical frame conditions, I disregard this requirement and work
with non-normalized basic possibility assignments.

2.4.7 Possibility Measures

Up to now I have considered mainly degrees of possibility for elementary
events, which are combined in a basic possibility assignment. However, in
order to draw inferences with degrees of possibility a possibility measure is
needed, which assigns degrees of possibility to (general) events, i.e., sets
of elementary events. From the definition of a degree of possibility I have
adopted, namely that it is the probability of the possibility of an event, it



2.4. POSSIBILITY THEORY AND THE CONTEXT MODEL 41

is clear what values we have to assign. In direct analogy to the definition
of a basic possibility assignment (definition 2.2 on page 37) we can define:

Definition 2.5 Let I' : C' — 2 be a random set.
The possibility measure induced by T' is the mapping

m:22 — o,1],
E — P{ceC|ENT(c)#0}).

That is, a possibility measure is simply the extension of a basic possibility
assignment to the powerset of the set {2 and, conversely, a basic possibility
assignment is a possibility measure restricted to single element sets.

In probability theory the most interesting thing about a basic probability
assignment and the accompanying probability measure is that the measure
can be constructed from the assignment. That is, we need not store all
probabilities that are assigned to (general) events, but it suffices to store the
probabilities of the elementary events. From these the probabilities of any
event E' can be recovered by a simple application of Kolmogorov’s axioms,
which prescribe to add the probabilities of all elementary events contained
in the event E. Therefore the question arises whether similar circumstances
obtain for possibility measures and basic possibility assignments.

Unfortunately, w.r.t. the above definition, this is not the case. Although
in standard possibility theory it is defined that [Zadeh 1978]

I(E) = max[[({w}) = max m(w),
where F is a (general) event, and, indeed, this equation is valid in the first
dice experiment I discussed on page 22, it is easy to see that it need not
be true for general random sets: Reconsider the dice experiment discussed
on page 39, in which the dodecahedrons of the fifth shaker are replaced
by tetrahedrons labeled with the numbers 9 to 12 (by which I illustrated
inconsistent random sets). Let us compute the degree of possibility of the
event £ = {O7,011}, where O; is the elementary event that the outcome
of the experiment is the number i. To compute the degree of possibility
of this event, we have to ask: What is the probability of the set of con-
texts in which at least one of the outcomes 7 and 11 is possible? Obviously,
there are three contexts, in which at least one of the numbers is possi-
ble, namely the third and the fourth shaker (here the 7 is possible) and
the fifth shaker (here the 11 is possible). Since the three contexts are dis-
joint and have a probability of 1% each, the answer is II(E) = % However,

max{r(O7),m(011)} = max{2,+} = 2 (cf. table 2.14 on page 39).
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Note that the failure of the above equation is not due to the fact that
the considered random set is inconsistent. Requiring a random set to be
consistent is not sufficient to make the above equation hold in general. To
prove this, let us relabel the faces of the tetrahedrons of the fifth shaker, so
that they show the numbers 1, 10, 11, and 12. In this case the corresponding
random set is consistent, since the outcome 1 is now possible in all contexts.
However, the degree of possibility of the event F is still % and the maximum
of the degrees of possibility of the elementary events contained in F is still %

As can easily be verified, a condition that is necessary and sufficient to
make 7(E)= max,ecg 7(w) hold for all events E is that the focal sets of the
random set are consonant, which is defined as follows [Kruse et al. 1994]:

Definition 2.6 Let T' : C' — 2% be a random set with C = {c1,...,cn}.
The focal sets T'(¢;), 1 < i < n, are called consonant iff there exists a
Sequence Ciy,Ciyy---5Ci,, 1 <ig, .,y <, VI < j <k <n:ij#ig so
that

F(Cil) Q F(Ch) g e Q F(Cin).

Intuitively, it must be possible to arrange the focal sets so that they form a
“(stair) pyramid” or a “(stair) cone” of “possibility mass” on Q (with the
focal sets corresponding to horizontal “slices”, the thickness of which repre-
sents their probability). With this picture in mind it is easy to see that re-
quiring consonant focal sets is sufficient for VE C Q : II(E) = max,ecg m(w).
In addition, it is immediately clear that a random set with consonant
nonempty focal sets must be consistent, because all elements of the first
focal set in the inclusion sequence are possible in all contexts. (The op-
posite, however, is not true, as shown above.) On the other hand, with
non-consonant focal sets only “pyramids” or “cones” with “holes” can be
formed and using the elementary event underlying such a “hole” and an
appropriately selected other elementary event it is always possible to con-
struct a counterexample. (Compare table 2.14 on page 39 and consider how
the counterexample discussed above is constructed from it.)

For possibility measures induced by general random sets, we only have

VE CQ: glea%(w(w) < II(F) < min {1, Z ﬂ(w)}.
weklE

On the one hand, TI(E) is equal to the left hand side if there is an elementary

event w € F, such that no elementary event in F is possible in a context in

which w is impossible. Formally:

JweFE:VpeE:VeeC: pel(c) = well().
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1 2 3 4 5 1 2 3 4 5
Clzi ° e o Cli e o o
CQ:% e o o ° 02'% e o o
C3:% o o 03:% e o o
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Table 2.15: Two random sets that induce the same basic possibility assign-
ment. The numbers marked with a e are possible in the contexts.

On the other hand, II(F) is equal to the right hand side if no two elementary
events contained in E are possible in the same context, or formally:

Yo,pe E:VeeC: (weT(e)ApeT(c) = w=p.

If we are given a basic possibility assignment, but not the underlying random
set, we only know the inequality stated above. However, this inequality
only restricts m(F) to a range of values. Therefore it is not possible in
general to compute the degree of possibility of a (general) event from a basic
possibility assignment. The reason is that computing a contour function
(cf. the paragraph preceding definition 2.2 on page 37) loses information.
(Euphemistically, we may also say that a basic possibility assignment is an
information-compressed representation of a random set.) This is illustrated
in table 2.15. It shows two random sets over Q = {1,2,3,4,5}, both of
which lead to the same basic possibility assignment. However, with the left
random set, it is II({1,5}) = 1 (maximum of the degrees of possibility of
the elementary events), but with the right random set, it is II({1,5}) = 2
(sum of the degrees of possibility of the elementary events).

The considerations of this section leave us in an unfortunate position.
As it seems, we have to choose between two alternatives, both of which
have serious drawbacks. (Note that approaches like storing the possibility
measure instead of the basic possibility assignment—which is the approach
underlying the so-called Dempster-Shafer theory [Dempster 1967, Demp-
ster 1968, Shafer 1976]—or trying to represent the contexts explicitly are
clearly out of the question, because for problems in the real world both
approaches require too much storage space.) In the first place, we could
try to stick to the standard way of completing a possibility measure from a
basic possibility assignment, namely by taking the maximum over the ele-
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mentary events. However, this seems to force us to accept the requirement
that the focal sets of the random set must be consonant. In my opinion
this requirement is entirely unacceptable. I cannot think of an application
in which this requirement is actually met. (Symmetric confidence levels on
statistically estimated parameters may be the only exception, but to han-
dle these, statistical methods should be preferred.) Nevertheless, this is
the approach underlying the so-called mass assignment theory [Baldwin et
al. 1995], which I discuss briefly in the next section.

In passing I mention that a very simple argument put forth in favor of the
maximum operation in [Gebhardt 1997], namely that we should choose it,
because it is the most pessimistic choice possible, is hardly acceptable. This
argument overlooks that a possibility measure in the interpretation of the
context model is an upper bound on the underlying probability measure
and that degrees of possibility model negative information. That is, the
more we know about the experimental setup, the tighter the bound on the
probability will be (see above). But by choosing the maximum operation,
we make the bound tighter than the information available from the basic
possibility assignment permits us to. It is even possible that by choosing the
maximum we go below the probability and thus make the bound lower than
it can be made. Therefore choosing the maximum operation is obviously
not the most pessimistic, but, contrariwise, the most optimistic choice.

On the other hand, we could accept the weak upper bound given by the
right hand side of the above inequality, i.e, II(E) < min {1, .p7(w)}
(which actually is the most pessimistic choice), thus seeking refuge in an
approach already mentioned in a different context above, namely to redefine
a degree of possibility as an upper bound on the probability of the possibility
of an event. Although this bound is usually greater than necessary, we can
keep up the interpretation that a degree of possibility is an upper bound for
the probability of an event. However, for this bound to be useful, there must
be very few contexts with more than one possible value, to keep the sum be-
low the cutoff value 1. Clearly, if the cutoff value 1 is reached for too many
sets, the measure is useless, since it conveys too little information. This
will become clearer in the next chapter when I consider multi-dimensional
possibility distributions. In my opinion this drawback disqualifies this ap-
proach, because it practically eliminates the capability of possibility theory
to handle situations with imprecise, i.e., set-valued information.

Nevertheless, there is a (surprisingly simple) way out of this dilemma,
which I discuss in the next but one section. It involves a reinterpretation of
a degree of possibility for general, non-elementary events while keeping the
adopted interpretation for elementary events.
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2.4.8 Mass Assignment Theory

Although I already indicated above that I reject the assumption of consonant
focal sets, I have to admit that a basic possibility assignment induced by a
random set with consonant nonempty focal sets has an important advantage,
namely that from it we can recover all relevant properties of the inducing
random set by computing a so-called mass assignment.

Definition 2.7 The mass assignment induced by a basic possibility as-
signment m is the mapping

m:2% — [0,1],
E ~ minn(w)— max m(w).
wek weN—FE
This mapping is easily understood, if one recalls the intuitive picture de-
scribed above, namely that for a random set having consonant nonempty
focal sets we can imagine the possibility mass as a “(stair) pyramid” or
a “(stair) cone” on . Then the formula in the above definition simply
measures the “height” of the step that corresponds to the event E.

A mass assignment, restricted to those sets F C Q for which m(E) > 0,
can be seen as a representation of some kind of standardized random set,
which results if for a given random set we merge all contexts with identical
focal sets. That is, a mass assignment can be computed from a random
set I' : C — 2% having consonant nonempty focal sets as

m:2% — [0,1],
E — P({ceC|T(c)=E}).

It is evident that no information is lost if contexts with identical focal sets
are merged: W.r.t. the values that can be excluded, they are equivalent
and thus do not provide any information to distinguish between the values
in their focal sets. The masses of a mass assignment are the probabilities
of the merged contexts. Mass assignments are often used to compute a
so-called least prejudiced basic probability assignment by applying the insuf-
ficient reason principle (cf. section 2.4.3) to all sets E C Q with |E| > 1 and
m(E) > 0 (see, for example, [Baldwin et al. 1995]).

The mass assignment theory is based, as discussed above, on the as-
sumption that the focal sets of the random set underlying a given basic
possibility assignment are consonant. In [Baldwin et al. 1995] the follow-
ing argument is put forward in favor of this assumption: Consider a set of
observers (corresponding to the contexts I use), each of which states some
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set of values (for a symbolic or a discrete attribute) or an interval (for a
continuous attribute). It is plausible that there are some observers who
boldly state a small interval or a small set of values and some who are more
cautious and thus state a larger interval or a larger set of values. If there
is one true value, it is plausible that the different estimates given by the
observers can be arranged into an inclusion sequence.

However, in my opinion, this voting model (as we may say that each
observer “votes” for an interval or a set of values and the degree of possibility
measures the number of votes that fall to a value) is not convincing. It only
establishes that usually there will be smaller and larger focal sets resulting
from observers who boldly or cautiously estimate a given measure. It cannot
justify the assumption that the focal sets are consonant. The reason is that
it is not clear why two observers must not state intervals [a,b] and [c, d]
with, for instance, a < ¢ and b < d. Obviously, in such a situation the
two observers only express differing expectations: One states that the true
value of the measure is, in his opinion, likely to be smaller, whereas the
other assumes that it is likely to be larger. Whether they estimate boldly
or cautiously does not influence this. That there is one true value can lead
at most to the requirement that b > ¢, although with degrees of possibility
even this weak requirement is hard to accept (cf. section 2.4.6).

To establish the consonance of the sets voted for, we need strong as-
sumptions about how the observers arrive at their estimates. We could, for
example, assume that all observers use the same estimation method, which
depends only on the available information and some kind of “cautiousness
parameter”. One such method (actually the only plausible one known to
me) is the statistical estimation of a confidence interval with the additional
requirement that it must be symmetric for numeric attributes and it must
be greedy for symbolic attributes (i.e., that the most probable values are
selected first), where the “cautiousness parameter” is the accepted error
bound. However, confidence intervals should be handled with the proper
statistical methods. On the other hand, even if one accepts this approach,
it is not clear why one should make such strong assumptions about the
behavior of the observers, since in applications these almost never hold.

As a consequence, I conclude that the voting model does not suffice
to establish the consonance of a random set. The additional assumptions
needed are hard to accept, though. In addition, the voting model cannot
be applied to situations where the contexts are formed by physical frame
conditions, because—as shown above—in such situations it is not even rea-
sonable to require a basic possibility assignment to be normalized, let alone
the underlying random set to have consonant focal sets.
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2.4.9 Degrees of Possibility for Decision Making

Since I rejected the approaches that suggest themselves immediately, I face
the task to provide an alternative. There actually is one and it is surpris-
ingly simple [Borgelt 1995]. The rationale underlying it is that in most
applications calculi to handle imprecision and uncertainty are employed to
support decision making. That is, it is often the goal to decide on one course
of action and to decide in such a way as to optimize the expected benefit.
The best course of action, obviously, depends on the obtaining situation, but
usually there is only imperfect (i.e., incomplete or uncertain) knowledge, so
that the obtaining situation cannot be identified with certainty.

In a probabilistic setting it is plausible that we should decide on that
action that corresponds to the most probable situation—at least, if each
situation requires a different course of action and if all costs are equal—,
because this decision strategy guarantees that in the long run we make the
smallest number of mistakes. In the possibilistic setting the commonly used
decision rule is directly analogous, namely to decide on that course of action
that corresponds to the situation with the highest degree of possibility. It
may be argued that this situation can be “least excluded”, since for it
the probability of those contexts in which it can be excluded is smallest.
However, this possibilistic decision rule is open to criticism, especially, if the
decision is compared to one derived from the basic probability assignment
computed by applying the insufficient reason principle (cf. section 2.4.3). In
section 10.2, in which I discuss open problems, I briefly consider possible
points of criticism. For this thesis, though, I accept this decision rule,
although I share most doubts about its being reasonable.

If we take the goal to make a decision into account right from the start,
it modifies our view of the modeling and reasoning process and thus leads
to different demands on a measure assigned to sets of elementary events.
The reason is that with this goal in mind we no longer care about, say, the
probability of a set of elementary events, because in the end we have to
decide on one (at least under certain circumstances, e.g., if no two events
require the same course of action). We only care about the probability of
the most probable elementary event contained in the set. As a consequence,
if we want to rank two (general) events, we rank them according to the best
decision we can make by selecting an elementary event contained in them.
Thus it is reasonable to assign to a (general) event the maximum of the
measures assigned to the elementary events contained in it, since it directly
reflects the best decision possible (or at least the best decision w.r.t. the
uncertainty measure used) if we are constrained to select from this event.
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As a consequence, we immediately get the formula to compute the de-
grees of possibility of a (general) event E, namely

I(E) = max [I({w}) = max 7(w).

Thus we have the following redefinition which replaces definition 2.5:

Definition 2.8 Let I': C — 2% be a random set.
The possibility measure induced by T' is the mapping

r:2% — [0,1],
E — mé%(P({CEC\wGF(C)}).

Note that the interpretation I adopt here is not restricted to possibility
theory. It is perfectly reasonable for probability theory, too, since it is
justified by the goal of the reasoning process, namely to identify the true
state wg of a section of the world, and not by the underlying calculus. This
is very important, because it decouples the methods examined in connection
with possibility theory in the following chapters from whether one considers
possibility theory to be a reasonable uncertainty calculus or not and thus
makes them noteworthy even for those who reject possibility theory.

A problem that remains is why anyone should bother about the degrees
of possibility of (general) events defined in this way, i.e., as the maximum
over the degrees of possibility of the contained elementary events. Actually,
for one-dimensional problems, they are quite useless, since we can work
with the basic possibility assignment and need not consider any sets. How-
ever, if we have multi-dimensional possibility (or probability) distributions,
which we need to decompose in order to handle them, they turn out to be
useful—at least on certain sets. This is considered in more detail in the next
chapter, in which I discuss decompositions of relations and of multi-variate
probability and possibility distributions.

2.4.10 Conditional Degrees of Possibility

Possibilistic reasoning is directly analogous to probabilistic reasoning. It
consists in conditioning a given (multi-variate) possibility distribution on a
set Q of possible states (or events), which represents the generic knowledge
about the considered domain. The conditions are supplied by observations
made, i.e., by the evidence about the domain. A conditional degree of
possibility is defined as follows:
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Definition 2.9 Let 11 be a possibility measure on Q2 and Eq, Ey C Q). Then
II(E, | E2) =1I(E; N Ey)
is called the conditional degree of possibility of E; given Es.

The reason for this definition will become clear in the next chapter, where
possibilistic reasoning is studied in more detail in section 3.4.

This definition of a conditional degree of possibility is not the only one
that has been suggested. Others include the approach by [Hisdal 1978] that
is based on the equation

H(El n Eg) = m1n{H(E1 ‘ EQ),H(EQ)}

A definition of a conditional degree of possibility is derived from this equa-
tion by choosing its greatest solution:

et if II(Ey N Ep) = TI(Ey),
I(E, | Ep) = { II(E; N Es), otherwise.

Obviously the difference to the above definition consists only in the first
case, which ensures the normalization condition. Since I rejected the nor-
malization condition in section 2.4.6 and thus need not make sure that it is
satisfied, I do not consider this definition any further.

Another approach simply defines a conditional degree of possibility in
direct analogy to a conditional probability as

(B, N Ey)

I(E | Ep) = (B

provided that TI(Es) > 0. This definition leads, obviously, to an entirely dif-
ferent theory, since it involves a renormalization of the degrees of possibility
(due to the division by II(E3)), whereas definition 2.9 leaves the degrees of
possibility unchanged by the conditioning operation.

The renormalization, however, poses some problems. As it seems, it can
be justified on the basis of the context model only if the focal sets of the
random set underlying a possibility distribution are required to be consonant
(cf. definition 2.6 on page 42). In this case the probability-oriented definition
is perfectly sound semantically, because it takes care of the reduction of the
number of contexts with nonempty focal sets that is brought about by the
conditioning on E5. However, if one rejects the requirement for consonant
focal sets—as I did in section 2.4.8 on page 45—, it seems to be very difficult
to justify it, if possible at all. Therefore I do not go into the details of this
approach, but focus on the approach underlying definition 2.9.
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2.4.11 Imprecision and Uncertainty

From the description of the context model I gave in the preceding sections
it should be clear that possibility theory, if it is based on this model, can
handle imprecise as well as uncertain information: The focal set of each
context represents an imprecise, i.e., set-valued statement about what values
are possible in this context. The probability measure on the set of contexts
represents the uncertainty about which context is the correct one to describe
the obtaining situation.

The reason for this division—imprecision within contexts, uncertainty
about the obtaining context—is that “pure” imprecision is obviously disad-
vantageous to decision making: If we do not have any preferences between
the possible alternatives, we do not have any indication which decision is
the best. However, we often face situations in which we cannot avoid “pure”
imprecision. With the context model we try to make the best of such an
unfavorable situation by “encapsulating” the imprecision and making the
set of contexts as fine-grained as the available information allows us to.

From this point of view it is not surprising that both relational algebra
and probability theory can be seen as special cases of possibility theory:
If there is only one context, no uncertainty information is represented and
we have a purely relational model. On the other hand, as already indicated
above, if there is only one possible value per context, we have a precise model
and the basic possibility assignment coincides with the basic probability
assignment. This also explains what is meant by saying that relational
algebra can handle imprecise, but certain information, whereas probability
theory can handle uncertain, but precise information: Since there must be
only one context for relational algebra, the information may be imprecise,
but must be certain, and since there must be exactly one possible value per
context for probability theory, the information may be uncertain, but must
be precise.



Chapter 3

Decomposition

In this and the next chapter I introduce the basic ideas underlying infer-
ence networks. Since at least probabilistic inference networks, especially
Bayesian networks and Markov networks, have been well-known for some
time now, such an introduction may appear to be superfluous or at least
should be kept brief. However, there are several approaches to the theory
of inference networks and not all of them are equally well-suited as a basis
for the later chapters of this thesis. In addition, I feel that in some existing
introductions the intuitive background is somewhat neglected.!

By this I do not mean that these introductions do not provide illustra-
tive examples—of course they do. But in my opinion these examples fail to
create a well-founded intuition of the formal mechanisms underlying decom-
positions and reasoning with decompositions.? I believe that this failure is
mainly due to two reasons: In the first place, the exposition often starts
immediately with the probabilistic case, in which the numbers can disguise
the simplicity of the underlying ideas, although relational networks provide
means to explain the basic ideas without this disguise. Secondly, intro-
ductions to probabilistic networks often do not distinguish clearly between
causal and stochastic dependence, deriving their examples from a causal
model of some domain. This is understandable, since causal real-world
structures are much easier to comprehend than abstract formal structures.

T use the term “intuitive background” here in the same way as it is used in the
rightly praised introduction to probability theory by [Feller 1968]. In this book the author
carefully distinguishes between three aspects of a theory: the formal logical content, the
intuitive background, and the applications.

2However, maybe I am just a queer thinker who cannot cope well with mathematical
formalism, so these remarks should be taken with a grain of salt.

o1
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In addition, if probabilistic networks are constructed “manually”, one often
starts from a causal model. However, such an approach bears the danger
that assumptions about causality, which have nothing to do with the idea
of decomposition and reasoning, unjustifiably enter our thinking about the
matter. Therefore I tried to provide an introduction that does not make any
reference to causality, but is, as I hope, nevertheless easy to understand.

3.1 Decomposition and Reasoning

Stated as concisely as possible, the basic ideas underlying inference networks
are these: Under certain conditions a distribution ¢ (e.g. a probability dis-
tribution) on a multi-dimensional domain, which encodes prior or generic
knowledge about this domain, can be decomposed into a set {d1,...,ds}
of (overlapping) distributions on lower-dimensional subspaces. If such a
decomposition is possible, it is sufficient to know the distributions on the
subspaces to draw all inferences in the domain under consideration that can
be drawn using the original distribution §. Since such a decomposition is
represented as a network and since it is used to draw inferences, I call it
an inference network. Another popular name is graphical model, indicating
that it is based on a graph in the sense of graph theory.

Although this description of the ideas underlying inference networks
mentions all essential ingredients, it is—necessarily—too condensed to be
easily comprehensible, so let me explain first in a little more detail the main
notions used in it. Later I will provide some illustrative examples.

By multi-dimensional domain I mean that each state of the section of
the world to be modeled can be described by stating the values of a set of
attributes (cf. page 16). For example, if we want to describe cars, we may
choose to state the manufacturer, the model, the color, whether the car has
certain special equipment items or not etc. Each such attribute—or, more
precisely, the set of its possible values—forms a dimension of the domain.
Of course, to form a dimension, the possible values have to be erhaustive
and mutually exclusive. That is, for instance, there must be for each car one
and only one manufacturer, one and only one model name etc. With these
restrictions each state of the world section to be modeled (in the example:
each car) corresponds to a single point of the multi-dimensional domain.

Of course, there may be several cars that correspond to the same point—
simply because they have the same values for all attributes (same manu-
facturer, color etc.). On the other hand, there may be points to which
no existing car corresponds—for example, because some special equipment
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items are not available for a certain model. Such information is represented
by a distribution on the multi-dimensional domain. A distribution § assigns
to each point of the domain a number in the interval [0, 1], which indicates
the possibility or measures the (prior) probability that the modeled section
of the world is in a state corresponding to that point. These numbers are
usually estimated by human domain experts or computed from a statistical
analysis of available data. In the car example they may simply indicate the
relative number of cars of a certain type that have been sold.

By decomposition I mean that the distribution § on the domain as a
whole can be reconstructed from the distributions {41, ..., s} on subspaces.
Such a decomposition has several advantages, the most important being that
it can usually be stored much more efficiently and with less redundancy
than the original distribution. These advantages are the main motive for
studying decompositions of relations in database theory [Maier 1983, Date
1986, Ullman 1988]. Not surprisingly, database theory is closely connected
to the theory of inference networks. The only difference is that the theory
of inference networks focuses on reasoning, while database theory focuses
on storing, maintaining, and retrieving data.

However, being able to store a distribution more efficiently would not
be of much use for reasoning tasks, were it not for the possibility to draw
inferences in the underlying domain using only the distributions {d1,...,ds}
on the subspaces without having to reconstruct the original distribution §.
The basic idea is to pass information from subspace distribution to subspace
distribution until all have been updated. This process is usually called
evidence propagation. How it works is probably explained best by a simple
example, which I present in the relational setting first. Later I study the
probabilistic and finally the possibilistic case. There are, of course, even
more types of inference networks, for example, Dempster-Shafer networks.
These are, however, beyond the scope of this thesis.

3.2 Relational Decomposition

In relational decomposition and relational networks [Dechter 1990, Kruse
and Schwecke 1990, Dechter and Pearl 1992, Kruse et al. 1994] one distin-
guishes only between possible and impossible states of the world. In other
words, one confines oneself to distributions that assign to each point of the
underlying domain either a 1 (if it is possible) or a 0 (if it is impossible).
This is made formally precise below, after the simple example I am going
to discuss has provided the intuitive background.
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Alar a1 ax ax as as az a4 a4 a4
B|b by by by by by by by by b3

Clep e e ¢ cg €3 ¢ cg €3 cC3

Table 3.1: The relation Rapc states prior knowledge about the possible
combinations of attribute values. Value combinations not contained in the
above table are considered to be impossible.

color |shape| size
A @ | O small
| O |medium
O small
. % O |medium
2 % /A |medium
A large
Figure 3.1: A set of geometrical objects that is an in- g
. . . . | O |medium
terpretation of the relation Rapc. Attribute A is the .

. . . .. O O |medium
color/hatching of an object, attribute B is its shape, O A i
and attribute C is its size. The table on the right O A mle tum
restates the relation R4pc in this interpretation. arge

3.2.1 A Simple Example

Consider three attributes, A, B, and C, with respective domains dom(A) =
{a1,a2,as3,a4}, dom(B) = {b1,b2,bs}, and dom(C) = {c1, c2,c3}. Thus the
underlying joint domain of this example is the Cartesian product dom(A) x
dom(B) x dom(C') or, abbreviated, the three-dimensional space {4, B, C},
or, even more abbreviated, ABC.

Table 3.1 states prior knowledge about the possible combinations of
attribute values in the form of a relation R4pc: only the value combinations
contained in R4pc are possible. (This relation is to be interpreted under
the closed world assumption, i.e., all value combinations not contained in
Rapc are impossible.) An interpretation of this simple relation is shown
on the left in figure 3.1. In this interpretation each attribute corresponds
to a property of a geometrical object: attribute A is the color/hatching,
attribute B is the shape, and attribute C' is the size. The table on the right
in figure 3.1 restates the relation R4p¢ in this interpretation.
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Suppose that an object of the set shown in figure 3.1 is selected at
random and that one of its three properties is observed, but not the other
two. For instance, suppose that this object is drawn from a box, but the
box is at some distance or may be observed only through a pane of frosted
glass, so that the color of the object can be identified, while its size and
shape are too blurred. In this situation, what can we infer about the other
two properties and how can we do so? How can we combine the evidence
obtained from our observation with the prior or generic knowledge that
there are only ten possible combinations of attribute values?

Such tasks often occur in applications. Reconsider, for example, medical
diagnosis as it was described on page 17. The same holds, obviously, for any
other diagnosis problem, e.g. for a mechanic who faces the task to repair
a broken engine. Of course, these tasks are much more complex, simply
because there are a lot more properties that have to be taken into account.
In the geometrical objects example, we could discard all objects that are
incompatible with the observation made and scan the rest for possible shapes
and sizes. However, it is obvious that such an approach is no longer feasible
if the number of relevant properties is large. In this case, more sophisticated
methods are needed. One such method are graphical models, with which
it is tried to decompose the generic knowledge by exploiting conditional
independence relations. Although this method aims at making reasoning in
high-dimensional domains feasible, its basic idea can be explained with only
three attributes. Nevertheless, it should be kept in mind that decomposition
techniques, which may appear to be superfluous in the geometrical objects
example, are essential for applications in the real world.

3.2.2 Reasoning in the Simple Example

In order to understand what is meant by reasoning in the tasks indicated
above, let us take a closer look at the space in which it is carried out. The
three-dimensional reasoning space underlying the geometrical objects ex-
ample is shown on the left in figure 3.2. Each attribute—or, more precisely,
the set of its possible values—forms a dimension of this space. Each combi-
nation of attribute values corresponds to a small cube in this space. That
only ten combinations of values are actually possible is the prior or generic
knowledge. 1t is represented graphically by marking those cubes of the rea-
soning space which correspond to existing objects. This is demonstrated on
the right in figure 3.2: each cube indicates a possible value combination.
Suppose you observed that the object drawn has the value a4 for at-
tribute A, i.e., that its color is grey. With the graphical representation
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aip a2 as a4 a1 Qa2 as Gy
b3 b3
ba ba
by Y by
C3 /4 /] C3
C2 | / C2
C1 | C1

Figure 3.2: The reasoning space and a graphical representation of the rela-
tion Rapc in this space. Fach cube represents one tuple of the relation.

ap a2 az a4 a1 a2 agz a4
b3 b3
by by
b1 by
c3 c3
C2 C2
Cc1 C1

Figure 3.3: Reasoning in the domain as a whole.

shown in figure 3.2 it is very simple to draw inferences about the values
of the other two attributes: Simply cut out the “slice” that corresponds
to A = a4. This is demonstrated on the left in figure 3.3. Cutting out
this “slice” can be seen either as intersecting the generic knowledge and
the evidence, the latter of which corresponds to all possible cubes in the
“slice” corresponding to A = a4, or as conditioning the generic knowledge
on the observation A = a4 by restricting it to the “slice” corresponding to
the observation that A = a4. The values for the attributes B and C that
are compatible with the evidence A = a4 can be read from the result by
projecting it to the domains of these attributes. This is demonstrated on
the right in figure 3.3. We thus conclude that the object drawn cannot be a
circle (by), but must be a triangle (bs) or a square (b3), and that it cannot
be small (¢1), but must be medium sized (c2) or large (c3).

This method of reasoning is, of course, trivial and can always be used—at
least theoretically. However, the relation R 4pc has an interesting property,
which allows us to derive the same result in an entirely different fashion:
It can be decomposed into two smaller relations, from which it can be re-
constructed. This is demonstrated in figures 3.4 and 3.5. In figure 3.4
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ap a2 as a4 ap a2 as a4
b3 b3
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Figure 3.4: Graphical representation of the relation R4pc and of all three
possible projections to two-dimensional subspaces.

the relation R4pc is shown together with all possible projections to two-
dimensional subspaces. These projections are the “shadows” thrown by the
cubes if light sources are imagined (in sufficient distance) in front of, above,
and to the right of the graphical representation of the relation R4pc. The
relation R4pc can be decomposed into the two projections to the subspaces
{A, B} and {B, C}, both shown in the right half of figure 3.4.

That these two projections are indeed sufficient to reconstruct the orig-
inal relation Rapc is demonstrated in figure 3.5. In the top half and on
the right of this figure the cylindrical extensions of the two projections Rap
and Rpc to the subspaces {A, B} and {B, C}, respectively, are shown. The
cylindrical extension of a projection is obtained by simply adding to the
tuples in the projection all possible values of the missing dimension. That
is, to the tuples in the relation R4p all possible values of the attribute C
are added and to the tuples in the relation Rp¢c all possible values of the
attribute A are added. (That this operation is called “cylindrical extension”
is due to the common practice to sketch sets as circles or disks: Adding a
dimension to a disk yields a cylinder.) In a second step the two cylindri-
cal extensions are intersected, which leads to the three-dimensional relation
R’ 5 shown on the bottom left of figure 3.5. Obviously this relation R/, 5~
coincides with the original relation Rapc.
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Figure 3.5: Cylindrical extensions of two projections of the relation R4pc
shown in figure 3.4 and their intersection. Obviously the result is the original
relation (compare the top left of figure 3.4).

Since relational networks are closely related to database theory, it is not
surprising that the decomposition property just studied is well known: If a
relation can be decomposed into projections to subspaces (i.e., to subsets of
attributes), it is called join-decomposable [Maier 1983, Date 1986, Ullman
1988], because the intersection of the cylindrical extensions is identical to
a natural join of the projections. In database theory join-decomposition
is studied mainly in order to avoid redundancy (which can lead to update
anomalies) and to exploit the resulting storage savings. Note that even in
this very simple example some savings result: To store the three-dimensional
relation, we need 36 bit—one for each combination of attribute values in
the reasoning space, indicating whether the combination is possible or not.
To store the two projections, however, we need only 9 + 12 = 21 bits.

W.r.t. inference networks these storage savings are important, too. How-
ever, they would be worth nothing if to draw inferences the three-dimen-
sional relation Rapc had to be reconstructed first. Fortunately, this is
not necessary. We can draw the same inferences as in the whole reasoning
space using only the projections, each one in turn. This is demonstrated in
figure 3.6, which illustrates relational evidence propagation:

Suppose again that from an observation we know that the attribute A
has value a4, i.e., that the object drawn at random is grey. This is indicated
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ay a2 az a4 c1 C2 C3
HER P cl 7/
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a1 a2 as aq4 C1 C2 C3

Figure 3.6: Propagation of the evidence that attribute A has value a4 in
the three-dimensional relation shown in figure 3.4 using the projections to
the subspaces {A, B} and {B, C'}.

W—E—O©

Figure 3.7: The relational propagation scheme shown in figure 3.6 justifies
a network representation of the reasoning space.

in figure 3.6 by the hatched square for the value a4 in the top line. In a
first step we extend this information cylindrically to the subspace {A, B}
(indicated by the hatched column) and intersect it with the projection of the
relation Rapc to this subspace (grey squares). The resulting intersection
(the squares that are grey and hatched) is then projected to the subspace
that consists only of attribute B. In this way we can infer that the object
drawn cannot be a circle (by), but must be a triangle (bs) or a square (bs).
In a second step, the knowledge obtained about the possible values of at-
tribute B is extended cylindrically to the subspace {B, C'} (rows of hatched
squares) and intersected with the projection of the relation Rspc to this
subspace (grey squares). In analogy to the above, the resulting intersection
(the squares that are grey and hatched) is then projected to the subspace
that consists only of the attribute C. In this way we can infer that the object
drawn cannot be small (¢1), but must be medium sized (cq) or large (c3).
Obviously these results are identical to those we obtained from project-
ing the “slice” of the relation R4pc that corresponds to A = a4 to the at-
tributes B and C. It is easily verified for this example that this propagation
scheme always (i.e., for all possible observations) leads to the same result
as an inference based on the original three-dimensional relation. Therefore
this propagation scheme justifies the network representation of the reason-
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Figure 3.8: Using other projections.

ing space shown in figure 3.7 in which there is a node for each attribute and
an edge for each projection used. This connection of decomposition and
network representation is studied in more detail in chapter 4.

3.2.3 Decomposability of Relations

Having demonstrated the usefulness of relational decomposition, the next
question is whether any selection of a set of projections of a given relation
provides a decomposition. Unfortunately this is not the case as is demon-
strated in figure 3.8. Whereas in figure 3.5 I used the projections to the
subspaces {A, B} and {B,C}, in this figure I replaced the projection to
the subspace {A, B} by the projection to the subspace {A,C}. As in fig-
ure 3.5 the cylindrical extensions of these two projections are determined
and intersected, which yields the relation R’j 5~ shown in the bottom left
of figure 3.8. Obviously, this relation differs considerably from the original
relation Rapc, which is repeated in the top right of figure 3.8: Whereas
R apc contains only 10 tuples, R’} e contains 16 and therefore the two sub-
spaces {A, C} and {B, C} are an especially bad choice. Note that from this
example it is also immediately clear that the intersection of the cylindrical
extension of two projections can never have fewer tuples than the original
relation. For a decomposition, the number of tuples must be equal.
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Figure 3.9: Is decomposition always possible?

Another question is whether, although the projections must be chosen
with care, it is at least always possible to find a proper set of projections
that is a decomposition of a given relation. Unfortunately this question has
also to be answered in the negative. To understand this, consider figure 3.9.
In the top left of this figure, the relation R4pc is shown with two cubes
(two tuples) marked with numbers.

Consider first that the cube marked with a 1 were missing, which cor-
responds to the tuple (ag,by,¢1), i.e., to a small hatched circle. It is imme-
diately clear that without this tuple the relation is no longer decomposable
into the projections to the subspaces {A, B} and {B, C'}. The reason is that
removing the tuple (ag,b1,c1) does not change these projections, because
the cubes corresponding to the tuples (az, b1, c2) and (aq,by, c1) still throw
“shadows” onto the subspaces. Therefore the intersection of the cylindri-
cal extensions of these projections still contains the tuple (as, b1, 1), which
was removed from the relation. However, if all three projections to two-
dimensional subspaces are used, the modified relation can be reconstructed.
This is due to the fact that removing the tuple (az, b1, ¢1) changes the projec-
tion to the subspace {A, C'}. If we first intersect the cylindrical extensions
of the projections to the subspaces {4, B} and then intersect the result
with the cylindrical extension of the projection to the subspace {A, C}, the
tuple (a9, b1, c1) is cut away in the second intersection.
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However, although it is intuitively compelling that, if all three projec-
tions to two-dimensional subspaces are used, any three-dimensional relation
can be reconstructed (as I have experienced several times when I explained
relational networks to students), this assumption is false. Suppose that the
cube marked with a 2 in figure 3.9 were missing, which corresponds to the
tuple (aq, b3, c2), i.e., to a grey medium sized triangle. In this case all pro-
jections to two-dimensional subspaces are unchanged, because in all three
possible directions there is still another cube which throws the “shadow”.
Therefore the intersection of the cylindrical extensions of the projections
still contains the tuple (a4, b3, c2), although it is missing from the relation.
It follows that, without this tuple, the relation is not decomposable.

Unfortunately, decomposable relations are fairly rare. (The geometrical
objects example is, of course, especially constructed to be decomposable.)
However, in applications a certain loss of information is often acceptable
if it is accompanied by a reduction in complexity. In this case precision
is traded for time and space. Thus one may choose a set of projections,
although the intersection of their cylindrical extensions contains more tuples
than the original relation, simply because the projections are smaller and
can be processed more rapidly. Note that, if a certain loss of information
is acceptable, the number of additional tuples in the intersection of the
cylindrical extensions of a set of projections provides a direct measure of
the quality of a set of projections, which can be used to rank different sets
of projections [Dechter 1990] (see also chapter 7).

3.2.4 Tuple-Based Formalization

Up to now my explanation of relational networks has been very informal.
My rationale was to convey a clear intuition first, without which I believe
it is very hard, if not impossible, to cope with mathematical formalism. In
the following I turn to making mathematically precise the notions informally
introduced above. I do so in two steps. The first step is more oriented at
the classical notions used in connection with relations. In a second step I
modify this description and use a notion of possibility to describe relations,
which can be defined in close analogy to the notion of probability. The
reason for the second step is that it simplifies the notation, strengthens the
parallelism to probabilistic networks, and provides an ideal starting point
for introducing possibilistic networks in section 3.4.

I start by defining the basic notions, i.e., the notions of a tuple and
a relation. Although these notions are trivial, I provide definitions here,
because they differ somewhat from the most commonly used.
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Definition 3.1 Let U = {Ay,..., A, } be a (finite) set of attributes with re-
spective domains dom(4;), i = 1,...,n. An instantiation of the attributes
in U or a tuple over U is a mapping

ty : U — U dom(A)
AeU

satisfying VA € U : ty(A) € dom(A). The set of all tuples over U is
denoted Ty . A relation Ry over U is a set of tuples over U, i.e., Ry C Ty.

If the set of attributes is clear from the context, I drop the index U. To
indicate that U is the domain of definition of a tuple t, i.e., to indicate that ¢
is a tuple over U, I sometimes also write dom(t) = U. I write tuples similar
to the usual vector notation. For example, a tuple ¢ over {A, B,C} which
maps attribute A to a1, attribute B to bs, and attribute C' to c¢s is written
t=(Ar ay,B— by,C — ). If an implicit order is fixed, the attributes
may be omitted, i.e., the tuple may then be written ¢ = (a1, ba, c2).

At first sight the above definition of a tuple may seem a little strange. It
is more common to define a tuple as an element of the Cartesian product of
the domains of the underlying attributes. I refrain from using the standard
definition, since it causes problems if projections of tuples have to be de-
fined: A projection, in general, changes the position of the attributes in the
Cartesian product, since some attributes are removed. Usually this is taken
care of by index mapping functions, which can get confusing if two or more
projections have to be carried out in sequence or if two projections obtained
in different ways have to be compared. This problem instantly disappears if
tuples are defined as functions as in the above definition. Then a projection
to a subset of attributes is simply a restriction of a function—a well-known
concept in mathematics. No index transformations are necessary and pro-
jections can easily be compared by comparing their domains of definition
and the values they map the attributes to. In addition, the above definition
can easily be extended to imprecise tuples, which I need in chapter 5.

Definition 3.2 If tx is a tuple over a set X of attributes and Y C X, then
tx|y denotes the restriction or projection of the tuple tx to Y. That
is, the mapping tx|y assigns values only to the attributes in Y. Hence
dom(tx|y) =Y, i.e., tx|y is a tuple over Y.

Definition 3.3 Let Ry be a relation over a set X of attributes and Y C X.
The projection projif(RX) of the relation Rx from X to'Y is defined as

. def
pI‘O,]iz((Rx) = {ty cTy | dtx € Rx :tx = tx‘y}.
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If Rx is a relation over X and Z O X, then the cylindrical extension
cextys (Rx) of the relation Rx from X to Z is defined as

def

cext)Z((RX) = {tz €Tz |Jtx € Rx :tz|x =tx}.

With this definition, we can write the two projections used in the decom-
position of the example relation Rapc as (cf. figure 3.4)

Rap = projﬁgc(RABc) and Rpc = projggC(RABc).

That these two projections are a decomposition of the relation Rapc can
be written as (cf. figure 3.5)

Rapc = cextﬁgC(RAB) N cextggC(RBC)
if we use the cylindrical extension operator and as
Rapc = Rap ™ Rpc

if we use the natural join operator 1, which is well-known from relational
algebra. Generalizing, we can define relational decomposition as follows:

Definition 3.4 Let U be a set of attributes and Ry a relation over U.
Furthermore, let M = {M,..., My} C 2V be a (finite) set of nonempty
(but not necessarily disjoint) subsets of U satisfying

U m=u.

MeM

Ry is called decomposable w.r.t. M, iff

Ry = ﬂ cextl; (proj¥ (Rv)) -
MeM

If Ry is decomposable w.r.t. M, the set of projections

R = {projiy, (Ru),...,projyy, (Ru)}
is called the decomposition of Ry w.r.t. M.

Applying this definition to the example relation Rapc, we can say that
Rapc is decomposable w.r.t. {{4, B},{B,C}} and that {Rap,Rpc} is
the corresponding decomposition.
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It is obvious that it is very simple to find decompositions in this sense:
Any set M that contains the set U of all attributes leads to a decomposition
of a given relation Ry over U. However, it is also obvious that such a
decomposition would be useless, because an element of the decomposition
is the relation itself. Therefore restrictions have to be introduced in order
to characterize “good” decompositions. It is clear that the savings result
mainly from the fact that the subspaces the relation is projected to are
“small”. In addition, there should not be any “unnecessary” projections.

Definition 3.5 Let Raq be a decomposition of a relation Ry over a set U
of attributes w.r.t. a set M C 2Y. Ry is called trivial iff U € M (and
thus Ry € Ra). R is called irredundant iff no set of attributes in M
is contained in another set of attributes in M, i.e., iff

VMleMZ_'HMQGM—{Ml}ZMlgMQ.

Otherwise, R aq is called redundant.
Let R be another decomposition of the relation Ry w.r.t. a set N C
2V, Raq is called at least as fine as Ryr, written R < R, iff

VMeM:3INeN:MCN.
R is called finer than Rar, written Ry < R, iff
RMm =2Ry) A =(Rnv 2 RMm)-

A decomposition Raq is called minimal iff it is irredundant and there is
no irredundant decomposition that is finer than Ra,.

Clearly, we do not want redundant decompositions. If a set M; € M C 2V
is a subset of another set My € M, then

cextl;, (projly, (Ru)) N cextly, (projyy, (Ru)) = cextly, (projyy, (Ru)),

so we can remove the projection to the set M; without destroying the decom-
position property. The notions of a decomposition being finer than another
and of a decomposition being minimal serve the purpose to make as small
as possible the sets of attributes defining the decomposition. If there are
two irredundant decompositions Rq and R of a relation Ry with

MeMNeN and M—{M}=N—-—{N} and M C N,

then obviously Raq < Rar. Hence in minimal decompositions the sets of
attributes underlying the projections are as small as possible.
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a1 G2 a1 G2 a1 a2 a1 az
ba ba ba ba
by by by b1
C2 C2 C2 C2

c1 V7 e V7 e c1

Figure 3.10: Minimal decompositions need not be unique.

It would be convenient if there always were a unique minimal decom-
position, because then we could always find a single best decomposition.
However, in general there can be several minimal decompositions. This is
demonstrated in figure 3.10, which shows a very simple relation R4pc over
three binary attributes A, B, and C. As can easily be seen from the projec-
tions also shown in figure 3.10, R4 pc can be decomposed into {Rag, Rgc},
into {Rap, Rac}, or into {Rac, Rpc}, all of which are minimal.

3.2.5 Possibility-Based Formalization

In the following I turn to a characterization that uses the notion of a bi-
nary possibility measure R to represent relations. Such a measure can be
defined as a function satisfying certain axioms—as a probability measure P
is defined as a function satisfying Kolmogorov’s axioms [Kolmogorov 1933].
This characterization, as already indicated above, strengthens the connec-
tion between relational and probabilistic networks and provides an excellent
starting point for the transition to (general) possibilistic networks.

Definition 3.6 Let Q be a (finite) sample space.® A binary possibility
measure R on Q is a function R : 2% — {0,1} satisfying

1. R(0)=0 and
2. VEl, E2 Q Q: R(El @] EQ) = IHaX{R(El),R(EQ)}

The intuitive interpretation of a binary possibility measure is obvious: If an
event E can occur (if it is possible), then R(E) = 1, otherwise (if F cannot
occur/is impossible), then R(E) = 0. With this intuition the axioms are
evident: The empty event is impossible and if at least one of two events
is possible, then their union is possible. The term “binary” indicates that

3For reasons of simplicity this definition is restricted to finite sample spaces. It is clear
that it can easily be extended to general sample spaces by replacing 2 by a suitable o-
algebra, but I do not consider this extension here.
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the measure can assume only the values 0 and 1—in contrast to a general
possibility measure (defined semantically in chapter 2 and to be defined
axiomatically below), which can assume all values in the interval [0, 1]. Note,
by the way, that the (general) possibility measure defined in definition 2.8
on page 48 satisfies these axioms if there is only one context and 2 is finite.

It is useful to note that from the above definition it follows VE, F5 C 2 :

(a) R(E1) = R(E, U (Ey N Ey)) = max{R(E),R(E; N Ey)}
= R(E)) > R(E,N Ey)

(b) R(E,) = R(Ey U (Ey N Ey)) = max{R(E,), R(E, N Ey)}
= R(E2) > R(E1NE,)

(a)+ (b) = R(E1NE;) <min{R(E1),R(E2)}

In general R(F; N E2) = min{R(E), R(E2)} does not hold, because the
elements that give R(E;) and R(E>) the value 1 need not be in Fy N Es.

In definition 3.1 on page 63 a relation was defined over a set of attributes,
so we had attributes right from the start. With the above definition of
a binary possibility measure, however, attributes have to be added as a
secondary concept. As in probability theory they are defined as random
variables, i.e., as functions mapping from the sample space to some domain.
I use attributes in the usual way to describe events. For example, if A
is an attribute, then the statement A = a is a abbreviation for the event
{w € Q| A(w) = a} and thus one may write R(A = a).?

The difference between the two approaches is worth noting: In the tuple-
based approach, the attributes are represented by (mathematical) objects
that are mapped to values by tuples, which represent objects or cases or
events etc. The possibility-based approach models it the other way round:
objects, cases, or events are represented by (mathematical) objects that are
mapped to values by (random) variables, which represent attributes. It is,
however, obvious that both approaches are equivalent.

Based on a binary possibility measure, relations can be introduced as
probability distributions are introduced based on a probability measure. For
a single attribute A a probability distribution is defined as a function

p:dom(4) — [0,1],
pla) — P({weQ|A(w)=a}).

4 Although this should be well-known, I repeat it here, because it is easily forgot-
ten. Indeed, this was an issue in a discussion about the term “random variable” on the
Uncertainty in Artificial Intelligence (UAI) mailing list in 1998.
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This definition is extended to sets of attributes by considering value vec-
tors, i.e., elements of the Cartesian product of the domains of the attributes.
However, using elements of a Cartesian product introduces problems if pro-
jections have to be considered, as I already pointed out on page 63. The
main difficulty is that the standard definition associates an attribute and
its value only through the position in the argument list of a distribution
function and thus, when computing projections, index transformations are
needed that keep track of the change of positions. In section 3.2.4 these
problems made me refrain from using the standard definition of a tuple.
Thus it is not surprising that I deviate from the standard definition of a
(probability) distribution, too.

The idea underlying my definition is as follows: The binary possibility
measure R assigns a possibility to all elements of 22, but because of the ax-
ioms a binary possibility measure has to satisfy, not all of these values need
to be stored. Certain subsets are sufficient to recover the whole measure. In
particular, the subset of 2 that consists of all one element sets is sufficient.
Suppose we have an attribute A the domain of which is 2. Then we can
recover the whole measure from the distribution over A (in the sense defined
above). However, this distribution is merely a restriction of the measure to
a specific set of events (cf. the notions of a basic probability assignment and
a basic possibility assignment in section 2.4). Now, what if we defined all
distributions simply as restrictions of a measure (a probability measure or a
binary possibility measure) to certain sets of events? It turns out that this
is a very convenient definition, which avoids all problems that a definition
based on Cartesian products would introduce.

Definition 3.7 Let X = {A1,...,A,} be a set of attributes defined on
a (finite) sample space Q with respective domains dom(A4;), i = 1,...,n.
A relation rx over X is the restriction of a binary possibility measure R
on § to the set of all events that can be defined by stating values for all
attributes in X. That is, rx = R|g,, where

Ex = {E e 22 \ Ja; € dom(A,) : ... Jan € dom(Ay) :

E= /\ Aj = aj}
Aj;eX
{E c 2% ‘ Ja; € dom(Ay) :...3a, € dom(4,,) :

E= {wGQ‘ /\ Aj(w):aj}}.

AjeX
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T use the term “relation” instead of “binary possibility distribution”, because
the restrictions of a binary possibility measure defined above correspond
directly to the relations defined in definition 3.1 on page 63. The only
difference is that with definition 3.1 a tuple is marked as possible by making
it a member of a set, whereas with definition 3.7 it is marked as possible
by assigning to it the value 1. Alternatively, we may say that definition 3.7
defines relations via their indicator function, i.e., the function that assumes
the value 1 for all members of a set and the value 0 for all non-members.

Note that—deviating from definition 3.1—relations are now denoted by
a lowercase r in analogy to probability distributions which are usually de-
noted by a lowercase p. Note also that the events referred to by a rela-
tion are characterized by a conjunction of conditions that explicitly name
the attributes. Since the terms of a conjunction can be reordered without
changing its meaning, projections are no longer a problem: In a projection
we only have fewer conditions in the conjunctions characterizing the events.
We need not be concerned with the position of attributes or the associations
of attributes and their values as we had to in the standard definition.

With the above definition of a relation we can redefine the notions of
decomposability and decomposition (cf. definition 3.4 on page 64) based on
binary possibility measures:

Definition 3.8 Let U = {Ay,...,A,} be a set of attributes and ry a re-
lation over U. Furthermore, let M = {My,...,M,} C 2Y be a set of
nonempty (but not necessarily disjoint) subsets of U satisfying

U M =U.
MeM

ry is called decomposable w.r.t. M, iff
Va; € dom(4,) :...Va, € dom(A4,,) :
ol A Av=e) = i (A A=)}
If ry is decomposable w.r.t. M, the set of relations
R ={rmy, -7, t =4{rm | M € M}

is called the decomposition of ry.

The definitions of the properties of relational decompositions (trivial, redun-
dant, finer, minimal etc.—cf. definition 3.5 on page 65) carry over directly
from the tuple-based formalization.
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3.2.6 Conditional Possibility and Independence

The most important advantage of a binary possibility measure R over the
tuple-based formalization of relations is that we can define a conditional
possibility in analogy to a conditional probability.

Definition 3.9 Let Q be a (finite) sample space, R a binary possibility
measure on ), and E1, Fs C Q events. Then

R(E; | E2) = R(EyL N Es)
is called the conditional possibility of E; given Es.

Note that the above definition does not require R(E2) > 0. Since R(E3) =0
does not lead to an undefined mathematical operation, we can make the
definition more general, which is very convenient.

The notion of a conditional possibility is needed for the definition of con-
ditional relational independence, which is an important tool to characterize
decompositions. In order to define conditional relational independence, it
is most useful to realize first that (unconditional) relational independence
is most naturally characterized as follows:

Definition 3.10 Let Q be a (finite) sample space, R a binary possibility
measure on ), and E1, E5 C Q events. E1 and FEo are called relationally
independent iff

R(El N EQ) = mln{R(El), R(Eg)}

That is, if either event can occur, then it must be possible that they occur
together. In other words, neither event excludes the other, which would
indicate a dependence of the events. (Compare also the generally true in-
equality R(E; N E2) < min{R(E;), R(E2)} derived above.) Note that rela-
tional independence differs from probabilistic independence only by the fact
that it uses the minimum instead of the product.

The above definition is easily extended to attributes:

Definition 3.11 Let Q be a (finite) sample space, R a possibility mea-
sure on Q, and A and B attributes with respective domains dom(A) and
dom(B). A and B are called relationally independent, written A Il g B,

if
Va € dom(A) : Vb € dom(B) :
R(A=a,B=0b) =min{R(A =a),R(B=05)}.
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Intuitively, A and B are independent if their possible values are freely com-
binable. That is, if A can have value a and B can have value b, then the
combination of both, i.e., the tuple (a,b), must also be possible. Note that
relational independence is obviously symmetric, i.e., from A Il g B it follows
B 1l p A. Note also that the definition is easily adapted to sets of attributes.

With the notion of a conditional possibility we can now extend the notion
of relational independence to conditional relational independence:

Definition 3.12 Let Q be a (finite) sample space, R a binary possibility
measure on §, and A, B, and C attributes with respective domains dom(A),
dom(B), and dom(C). A and C are called conditionally relationally
independent given B, written A 1Lz C | B, iff

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
R(A=a,C=c|B=b)=min{R(A=a|B=05),R(C=c|B=0>)}.

The intuitive interpretation is the same as above, namely that given the
value of attribute C, the values that are possible for the attributes A and B
under this condition are freely combinable. Obviously, conditional relational
independence is symmetric, i.e., from A L g B | C it follows B 1Lg A | C.

The connection of conditional relational independence to decomposition
can be seen directly if we replace the conditional possibilities in the above
equation by their definition:

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
R(A=a,B=b,C=c¢)=min{R(A=a,B=0),R(B=5b,C=c)}.

We thus arrive at the decomposition formula for the geometrical objects
example discussed above. In other words, the relation R4pc of the geo-
metrical objects example is decomposable into the relations R4p and Rpc,
because in it the attributes A and C' are conditionally relationally inde-
pendent given the attribute B. This can easily be checked in figure 3.2
on page 56: In each horizontal “slice” (corresponding to a value of the at-
tribute B) the values of the attributes A and C possible in that “slice” are
freely combinable. Conditional independence and its connection to network
representations of decompositions is studied in more detail in chapter 4.
Another advantage of the definition of a conditional possibility is that
with it I am finally in a position to justify formally the evidence propagation
scheme used in figure 3.6 on page 59 for the geometrical objects example,
because this scheme basically computes conditional possibilities given the
observations. It does so in two steps, one for each unobserved attribute.
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In the first step, we have to compute the conditional possibilities for
the values of attribute B given the observation that attribute A has the
value A = aops. That is, we have to compute Vb € dom(B) :

R(B=b|A=acps)

= R( \/ A=a,B=0, \/ C’zc‘Azaobs>
acdom(A) cedom(C)

—~
N2

= RA=a,B=0,C=c| A= ag,
%gg&ﬁ%gg%ﬁ (A=aq, ; c| Qobs) } }

in{R(A=a,B=5,C =c),
pemax { max {min{R(4=a o)

R(A=a|A=acs)}}}

= in{R(A=a,B=0),R(B=bC=c),
pemax { max {min{R(4 =a,B=0), R o)

R(A=a|A=aons)}}}
= max {min{R(A=a,B="0),R(A=a|A=aobs),
acdom(A)

R(B=0b,C =
%gg%ﬁ ( , c)}}}

=R(B=b)>R(A=a,B=b)

= max {min{R(A=a,B=0),R(A=a|A=aws)}}
a€dom(A)

Here (1) holds because of the second axiom a binary possibility measure
has to satisfy. (3) holds because of the fact that the relation R4pc can be
decomposed w.r.t. the set M = {{A, B}, {B,C}} according to the decom-
position formula stated above. (2) holds, since in the first place

R(A=a,B=b,C=c|A=aos)

= R(A=0a,B=b,C=c,A=ams)

_ {R(A:a,B:b,C:c), if a = aobs,
0, otherwise,

and secondly

R(A=a|A=aes) = RA=a,A=ams)
_ { R(A=a), ifa= aops,

0, otherwise,
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and therefore, since trivially R(A =a) > R(A=a,B =b,C = ¢),

R(A=a,B=bC=c|A=aus)
= min{R(A=a,B=b,C=c¢),R(A=a|A=acms)}

It is obvious that the left part of figure 3.6 is a graphical representation, for
each possible value of attribute B, of the above formula for computing the
conditional possibility R(B =b | A = aobs)-

In the second step, we have to compute the conditional possibilities for
the values of attribute C given the observation that attribute A has the
value aops. That is, we have to compute Ve € dom(C) :

R(C =c| A= aobs)

R( \/ A=a, \/ B:b,C:c’A:aobs)

acdom(A) bedom(B)

oot el (A = @ B=b O =cl 4= 0a)})

= max { max {mln{R( =a,B=5b,C =c),

acdom(A) bedom(B
R(A=a|A=as)}t}}

= R(A=a,B=0),R(B=0b,C =c),
ae{i%?n)%A){beggi)(( {min{R(4 =a ) B °)
R(A=a|A=aoms)}}}

= R(B=0b,C=c),
iy (B R = .0 =)

max {min{R(A=a,B=0b),R(A=a|A=aoms)}}}
acdom(A)

:R(B:b|A:aobs)

bG(Ii%gl}({B){mln{R( =0,C =¢), R( b (obs) }}

Here (1), (2), and (3) hold for the same reasons as above. It is obvious that
the right part of figure 3.6 is a graphical representation, for each possible
value of attribute C, of the above formula for computing the conditional
possibility R(C = ¢ | A = aops)-

In the same fashion as above we can also compute the influence of obser-
vations of more than one attribute. Suppose, for example, that the values
of the attributes A and C have both been observed and found to be agps
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and cqps, respectively. To compute the resulting conditional possibilities
for the values of attribute B given these observations, we have to compute
Vb € dom(B) :

R(B =b ‘ A =aops, C = Cobs)

R( \/ A=a,B =0, \/ C=c

ac€dom(A) cedom(C)

A= Qobs, C = Cobs)

—~
~

= R = ,B:b,C: A= os7C: obs
semax { max {R(A=a €| A= aops, € = cons)}}

R(A=a,B=0b,C =c),
achimia) ectimicy (A = @ K

R(A =a | A= aobs)y R(C =cC I C= Cobs)}}}

= R(A=a,B=10), R(B=5,C=c),
wemax { max {min{R(A=a,B=b), R )

R(A=a|A=aos), R(C=c|C =cops)}}}

= min{ Enzn%A {min{R(A=a,B=0),R(A=a|A=aoms)},
acdom

max {min{R(B =0b,C =¢),R(C =c|C = cobs)}}-
cedom(C)

Here (1), (2), and (3) hold for similar/the same reasons as above. Again the
evidence propagation process can easily be depicted in the style of figure 3.6.

Note that from the basic principle applied to derive the above formulae,
namely exploiting the decomposition property and shifting the maximum
operators so that terms independent of their index variable are moved out
of their range, generalizes easily to more than three attributes. How the
terms can be reorganized, however, depends on the decomposition formula.
Clearly, a decomposition into small terms, i.e., possibility distributions on
subspaces scaffolded by few attributes, is desirable, because this facilitates
the reorganization and leads to simple propagation operations.

Seen from the point of view of the formulae derived above, the network
representation of the decomposition indicated in figure 3.7 on page 59 can
also be interpreted as the result of some kind of pre-execution of the first
steps in the above derivations. The network structure pre-executes some
of the computations that have to be carried out to compute conditional
possibilities by exploiting the decomposition formula and shifting the ag-
gregation (maximum) operators. This interpretation is discussed in more
detail in chapter 4, in particular in section 4.2.1.
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Figure 3.11: A three-dimensional probability distribution with its marginal
distributions (sums over rows/columns). It can be decomposed into the
marginal distributions on the subspaces {A, B} and {B, C}.

3.3 Probabilistic Decomposition

The method of decomposing a relation can easily be transferred to probabil-
ity distributions. Only the definitions of projection, cylindrical extension,
and intersection have to be modified. Projection now consists in calculat-
ing the marginal distribution on a subspace. Extension and intersection are
combined and consist in multiplying the prior distribution with the quotient
of posterior and prior marginal probability.

3.3.1 A Simple Example

The idea of probabilistic decomposition is best explained by a simple exam-
ple. Figure 3.11 shows a probability distribution on the joint domain of the
three attributes A, B, and C together with its marginal distributions (sums
over rows/columns). It is closely related to the example of the preceding
section, since in this distribution those value combinations that were con-
tained in the relation R4pc (were possible) have a high probability, while
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I 0 | 0 I 0 |100()| all numbers in
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b | 0| 0| 0 [364 0|01 0 [531]c
by 0| 0] 0|64 olo]|o0]111]a

Figure 3.12: Reasoning in the domain as a whole.

those that were missing (were impossible) have a low probability. The prob-
abilities could, for example, state the relative frequencies of the objects in
the box one of them is drawn from.

As the relation R4pc can be decomposed into the relations Rap and
Rpc, the probability distribution in figure 3.11 can be decomposed into the
two marginal distributions on the subspaces {A, B} and {B,C}. This is
possible, because it can be reconstructed using the formula

Va € dom(A) : Vb € dom(B) : Ve € dom(C) :
P(A=a,B=b)-P(B=b,C=c¢)
A=aB=5C=0 P(B=10)
This formula is the direct analog of the decomposition formula

Va € dom(A) : ¥b € dom(B) : V¢ € dom(C) :
R(A=a,B=bC=c)=min{R(A=a,B=0),R(B=5b,C =c)}
for the relational case (cf. figure 3.5 on page 58 and the formula on page 71).

Note that in the probabilistic formula the minimum is replaced by the prod-
uct, that there is an additional factor m, and that (due to this factor)

P(B = b) must be positive.
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Figure 3.13: Propagation of the evidence that attribute A has value a4 in
the three-dimensional probability distribution shown in figure 3.11 using the
marginal probability distributions on the subspaces {A, B} and {B,C}.

3.3.2 Reasoning in the Simple Example

Let us assume—as in the relational example—that we know that attribute A
has value a4. Obviously the corresponding probability distributions for
B and C can be determined from the three-dimensional distribution by
restricting it to the “slice” that corresponds to A = ay, i.e., by conditioning
it on A = a4, and computing the marginal distributions of that “slice”.
This is demonstrated in figure 3.12. Note that all numbers in the “slices”
corresponding to other values of attribute A are set to zero, because these
are known now to be impossible. Note also that the probabilities in the
“slice” corresponding to A = a4 have been renormalized by multiplying
1000

them by ﬁ = 55 in order to make them sum up to 1 (as required

for a (conditional) probability distribution).

However, as in the relational case studied in section 3.2.2, the distribu-
tions on the two-dimensional subspaces are also sufficient to draw this in-
ference. This is demonstrated in figure 3.13. The information that A = a4
is extended to the subspace {A, B} by multiplying the joint probabilities
by the quotient of posterior and prior probability of A = a;, i = 1,2,3,4.
Then the marginal distribution on B is determined by summing over the
rows, which correspond to the different values of B. In the same way the
information of the new probability distribution on B is propagated to C:
The joint distribution on {B, C'} is multiplied with the quotient of prior and
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posterior probability of B = b;, j = 1,2,3, and then the marginal distri-
bution on C' is computed by summing over the columns, which correspond
to the different values of C. It is easy to check that the results obtained in
this way are the same as those that follow from the computations on the
three-dimensional domain.

3.3.3 Factorization of Probability Distributions

Generalizing from the simple example discussed above, probabilistic decom-
position can be defined in close analogy to the relational case. This leads
to the following definition [Castillo et al. 1997].

Definition 3.13 Let U = {A;,...,A,} be a set of attributes and py a
probability distribution over U. Furthermore, let M = {Mj, ..., M,,} C 2V
be a set of nonempty (but not necessarily disjoint) subsets of U satisfying

U m=u
MeM
pu is called decomposable or factorizable w.r.t. M iff it can be written
as a product of m nonnegative functions ¢ : Exf — R, M € M, i.e., iff

Va; € dom(A4,) :...Va, € dom(A4,) :

pU( /\ Ai:ai): H ¢M< /\ Ai:ai).

A €U MeM A;eM

If py is decomposable w.r.t. M the set of functions

Pt =A{dry,- - O, ) = {Om | M € M}

is called the decomposition or the factorization of py. The functions
in ®aq are called the factor potentials of py.

In the simple example discussed above, in which the three-dimensional prob-
ability distribution on the joint domain {A, B, C'} can be decomposed into
the marginal distributions on the subspaces {A, B} and {B,C}, we may
choose, for instance, two functions ¢ 45 and ¢pc in such a way that

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
opap(A=a,B=b) = P(A=a,B=0) and

. [ P(C=c|B=b), ifP(B=b)#0,
¢pc(B=0bC=c) = { 0, otherwise.
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Note that using factor potentials instead of marginal probability distribu-
tions (which would be directly analogous to the relational case) is necessary,
since we have to take care of the factor @, which has to be incorporated
into at least one factor potential of the decomposition.

The definitions of the properties of decompositions (trivial, redundant,
finer, minimal etc.—cf. definition 3.5 on page 65) carry over directly from
the relational case if we replace the set R of relations by the set ®q of
factor potentials. However, an important difference to the relational case is
that for strictly positive probability distributions the minimal decomposi-
tion is unique w.r.t. the sets of attributes the factor potentials are defined on
(cf. the notion of a minimal independence map in, e.g., [Pearl 1988, Castillo
et al. 1997]). The exact definition of the factor potentials may still differ,
though, as can already be seen from the decomposition formula of the geo-

metrical objects example: The factor »——~ may be included in one factor

P(B=b)
1
\/P(B=b)"

potential or may be distributed to both, e.g., as

3.3.4 Conditional Probability and Independence

As stated above, the three-dimensional probability distribution shown in
figure 3.11 on page 75 can be reconstructed from the marginal distributions
on the subspaces {4, B} and {B, C} using the formula

Va € dom(A) : Vb € dom(B) : Ve € dom(C) :
P(A=a,B=1b)P(B=bC =c)

P(A=a,B=0b,C=c¢) = P(B =b)

Drawing on the notion of a conditional probability, this formula can be
derived from the (generally true) formula

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
P(A=a,B=bC=c)=PA=a|B=bC=c)P(B=bC=c)

by noting that in the probability distribution of the example A is condition-
ally independent of C given B, written A 1l p C' | B. That is,

Va € dom(A) : Vb € dom(B) : Ve € dom(C) :
P(A=a,B=b)

PA=a|B=bC=c)=PA=a|B=b)="—"Fp 3

i.e., if the value of attribute B is known, the probabilities of the values of
attribute A do not depend on the value of attribute C. Note that conditional
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independence is symmetric, i.e., if ALl p C | B, then

Va € dom(A) : Vb € dom(B) : Ve € dom(C) :

P(C =¢,B=b)
P(B=b)
also holds. In other words, A 1L p C' | B entails C' 1L p A | B. This becomes
most obvious if we state conditional probabilistic independence in its most

common form, which is directly analogous to the standard definition of
(unconditional) probabilistic independence, namely as

P(C=c¢|B=bA=a)=P(C=c|B=b)=

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
P(A=a,C=c|B=b=P(A=a|B=0b)P(C=c|B=b).

The notion of conditional probabilistic independence is often used to derive
a factorization formula for a multivariate probability distribution that is
more explicit about the factors than definition 3.13. The idea is to start
from the (generally true) chain rule of probability

Va, € dom(4y) : ...Va, € dom(A,) :
P(/\j:1A1 = GJZ) = HP(Al = a; /\;;11143 = aj)
=1

and to simplify the factors on the right by exploiting conditional indepen-
dences. As can be seen from the three attribute example above, conditional
independences allow us to cancel some of the attributes appearing in the
conditions of the conditional probabilities. In this way the factors refer
to fewer conditional probability distributions and thus may be stored more
efficiently. Since this type of factorization is based on the chain rule of prob-
ability, it is often called chain rule factorization (cf. [Castillo et al. 1997]).

The notion of a conditional probability also provides a justification of
the reasoning scheme outlined in section 3.3.2, which can be developed in
direct analogy to the relational case (recall from chapter 2 that probabilistic
reasoning consists in computing conditional probabilities). In the first step
we have to compute the conditional probabilities of the values of attribute B
given the observation that attribute A has the value agps. That is, we have
to compute Vb € dom(B) :

P(B=1b|A=ags)
= p( \/ A=aB=b \/ C:c‘Azaobs)

acdom(A) cedom(C)
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—~

DY Y PA=a,B=b,C=c|A=am)

acdom(A) cedom(C)

PlA=a| A= '
(i) Z Z —GB:b,C:c). ( a‘i 4a0bs)

acdom(A) cedom(C)
(3) Z Z P(A=a,B=bP(B=bC=c)

acdom(A) cedom(C)

P(A=a| A= aobs)
P(A=a)
— _ _ P(A:a|A:aobs)
= Y PA=aB=b)- PlA=a
a€dom(A)
> P(C=c|B=b)
cedom(C)
=1
P(A:a | A:aobs)
2 PA=eB=b P(A=a)
acdom(A)

Here (1) holds because of Kolmogorov’s axioms and (3) holds because of the
conditional probabilistic independence of A and C' given B, which allows
us to decompose the joint probability distribution P4pc according to the
formula stated above. (2) holds, since in the first place

P(A=a,B=bC=c|A=auws)
P(A:a7B:b,C:C,A:aobs)

P(A = aobs)
PA=a,B=bC=c) .
_ P(A=aqs) = ™
0, otherwise,
and secondly
_ B . P(A:a), ifa:aobsa
P(A=a,A=aeps) = { 0, otherwise,

and therefore
P(A=a,B=b,C=c| A= ams)
P(A=a| A= aos)
P(A=a)

= P(A=a,B=0b,C=c)-
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It is obvious that the left part of figure 3.13 on page 77 is only a graphical
representation, for each possible value of attribute B, of the above formula.
Note that this propagation formula is directly analogous to the formula
for the relational case (cf. page 72 in section 3.2.2). The only difference
(apart from the factor %) is that the probabilistic formula uses the
sum instead of the maximum and the product instead of the minimum.

In the second step of the propagation, we have to determine the condi-
tional probabilities of the values of attribute C given the observation that
attribute A has the value aops. That is, we have to compute Ve € dom(C) :

P(C=c|A=acps)

P( \/ A=a B:b,C:c‘A:aobs)

acdom(A) bedom(B)

DY Y PA=aB=bC=c|A=am)

ac€dom(A) bedom(B)

S SEEDY P(A:a,sz,czc)-P(A;&'j;aobs)

(3) Z Z P(A=a,B=bP(B=bC=c)
acdom(A) bedom(B) B
P(A:a | A :aobs)

P(A=a)

bedom(B)

=P(B=b|A=acps)

B . P(B=b|A=am
- Y PB=bC=0 B =D k

bedom(B)

Here (1), (2), and (3) hold for the same reasons as above. It is obvious that
the right part of figure 3.13 on page 77 is only a graphical representation,
for each value of attribute C, of the above formula. Note that, as above, this
propagation formula is directly analogous to the formula for the relational
case (cf. page 73 in section 3.2.2).
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In the same fashion as above, we can also compute the influence of
observations of more than one attribute. Suppose, for example, that the
values of attributes A and C have both been observed and found to be agps
and cops, respectively. To compute the resulting conditional probabilities of
the values of B given these observations, we have to compute Vb € dom(B) :

P(B:b|A:aobs,O:CObs)

= P( \/ AA:CI/,.B:b7 \/ C:C‘A:aobsyc:Cobs)
a€dom(A) cedom(C)

—
—

= Z Z P(A=a,B=b,C=c|A=aops,C = Cobs)

acdom(A) cedom(C)

(:) @ Z Z P(ACL,Bb,Cc).P(APGLJf)aObS)
acdom(A) cedom(C) ( =a

.P(C:c|C:cobS)
P(C =c¢)

—

P(A=a,B=bP(B=0bC=c
) o Z Z ( )P( )

P(B=10)
acdom(A) cedom(C)

.P(A:a|A:a0bs)P(C:c|C’:cobs)

P(A=a) P(C=c¢)
_ o o PA=a|A=am)
~ P(B=0b) >, PA=aB=b): P(A=a) ;

.P(C:c|C’:cobS)
P(C =c¢) ’

cedom(C)

P(A=a,bs) P(C=cobs)
P(A:aobsvczcobs)
to have separate factors for the attributes A and C and thus to keep the

propagation scheme uniform. (Note, however, the additional factor ﬁ.)

where o = is a normalization factor that enables us

(1), (2), and (3) hold for similar/the same reasons as above. The evidence
propagation process can easily be depicted in the style of figure 3.13.

As in the relational case, the principle applied in the above derivation,
namely shifting the sums so that terms independent of their index variable
are moved out of their range, can easily be generalized to more attributes.
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3.4 Possibilistic Decomposition

The method of decomposing a relation can be transferred to possibility dis-
tributions as easily as it could be transferred to probability distributions in
section 3.3. Again only the definitions of projection, cylindrical extension,
and intersection have to be modified. Projection now consists in comput-
ing the maximal degrees of possibility over the dimensions removed by it.
Extension and intersection are combined and consist in calculating the min-
imum of the prior joint and the posterior marginal possibility degrees.

3.4.1 Transfer from Relational Decomposition

Actually possibilistic decomposition is formally identical to relational de-
composition in the possibility-based formalization studied in section 3.2.5.
The only difference is that instead of only 0 and 1 a (general) possibility
measure can assume any value in the interval [0,1], thus quantifying the
notion of a possibility. Therefore, in analogy to the treatment of the re-
lational case in section 3.2.5, I complement the semantical introduction of
a possibility measure and a possibility distribution (cf. section 2.4) by an
axiomatic approach (compare also [Dubois and Prade 1988)):

Definition 3.14 Let Q2 be a (finite) sample space. A (general) possibility
measure II on Q is a function 11 : 22 — [0,1] satisfying

1. II(0) =0 and
2. VE1,E5 CQ: H(E1 @] EQ) = max{H(El), H(Eg)}

Note that this definition differs from definition 3.6 on page 66 only in the
range of values of the measure. Note also that the measure of definition 2.8
on page 48 satisfies the axioms of the above definition.

By the transition to a (general) possibility measure carried out above it
is explained why there is no axiom R(£2) = 1 for binary possibility measures:
It would have been necessary to revoke this axiom now. With degrees of
possibility, II(Q2) = max,eco II({w}) need not be 1. Adding this constraint
would introduce the normalization condition (cf. definition 2.3 on page 38),
which I rejected in section 2.4.6.

Due to the close formal proximity of binary and general possibility mea-
sures there is not much left to be said. Everything developed following the
definition of a binary possibility measure in definition 3.6 on page 66 carries
over directly to (general) possibility measures, since the fact that binary
possibility measures can assume only the values 0 and 1 was not exploited.
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I 80 | 90 I 70 I 70 | all numbers in
parts per 1000

ay s a3 Q4

4060 ] 1060 | b3 [ 80
20| 10 | 20 [ 20 | bo [ 70
30 | 30|20 10| b |90
40 | 80 | 10 | 70 3
30 | 10 | 70 | 60
60 | 60 | 20 | 10 a e e
bs [20]20 ] 10] 20 > 20 | 80 | 60 | bs
by | 30 | 10 | 40 | 40 40 | 70 | 20 | by
b [80 90|20 10 90 | 60 | 30 | by
ap a2 asz a4 Ci a; a2 a3 a4
by [40 [ 80 [ 10 [ 70 40 ] 60 20 [ 60| c3
by [30 | 10 | 70 | 60 60 | 80 | 70 | 70 | c2
by [80 [ 90 | 20 | 10 80 | 90 | 40 | 40 | c1

Figure 3.14: A three-dimensional possibility distribution with marginal dis-
tributions (maxima over rows/columns).

3.4.2 A Simple Example

Although there is a direct transfer from the relational case, it is useful to
illustrate the decomposition of possibility distributions with a simple exam-
ple. Figure 3.14 shows a three-dimensional possibility distribution on the
joint domain of the attributes A, B, and C' and its marginal distributions
(maxima over rows/columns). In analogy to the probabilistic example it
is closely related to the relational example: Those value combinations that
were possible have a high degree of possibility and those that were impos-
sible have a low degree of possibility. This possibility distribution can be
decomposed into the marginal distributions on the subspaces {4, B} and
{B, C}, because it can be reconstructed using the formula

Va € dom(A) : Vb € dom(B) : Ve € dom(C) :
M(A=a,B=bC=¢) = min {[I(A=aB=05),II(B=0bC=c)}
bedom(B)
= min { max H(A=a,B=b,C =c),
bedom(B) cedom(C)
max I[(A=a,B=0b,C=c).}
a€dom(A)
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I 0 | 0 I 0 |70| all numbers in
parts per 1000

ay s a3 Q4

0| 0| 0]60]0bg| 70
0] 0] 01]20]by|60
0| 0| 0]10]b |10
0l0] 01|70 €3
00| 0160
0 0 0 |10 C1 C2 C3
b [0 10 [0 [0 40 | 60 | 20 | by
by 0 0 0 |10 10 | 10 | 10 | by
ap a2 az a4 a; a2 a3 a4
b3 | 0] 0] 0170 0| 0] 0 |]60]C3
bo | O 0] 0 |60 00| 0 ]70]|C
by | 0] 0] 0110 00| 01]40]|C1

Figure 3.15: Reasoning in the domain as a whole.

3.4.3 Reasoning in the Simple Example

Let us assume as usual that from an observation it is known that attribute A
has value ay. Obviously the corresponding (conditional) possibility distri-
bution can be determined from the three-dimensional distribution by re-
stricting it to the “slice” corresponding to A = a4 (i.e., by conditioning it
on A = a4) and computing the marginal distributions of that “slice”. This
is demonstrated in figure 3.15. Note that the numbers in the “slices” cor-
responding to other values of attribute A have been set to zero, because
these are known now to be impossible. Note also that—in contrast to the
probabilistic case—the numbers in the “slice” corresponding to A = a4 are
unchanged, i.e., no normalization takes place.

However, as in the probabilistic case studied in section 3.3.2, the dis-
tributions on the two-dimensional subspaces are also sufficient to draw this
inference. This is demonstrated in figure 3.16. The information that A = a4
is extended to the subspace {A, B} by computing the minimum of the prior
joint degrees of possibility and the posterior degrees of possibility of A = a;,
i = 1,2,3,4. Then the marginal distribution on B is determined by tak-
ing the maximum over the rows, which correspond to the different values
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al Ao a3z Q4 C1 C2 C3
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Figure 3.16: Propagation of the evidence that attribute A has value a4 in
the three-dimensional possibility distribution shown in figure 3.14 using the
projections to the subspaces {A, B} and {B,C}

of B. In the same way the information of the new possibility distribution
on B is propagated to C': The minimum of the prior joint distribution on
{B,C} and the posterior distribution on B is computed and projected to
attribute C' by taking the maximum over the columns, which correspond to
the different values of C. It is easy to check that the results obtained in
this way are the same as those that follow from the computations on the
three-dimensional domain (see above).

3.4.4 Conditional Degrees of Possibility
and Independence

This reasoning scheme can be justified in the same way as in the relational
and in the probabilistic case by drawing on the notion of a conditional degree
of possibility (cf. definition 3.9 on page 70 and definition 2.9 on page 49).
The derivation is formally identical to the one carried out in section 3.2.6,
page 72ff, since for the relational case the fact that a binary possibility
measure can assume only the values 0 and 1 was not exploited.

This formal identity stresses that possibilistic networks can be seen as a
“fuzzyfication” of relational networks, which is achieved in the usual way:
A restriction to the values 0 and 1 is removed by considering instead all
values in the interval [0, 1].
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Possibilistic decomposition as I study it here is based on a specific notion
of conditional possibilistic independence, which is defined in direct analogy
to the relational case (cf. definition 3.10 on page 70).

Definition 3.15 Let Q be a (finite) sample space, 11 a possibility mea-
sure on Q, and A, B, and C attributes with respective domains dom(A),
dom(B), and dom(C). A and C are called conditionally possibilisti-
cally independent given B, written A 1Ly C | B, iff

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
M(A=a,C=c|B=b)=min{ll(A=a|B=5),II(C=c|B=5)}.

Of course, this definition is easily extended to sets of attributes. This specific
notion of conditional possibilistic independence is usually called possibilistic
non-interactivity [Dubois and Prade 1988]. However, in contrast to proba-
bility theory, for which there is unanimity about the notion of conditional
probabilistic independence, for possibility theory several alternative notions
have been suggested. Discussions can be found in, for example, [Farinas del
Cerro and Herzig 1994, Fonck 1994]. The main problem seems to be that
possibility theory is a calculus for uncertain and imprecise reasoning, the
first of which is more closely related to probability theory, the latter more
closely to relational algebra (cf. section 2.4.11). Thus there are at least
two ways to arrive at a definition of conditional possibilistic independence,
namely either uncertainty-based by a derivation from Dempster’s rule of
conditioning [Shafer 1976], or imprecision-based by a derivation from the
relational setting (which leads to possibilistic non-interactivity) [de Cam-
pos et al. 1995]. In this thesis I concentrate on the latter approach, because
its semantical justification is much clearer and it has the advantage to be
in accordance with the so-called extension principle [Zadeh 1975].

Note that conditional possibilistic independence can be used, in analogy
to the probabilistic case, to derive a decomposition formula for a multivari-
ate possibility distribution based on a chain rule like formula, namely

Vay € dom(4,) :...Va, € dom(A,) :
H(/\TZIAl = ai) = mmf:lH(Al = a;

/\;;1114] = aj).

Obviously, this formula holds generally, since the term for ¢ = n in the min-
imum on the right is equal to the term on the left. However, in order to
cancel conditions, we have to take some care, because even if A 1Ly B | C,
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itwilbe II{(A=a | B=0bC =c) #I(A =a]| C = c) in general. For-
tunately, there is a way of writing a conditional possibilistic independence
statement that is equally useful, namely (for three attributes)

Va € dom(A) : Vb € dom(B) : V¢ € dom(C) :
M(A=a|B=bC=c)=min{ll(A=a|C =¢),II(B=5b,C =c)}.

With such formulae we can cancel conditions in the terms of the formula
above, if we proceed in the order of descending values of ¢. Then the uncon-
ditional possibility in the minimum can be neglected, because among the
remaining, unprocessed terms there must be one that is equal to it or refers
to more attributes and thus restricts the degree of possibility more.

3.5 Possibility versus Probability

From the simple examples of three-dimensional probability and possibility
distributions discussed above it should be clear that the two approaches ex-
ploit entirely different properties of distributions to decompose them. This
leads, of course, to substantial differences in the interpretation of the results
of a reasoning process. To make this clear, I consider in this section how,
in the two calculi, the marginal distributions on single attributes relate to
the joint distribution they are derived from. This is important, because the
reasoning process, as it was outlined in this chapter, produces only marginal
distributions on single attributes (conditioned on the observations). Since
the relation of these marginal distributions to the underlying joint distri-
bution is very different for probability distributions compared to possibility
distributions, one has to examine whether it is actually the joint distribution
one is interested in.

The difference is, of course, due to the way in which projections, i.e.,
marginal distributions, are computed in the two calculi. In probability
theory the summation over the dimensions to be removed wipes out any
reference to these dimensions. In the resulting marginal distribution no
trace of the attributes underlying these dimensions or their values is left:
The marginal distribution refers exclusively to the attributes scaffolding
the subspace projected to. The reason is, of course, that all values of the
removed attributes contribute to the result of the projection w.r.t. their
relative “importance”, expressed in their relative probability.

In possibility theory this is different. Because of the fact that the max-
imum is taken over the dimensions to be removed, not all values of the
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Figure 3.17: Possibility versus
probability w.r.t. the interpre-
tation of marginal distributions
(all numbers are percent).

attributes underlying these dimensions contribute to the result of the pro-
jection. Only the values describing the elementary event or events having
the highest degree of possibility determine the marginal degree of possibil-
ity. Thus not all information about the values of the removed attributes is
wiped out. These attributes are implicitly fixed to those values describing
the elementary event or events having the highest degree of possibility. It
follows that—unlike marginal probabilities, which refer only to tuples over
the attributes of the subspace projected to—marginal degrees of possibility
always refer to value vectors over all attributes of the universe of discourse,
although only the values of the attributes of the subspace are stated explic-
itly in the marginal distribution.

In other words, a marginal probability distribution states: “The proba-
bility that attribute A has value a is p.” This probability is aggregated over
all values of all other attributes and thus refers to a one element vector (a).
A marginal possibility distribution states instead: “The degree of possibility
of a value vector with the highest degree of possibility of all tuples in which
attribute A has value a is p.” That is, it refers to a value vector over all
attributes of the universe of discourse, although the values of all attributes
other than A are left implicit.

As a consequence of the difference just studied one has ask oneself
whether one is interested in tuples instead of the value of only a single
attribute. To understand this, reconsider the result of the probabilistic
reasoning process shown in figure 3.13 on page 77. It tells us that (given
attribute A has value aq4, i.e., the object is grey) the most probable value
of attribute B is b3, i.e., that the geometrical object is most likely to be a
triangle, and that the most probable value of attribute C' is co, i.e., that the
geometrical object is most likely to be of medium size. However, from this
we cannot conclude that the object is most likely to be a medium-sized grey
triangle (the color we know from the observation). As can be seen from fig-
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ure 3.12 on page 76 or from the joint distribution shown on the bottom right
in figure 3.13 on page 77, the object is most likely to be large grey triangle,
i.e., in the most probable tuple attribute C has the value c3. The reason
for this difference is, obviously, that grey triangles as well as grey squares
of medium size, i.e., the tuples (a4, bz, c2) and (ay, b3, c3), respectively, have
a relatively high probability, whereas of large grey objects (A = a4, C = c3)
only triangles (B = by) have a high probability.

An even more extreme example is shown in figure 3.17, which, in the
center square, shows a probability distribution over the joint domain of two
attributes having four values each. The marginal distributions are shown to
the left and above this square. Here selecting the tuple containing the values
with the highest marginal probabilities decides on an impossible tuple. It
follows that in the probabilistic case we may decide incorrectly if we rely
exclusively on the marginal distributions (and, indeed, this is not a rare
situation). To make the correct decision, we have to compute the joint
distribution first or must apply other specialized techniques [Pearl 1988].

For possibility distributions, however, the situation is different. If in each
marginal distribution on a single attribute there is only one value having the
highest degree of possibility, then the tuple containing these values is the
one having the highest degree of possibility. This is illustrated in figure 3.17,
where marginal distributions computed by taking the maximum are shown
below and to the right of the square (recall that, according to chapter 2,
a probability distribution is only a special possibility distribution and thus
we may use maximum projection for probability distributions, too). These
marginal distributions indicate the correct tuple.

It should be noted, though, that in the possibilistic setting we may also
choose incorrectly, due to a kind of “exclusive-or” effect. This is illustrated
in figure 3.18. If we decide on the first value for both attributes (since for
attributes we have to choose between the first and the second value), we
decide on an impossible tuple. Therefore, in this case, we are also forced to
compute the joint distribution to ensure a correct decision.
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Note that the property of maximum projections just discussed provides
the justification for using the maximum operation to compute the degree of
possibility of sets of elementary events which I promised in section 2.4.10.
Computing a marginal distribution can be seen as computing the degree of
possibility of specific sets of elementary events, namely those that can be
defined using a subset of all attributes (cf. definition 3.7 and its extension
to general possibility measures). Therefore in a multi-dimensional domain
the maximum operation to compute the degree of possibility of sets of el-
ementary events is useful, because it serves the task to identify—attribute
by attribute—the values of the tuple or tuples of the joint domain that have
the highest degree of possibility.

Note also that this property of maximum projections, which may appear
as an unrestricted advantage at first sight, can also turn out to be disadvan-
tageous, namely in the case, where we are not interested in a tuple over all
unobserved attributes that has the highest degree of possibility. The rea-
son is that—as indicated above—we cannot get rid of the implicitly fixed
values of the attributes that were projected out. If we want to neglect an
attribute entirely, we have to modify the universe of discourse and compute
the possibility distribution and its decomposition on this modified universe.



Chapter 4

Graphical Representation

In connection with the simple examples of the previous chapter I already
mentioned that the idea suggests itself to represent decompositions and evi-
dence propagation in decompositions by graphs or networks (cf. figure 3.7 on
page 59). In these graphs there is a node for each attribute used to describe
the underlying domain of interest. The edges indicate which projections
are needed in the decomposition of a distribution and thus the paths along
which evidence has to be propagated.

Formally, decompositions of distributions are connected to graphs by the
notion of conditional independence, which is closely related to the notion of
separation in graphs. In section 4.1 I study this relation w.r.t. both directed
and undirected graphs based on a qualitative description of the properties of
conditional independence by the so-called graphoid and semi-graphoid az-
ioms [Dawid 1979, Pearl and Paz 1987]. This leads to a natural definition
of conditional independence graphs based on the so-called Markov proper-
ties of graphs [Whittaker 1990, Lauritzen et al. 1990]. Finally, conditional
independence graphs are shown to be direct descriptions of decompositions.

In section 4.2 T turn to evidence propagation in graphs. I review briefly
two well-known propagation methods, namely the polytree propagation
method [Pearl 1986, Pearl 1988] and the join tree propagation method [Lau-
ritzen and Spiegelhalter 1988]. For the former I provide a derivation that is
based on the notion of evidence factors. Of course, since propagation has
been an area of intensive research in the past years, there are also several
other methods for drawing inferences with decompositions of distributions.
However, discussing these in detail is beyond the scope of this thesis, which
focuses on learning from data, and thus they are only mentioned.

93
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4.1 Conditional Independence Graphs

In chapter 3 I indicated that the decomposition of distributions can be based
on a notion of conditional independence of (sets of) attributes. To study
this notion independent of the imprecision or uncertainty calculus used, it
is convenient to have a qualitative characterization of its properties that
does not refer to specific numerical equalities. A very powerful approach
in this direction are the so-called graphoid and semi-graphoid axioms (cf.
section 4.1.1). At least the latter are satisfied by probabilistic as well as
possibilistic conditional independence, but also by separation in graphs (cf.
section 4.1.3). Therefore separation in graphs can be used to represent con-
ditional independence (although isomorphism cannot be achieved in gen-
eral), which leads to the definition of a (minimal) conditional independence
graph (cf. section 4.1.4). However, this definition is based on a global crite-
rion, which is inconvenient to test. To cope with this problem the so-called
Markov properties of graphs are examined and shown to be equivalent under
certain conditions (cf. section 4.1.5). Finally, the connection of conditional
independence graphs and decompositions is established by showing that the
latter can be read from the former (cf. section 4.1.6).

4.1.1 Axioms of Conditional Independence

Axioms for conditional independence were stated first by [Dawid 1979], but
were also independently suggested later by [Pearl and Paz 1987].

Definition 4.1 Let U be a set of (mathematical) objects and (-1L-| ) a
three-place relation of subsets of U. Furthermore, let W, X, Y, and Z be
four disjoint subsets of U. The four statements

symmetry: (XULUY|Z2) = YLX]|2)

decomposition: (WUX LY |Z) = WLY | Z)AN(X1LY |Z)
weak union:  WUX LY |Z) = (XLY|ZUW)

contraction: (X LY |ZUW)AW LY |Z) = (WUXLY|2)

are called the semi-graphoid axioms. A three-place relation (- 1L - | -)
that satisfies the semi-graphoid axioms for all W, X, Y, and Z is called a
semi-graphoid. The above four statements together with

intersection: (W LY |ZUXIA(X LY | ZUW) = (WUX 1Y |Z)

are called the graphoid axioms. A three-place relation (-1 - | -) that
satisfies the graphoid azioms for all W, X, Y, and Z is called a graphoid.
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Of course, as can already be guessed from the notation, the set U is intended
to be the set of attributes used to describe the domain under consideration
and the relation (- 1L - | -) is intended to denote a notion of conditional
independence w.r.t. some imprecision or uncertainty calculus. With this
interpretation these axioms can be read as follows [Pearl 1988]:

The symmetry axiom states that in any state of knowledge Z (i.e., for
any instantiation of the attributes in Z), if X tells us nothing new about YV
(i.e., if finding out the values of the attributes in X does not change our
knowledge about the values of the attributes in V'), then Y tells us nothing
new about X. The decomposition axiom asserts that if two combined items
of information are irrelevant to X, then each separate item is irrelevant
as well. The weak union axiom states that learning irrelevant informa-
tion W cannot help the irrelevant information Y become relevant to X.
The contraction axiom states that if X is irrelevant to Y after learning
some irrelevant information W, then X must have been irrelevant before
we learned W. Together the weak union and contraction properties mean
that irrelevant information should not alter the relevance of other propo-
sitions in the system; what was relevant remains relevant, and what was
irrelevant remains irrelevant. It is plausible that any reasonable notion of
conditional independence should satisfy these axioms.

The intersection axiom states that unless W affects Y if X is held con-
stant or X affects Y if W is held constant, neither W nor X nor their
combination can affect Y. This axiom is less plausible than the other four.
Two attributes can be relevant to a third, although each of them is irrele-
vant if the other is held constant. The reason may be a strong dependence
between them, for instance, a 1-to-1 relationship of their values. In such
a case either attribute is irrelevant if the other is known (since its value is
implicitly fixed by the value of the other), but can be relevant if the other
is unknown. Thus it is not surprising that, in general, the intersection ax-
iom is satisfied neither for conditional probabilistic independence nor for
conditional possibilistic independence (see below for an example).

Nevertheless, we have the following theorem:

Theorem 4.1 Conditional probabilistic independence as well as conditional
possibilistic independence satisfy the semi-graphoid axioms. If the consid-
ered joint probability distribution is strictly positive, conditional probabilistic
independence satisfies the graphoid axioms.

Proof: The proof of this theorem is rather simple and only exploits the
definitions of conditional probabilistic and possibilistic independence, re-
spectively. It can be found in section A.1 in the appendix. O
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al az a1 a a1 ag a1 ag
ba ba bo bo
b1 b1 by by
C2 C2 C2 C2
c1 V7 e V7 1

Figure 4.1: Conditional relational independence does not satisfy the inter-
section axiom. In the relation on the left, itis ALl g B| Cand AL rC | B.
However, the projections show that neither A Il g B nor A 1L g C.

TABC = b B=b,
Cicl C:CQ CZCl C:CQ

A:al — —

A=ay o — —

Table 4.1: In the relation shown on the left in figure 4.1 it is A U g BC:
The relation contains only the tuples marked with e, but for A Il p BC' to
hold, at least the tuples marked with o have to be possible, too.

That in general neither probabilistic nor possibilistic conditional inde-
pendence satisfies the intersection axiom can be seen from the simple re-
lational example shown in figure 4.1 (a probabilistic example can be de-
rived by assigning a probability of 0.5 to each tuple). It is obvious that
in the relation shown on the left in figure 4.1 AU rB | C, AULrC | B,
and B 1L C | A hold (cf. figure 3.10 on page 66). From these statements
AllrBC, B1LrAC, and C 1Lr AB can be inferred with the intersec-
tion axiom. Applying the decomposition axiom to these statements yields
Allgr B, AlLrC, and B 1l g C, but neither of these independences hold,
as the projections on the right in figure 4.1 demonstrate. Since the decom-
position axiom holds for conditional possibilistic and thus for conditional
relational independence (see theorem 4.1), it must be the intersection axiom
that is not satisfied. Alternatively, one can see directly from table 4.1 that
A L r BC (the other two cases are analogous).

The main advantage of the graphoid and the semi-graphoid axioms is
that they facilitate reasoning about conditional independence. If we have
a set of conditional independence statements, we can easily find implied
conditional independence statements by drawing inferences based on the
graphoid and the semi-graphoid axioms.
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This situation parallels the situation in symbolic logic, where it is tried
to find inference rules that allow us to derive syntactically the semantical
implications of a set of formulae. In the case of conditional independence
the graphoid and semi-graphoid axioms are the syntactical inference rules.
On the other hand, a conditional independence statement I is implied se-
mantically by a set Z of conditional independence statements if I holds in
all distributions satisfying all statements in Z. Consequently, in analogy to
symbolic logic, the question arises whether the syntactical rules are sound
and complete, i.e., whether they yield only semantically correct consequences
and whether all semantical consequences can be derived with them.

The soundness is ensured by theorem 4.1. It has been conjectured by
[Pear] 1988] that the semi-graphoid axioms are also complete for general
(i.e., not only strictly positive) probability distributions. However, this
conjecture fails [Studeny 1992]. Whether they are complete for conditional
possibilistic independence seems to be an open problem.

4.1.2 Graph Terminology

Before I define separation in graphs in the next section, it is convenient to
review some basic notions used in connection with graphs (although most
of them are well known) and, more importantly, to introduce my notation.

Definition 4.2 A graph is a pair G = (V, E), where V is a (finite) set
of vertices or nodes and E CV XV is a (finite) set of edges. It is

understood that there are no loops, i.e., no edges (A, A) for any A € V.
G is called undirected iff

VA,BeV: (A, B)eE = (B,A)€E.

Two ordered pairs (A, B) and (B, A) are identified and represent only one
(undirected) edge." G is called directed iff

VA,BeV: (A,B)eE = (B,A)¢E.
An edge (A, B) is considered to be directed from A towards B.

Note that the graphs defined above are simple, i.e., there are no multiple
edges between two nodes and no loops. In order to distinguish between
directed and undirected graphs, I write G = (V, E) for directed graphs.

IThis way of expressing that edges are undirected, i.e., removing the “direction” of
the ordered pairs representing edges by requiring both directions to be present, has
the advantage that it can easily be extended to capture graphs with both directed and
undirected edges: For a directed edge only one of the two possible pairs is in E.
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The next four definitions introduce notions specific to undirected graphs.

Definition 4.3 Let G = (V, E) be an undirected graph. A node B € V is
called adjacent to a node A € V or a neighbor of A iff there is an edge
between them, i.e., iff (A, B) € E. The set of all neighbors of A,

boundary(4) = {B €V | (A, B) € E},
is called the boundary of a node A and the set
closure(A) = boundary(A) U {A}
is called the closure of A.

Of course, the notions of boundary and closure can easily be extended to
sets of nodes, but I do not need this extension in this thesis. In the next
definition the notion of adjacency of nodes is extended to paths.

Definition 4.4 Let G = (V, E) be an undirected graph. Two distinct nodes
A,B €V are called connected in G, written A %5 B, iff there is a se-
quence Cq,...,Cr, k > 2, of distinct nodes, called a path, with C; = A,
Cy,=B,and Vi,1<i<k: (Ci,ci+1) e k.

Note that in this definition a path is defined as a sequence of nodes (instead
of a sequence of edges), because this is more convenient for my purposes.
Note also that the nodes on the path must be distinct, i.e., the path must
not lead back to a node already visited.

An important special case of an undirected graph is the tree, in which
there is only a restricted set of paths.

Definition 4.5 An undirected graph is called singly connected or a tree
iff any pair of distinct nodes is connected by exactly one path.

The following notions, especially the notion of a maximal clique, are impor-
tant for the connection of decompositions and undirected graphs.

Definition 4.6 Let G = (V,E) be an undirected graph. An undirected
graph Gx = (X, Ex) is called a subgraph of G (induced by X ) iff X CV
and Ex = (X x X)NE, i.e., iff it contains a subset of the nodes in G and
all corresponding edges.

An undirected graph G = (V, E) is called complete iff its set of edges
is complete, i.e., iff all possible edges are present, or formally iff

E=VxV—{(AA)|AcV}.

A complete subgraph is called a clique. A clique is called maximal iff it
is mot a subgraph of a larger clique, i.e., a clique having more nodes.
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Note that in publications on graphical models the term cligue is often used
for what is called a maximal clique in the definition above, while what is
called a clique in the above definition is merely called a complete subgraph.
I chose the above definition, because it is the standard terminology used in
graph theory [Bodendiek and Lang 1995].

The remaining definitions introduce notions specific to directed graphs.

Definition 4.7 Let G = (V, E) be a directed graph. A node B € V is
called a parent of a node A € V and, conversely, A is called the child
of B iff there is a directed edge from B to A, i.e., iff (B,A) € E. B is
called adjacent to A iff it is either a parent or a child of A. The set of
all parents of a node A is denoted

parents(A) = {B € V | (B, A) € E}
and the set of its children is denoted
children(4) = {B € V | (4, B) € E}.
In the next definition the notion of adjacency of nodes is extended to paths.

Definition 4.8 Let G = (V, E) be a directed graph.

Two nodes A, B € V are called d-connected in é, written A% B, iff
there is a sequence C1,...,Cy, k > 2, of distinct nodes, called a directed
path, with Cy = A, Cy, = B, and Vi,1 <i<k: (C;,Cis1) € E.

Two nodes A, B € V are called connected in é, written A ¥ B, iff
there is a sequence C1,...,Cy, k > 2, of distinct nodes, called a path, with
Ci=A Cr=B,and Vi,1 <i<k: (C;,Ciz1) €E V (Ciy1,Ci) € E.

G is called acyclic iff it does not contain a directed cycle, i.e., iff for
all pairs of nodes A and B with A7 B it is (B, A) ¢ E.

Note that in a path, in contrast to a directed path, the edge directions are
disregarded. With directed paths we can now easily define the notions of
ancestor and descendant and the important set of all non-descendants.

Definition 4.9 Let G = (v, E) be a directed acyclic graph. A node A€V
is called an ancestor of a node B € V and, conversely, B is called a
descendant of A iff there is a directed path from A to B. B is called a
non-descendant of A iff it is distinct from A and not a descendant of A.
The set of all ancestors of a node A is denoted

ancestors(A) ={B eV | By A},
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the set of its descendants is denoted
descendants(A) = {B € V | Ay B},
and the set of its non-descendants is denoted
nondescs(A) =V — {A} — descendants(A).

In analogy to undirected graphs there are the special cases of a tree and a
polytree, in which the set of paths is severely restricted.

Definition 4.10 A directed acyclic graph is called a (directed) tree iff (1)
exactly one node has no parents, (2) all other nodes have exactly one parent.

A directed acyclic graph is called singly connected or a polytree iff
any pair of distinct nodes is connected by exactly one path.

An important concept for directed acyclic graphs is the notion of a topo-
logical order of the nodes of the graph. It can be used to test whether a
directed graph is acyclic, since it only exists for acyclic graphs, and is often
useful to fix the order in which the nodes of the graph are to be processed
(cf. the proof of theorem 4.3 in section A.3 in the appendix).

Definition 4.11 Let G = (v, E) be a directed acyclic graph. A numbering
of the nodes of G, i.e., a function o:V — {1,...,|V|}, satisfying

VA,BeV: (AB)eE = o(A) < o(B)
is called a topological order of the nodes of G.

It is obvious that for any directed acyclic graph G a topological order can
be constructed with the following simple recursive algorithm: Select an
arbitrary childless node A in G and assign to it the number |V]. Then
remove A from G and find a topological order for the reduced graph. It is
also clear that for graphs with directed cycles there is no topological order,
because a directed cycle cannot be reduced by the above algorithm: It must
eventually reach a situation in which there is no childless node.

4.1.3 Separation in Graphs

As already indicated, the notion of conditional independence is strikingly
similar to separation in graphs. What is to be understood by “separation”
depends on whether the graph is directed or undirected. If it is undirected,
separation is defined as follows:
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Definition 4.12 Let G = (V, E) be an undirected graph and X, Y, and Z
three disjoint subsets of nodes (vertices). Z u-separates X and Y in G,
written (X | Z | Y)a, iff all paths from a node in X to a node in' Y contain
a node in Z. A path that contains a node in Z is called blocked (by Z),
otherwise it is called active.

Alternatively we may say that Z u-separates X and Y in G iff after removing
the nodes in Z and their associated edges from G there is no path from a
node in X to a node in Y, i.e., in the graph without the nodes in Z the
nodes in X and Y are not connected.

If the graph is directed, a slightly more complicated separation criterion
is used [Pearl 1988, Geiger et al. 1990, Verma and Pearl 1990]. It is less
natural than the u-separation criterion and one can clearly tell that it was
defined to capture conditional independence w.r.t. chain rule decompositions
(cf. section 4.1.6 below).

Definition 4.13 Let G = (v, E) be a directed acyclic graph and X,Y, and
Z three disjoint subsets of nodes (vertices). Z d-separates X and Y in G,
written (X | Z | Y) 5, iff there is no path from a node in X to a node in Y
along which the following two conditions hold:

1. every node with converging edges (from its predecessor and its successor
on the path) either is in Z or has a descendant in Z,
2. every other node is not in Z.

A path satisfying the conditions above is said to be active, otherwise it is
said to be blocked (by Z ).

Both wu-separation and d-separation satisfy the graphoid axioms. For u-
separation this is evident from the illustration shown in figure 4.2 [Pearl
1988] (symmetry is trivial and thus neglected). Therefore the graphoid
axioms are sound w.r.t. inferences about u-separation in graphs. However,
they are not complete, because they are much weaker than u-separation.

To be more precise, the weak union axiom allows us only to extend the
separating set Z by specific sets of nodes, namely those, of which it is already
known that they are separated by Z from one of the sets X and Y (which
are separated by Z), whereas it is clear that u-separation is monotonous,
i.e., any superset of a separating set is also a separating set. That is, u-
separation cannot be destroyed by enlarging a separating set by any set of
nodes, while the graphoid axioms do not exclude such a destruction. A set
of axioms for u-separation that has been shown to be sound and complete
[Pear] and Paz 1987] are the graphoid axioms with the weak union axiom
replaced by the following two axioms:
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decomposition:

weak union:
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Figure 4.2: Illustration of the graphoid axioms and of separation in graphs.

(XLUY|Z) = (YLX|ZUW)

(XLY|Z) = VAeV - (XUYUZ):
(ALY | Z2) v (X 1L {A}]2)

Obviously, the strong union axiom expresses the monotony of u-separation.
The transitivity axiom is easily understood by recognizing that if a node A
not in X, Y, or Z were not separated by Z from at least one of the sets X
and Y, then there must be paths from A to a node in X and from A to a
node in Y, both of which are not blocked by Z. But concatenating these
two paths yields a path from X to Y that is not blocked by Z and thus X
and Y could not have been u-separated by Z in the first place.

To verify that d-separation satisfies the graphoid axioms, the illustra-
tion in figure 4.2 is also helpful. However, we have to take into account
that d-separation is weaker than u-separation. d-separation does not sat-
isfy the strong union axiom, because a path that is blocked by a separating
set Z need not be blocked by a superset of Z: It may be blocked by Z,
because a node with converging edges is not in Z and neither are any of its
descendants. It may be active given a superset of Z, because this superset
may contain the node with converging edges or any of its descendants, thus
activating a path that was blocked before.

Nevertheless, the validity of the graphoid axioms is easily established:
Decomposition obviously holds, since the set of paths connecting W and Y
(or X and Y) are a subset of the paths connecting W U X and Y and
since the latter are all blocked, so must be the former. Weak union holds,
because the nodes in W cannot activate any paths from X to Y. Even if

strong union:

transitivity:
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W contained a node with converging edges of a path from X to Y or a
descendant of such a node, the path would still be blocked, because any
path from this node to Y is blocked by Z. (Note that the separation of W
and Y by Z is essential.) Contraction is similar, only the other way round:
Since all paths from W to Y are blocked by Z, we do not need the nodes
in W to block the paths from X to Y, Z is sufficient. Basically the same
reasoning shows that the intersection axiom holds. The only complication
are paths from a node in W U X that zig-zag between W and X before
going to a node in Y. However, from the presuppositions of the intersection
axiom it is clear that all such paths must be blocked by Z.

Since d-separation is weaker than u-separation, the graphoid axioms may
be complete for d-separation, although they are clearly not for u-separation.
However, whether they actually are, I have not been able to determine, be-
cause I could not find a definite statement in the literature. A weaker result
is presented in [Geiger and Pearl 1990, Pearl 1988]: d-separation is not
improvable in the sense that for any directed acyclic graph there exists a
probability distribution such that d-separation in the graph coincides with
conditional independence in the distribution. This result makes it impos-
sible for a valid semantical consequence of a set of probabilistic conditional
independence statements to escape detection by d-separation.

4.1.4 Dependence and Independence Maps

Since separation in graphs is so similar to conditional independence, the idea
suggests itself to represent a set of conditional independence statements—
in particular, all conditional independence statements that hold in a given
probability or possibility distribution—Dby a graph. At best we could check
whether two sets are conditionally independent given a third or not by
determining whether they are separated by the third in the graph.
However, this optimum, i.e., an isomorphism of conditional indepen-
dence and separation, cannot be achieved in general. For undirected graphs
this is immediately clear from the fact that wu-separation satisfies axioms
much stronger than the graphoid axioms (see above). In addition, proba-
bilistic conditional independence for not strictly positive distributions and
possibilistic conditional independence only satisfy the semi-graphoid ax-
ioms. Thus the validity of the intersection axiom for u- and d-separation
already goes beyond what can be inferred about conditional independence
statements. Finally, it is not immediately clear whether it is possible to
represent simultaneously in a graph sets of conditional independence state-
ments which may hold simultaneously in a distribution if these statements
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are not logical consequences of each other. Indeed, there are such sets
of conditional independence statements for both undirected and directed
acyclic graphs (examples are given below).

As a consequence we have to take refuge to a weaker way of defining
conditional independence graphs than requiring isomorphism of conditional
independence and separation [Pearl 1988]. It is sufficient, though, for the
purpose of characterizing decompositions, because for this purpose isomor-
phism is certainly desirable, but not a conditio sine qua non.

Definition 4.14 Let (- 1Ls- | -) be a three-place relation representing the
set of conditional independence statements that hold in a given distribution 0
over a set U of attributes. An undirected graph G = (U, E) over U is called
a conditional dependence graph or ¢ dependence map w.r.t. § iff for
all disjoint subsets X,Y,Z C U of attributes

XUsY|Z = (X|Z|V)e,

i.e., if G captures by u-separation all (conditional) independences that hold
in § and thus represents only valid (conditional) dependences. Similarly, G
is called a conditional independence graph or an independence map
w.r.t. 0 iff for all disjoint subsets X,Y,Z C U of attributes

(X|Z|Y)e = XY |2,

i.e., if G captures by u-separation only (conditional) independences that are
valid in 6. G is said to be a perfect map of the conditional (in)dependences
i 0 iff it is both a dependence map and an independence map.

It is clear that the same notions can be defined for directed acyclic graphs
G= (U, E) in exactly the same way, so I do not provide a separate definition.

A conditional dependence graph of a distribution guarantees that (sets
of) attributes that are not separated in the graph are indeed conditionally
dependent in the distribution. It may, however, display dependent (sets of)
attributes as separated nodes (or node sets, respectively). Conversely, a
conditional independence graph of a distribution guarantees that (sets of)
attributes that are separated in the graph are indeed conditionally inde-
pendent in the distribution. There may be, however, (sets of) conditionally
independent attributes that are not separated in the graph.

It is clear that a graph with no edges is a trivial conditional dependence
graph and a complete graph is a trivial conditional independence graph,
simply because the former represents no dependences and the latter no in-
dependences and thus obviously no false ones. However, it is also clear
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that these graphs are entirely useless. Therefore we need some restriction
which ensures that a conditional dependence graph represents as many de-
pendences as possible and a conditional independence graph represents as
many independences as possible. This is achieved with the next definition.

Definition 4.15 A conditional dependence graph is called maximal w.r.t.
a distribution § (or a mazimal dependence map w.r.t. §) iff no edge can be
added to it so that the resulting graph is still a conditional dependence graph
w.r.t. the distribution §.

A conditional independence graph is called minimal w.r.t. a distribu-
tion & (or a minimal independence map w.r.t. §) iff no edge can be removed
from it so that the resulting graph is still a conditional independence graph
w.r.t. the distribution §.

The fact that decompositions depend on (conditional) independences makes
it more important to truthfully record independences. If an invalid condi-
tional independence can be read from a separation in the graph, we may
arrive at an invalid decomposition formula (cf. section 4.1.6 below). If, on
the other hand, a valid conditional independence is not represented by sepa-
ration in a graph, we only may not be able to exploit it and thus may not find
the best decomposition. However, a suboptimal decomposition can never
lead to incorrect inferences as an incorrect decomposition can. Therefore I
neglect conditional dependence graphs in the following and concentrate on
conditional independence graphs.

As already indicated above, the expressive power of conditional indepen-
dence graphs is limited. For both directed acyclic graphs and undirected
graphs there are sets of conditional independence statements that cannot
be represented by separation, although they may hold simultaneously in a
distribution. This is most easily demonstrated by considering a directed
acyclic graph for which no equivalent undirected graph exists and an undi-
rected graph for which no equivalent directed acyclic graph exists.

An example of the former is shown in figure 4.3. The directed acyclic
graph on the left is a perfect map w.r.t. the probability distribution p4pc on
the right: It is A lLp B, but A UL p B| C. That is, A and B are marginally
independent, but conditionally dependent. It is immediately clear that there
is no undirected perfect map for this probability distribution. The monotony
of u-separation prevents us from representing A 1l p B, because this would
entail the (invalid) conditional independence statement A 1L p B | C.

An example of the latter, i.e., of an undirected conditional independence
graph for which there is no equivalent directed acyclic graph, is shown in
figure 4.4. As can easily be verified, the graph on the left is a perfect map
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Figure 4.3: Marginal independence and conditional dependence can be rep-
resented by directed graphs but not by undirected graphs.
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Figure 4.4: Sets of conditional independence statements with certain sym-
metries can be represented by undirected graphs but not by directed graphs.

w.r.t. the probability distribution papcp on the right: It is ALl p C' | BD
and B 1L p D | AC, but no other conditional independence statements hold
(except the symmetric counterparts of the above). It is clear that a directed
acyclic graph must contain at least directed counterparts of the edges of the
undirected graph. However, if we confine to these edges, an additional
conditional independence statement is represented, independent of how the
edges are directed. If another edge is added to exclude this statement, one
of the two valid conditional independences is not represented.

4.1.5 Markov Properties of Graphs

In the previous section conditional independence graphs were defined based
on a global criterion. This makes it hard to test whether a given graph is a
conditional independence graph or not: One has to check for all separations
of node sets in the graph whether the corresponding conditional indepen-
dence statement holds. Thus the question arises whether there are simpler
criteria. Fortunately, under certain conditions simpler criteria can be found
by exploiting the equivalence of the so-called Markov properties of graphs.



4.1. CONDITIONAL INDEPENDENCE GRAPHS 107

For undirected graphs the Markov properties are defined as follows
[Whittaker 1990, Frydenberg 1990, Lauritzen et al. 1990, Lauritzen 1996]:

Definition 4.16 Let (- 1Ls- | -) be a three-place relation representing the
set of conditional independence statements that hold in a given joint distri-
bution 0 over a set U of attributes. An undirected graph G = (U, E) is said
to have (w.r.t. the distribution §) the

pairwise Markov property
iff in & any pair of attributes which are nonadjacent in the graph are con-
ditionally independent given all remaining attributes, i.e., iff

VA BEUA+B: (AB)¢E = AlsB|U—{A B},

local Markov property
iff in & any attribute is conditionally independent of all remaining attributes
given its neighbors, i.e., iff

VAeU: AlsU — closure(A) | boundary(A),

global Markov property
iff in & any two sets of attributes which are u-separated by a third® are
conditionally independent given the attributes in the third set, i.e., iff

VX,Y,ZCU: (X|Z|Y)e = X1UsY | Z

Definition 4.14 on page 104 used the global Markov property to define con-
ditional independence graphs. However, the pairwise or the local Markov
property would be much more natural and convenient. Therefore it is pleas-
ing to observe that, obviously, the boundary of an attribute u-separates it
from the attributes in the remainder of the graph and thus the local Markov
property is implied by the global. Similarly, the set of all other attributes
u-separates two nonadjacent attributes and thus the pairwise Markov prop-
erty is implied by the global, too. If the relation (- lLs- | -) satisfies the
semi-graphoid axioms, we also have that the pairwise Markov property is
implied by the local, since it follows from an application of the weak union
axiom. That is, for semi-graphoids we have

gglobal((s) g glocal(d) g gpairwise((s)a

where Gprop(0) is the set of undirected graphs having the Markov prop-
erty prop w.r.t. the distribution 4.

2Tt is understood that the three sets are disjoint.
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Figure 4.5: In general, the Markov properties are not equivalent.

Unfortunately, despite the above inclusions, the three Markov properties
are not equivalent in general [Lauritzen 1996]. Consider, for example, five
attributes A, B,C, D, and F with dom(A) = ... = dom(E) = {0,1}. Let
A=B,D=E,C=B-D,and P(A=0)=P(E=0)=1. With these
presuppositions it is easy to check that the graph shown in figure 4.5 has
the pairwise and the local Markov property w.r.t. to the joint probability
distribution of A, B,C,D, and E. However, it does not have the global
Markov property, because it is A L p FE | C.

The equivalence of the three Markov properties can be established,
though, if the relation that describes the set of conditional independence
statements holding in a given distribution § satisfies the graphoid axioms.

Theorem 4.2 If a three-place relation (- Lls- | ) representing the set of
conditional independence statements that hold in a given joint distribution §
over a set U of attributes satisfies the graphoid axioms, then the pairwise,
the local, and the global Markov property of an undirected graph G = (U, E)
are equivalent.

Proof: From the observations made above we already know that the global
Markov property implies the local and that the local Markov property im-
plies the pairwise. So all that is left to show is that, given the graphoid
axioms, the pairwise Markov property implies the global.

The idea of the proof is very simple. Consider three arbitrary nonempty
disjoint subsets X, Y, and Z of nodes such that (X | Z | Y)g. We have
to show that X 1l5Y | Z follows from the pairwise conditional indepen-
dence statements referring to attributes that are not adjacent in the graph.
To do so we start from an arbitrary conditional independence statement
AllsB|U—-{A,B} with A € X and B € Y, and then shift nodes from
the separating set to the separated sets, thus extending A to (a superset of)
X and B to (a superset of) Y and shrinking U — {A, B} to Z. The shift-
ing is done by applying the intersection axiom, drawing on other pairwise
conditional independence statements. Finally, any excess attributes in the
separated sets are removed with the help of the decomposition axiom.

Formally, the proof is carried out by backward or descending induction
[Pearl 1988, Lauritzen 1996], see section A.2 in the appendix. O
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If the above theorem applies, we can define a conditional independence
graph in the following, very natural way: An undirected graph G = (U, E)
is a conditional independence graph w.r.t. to a joint distribution ¢ iff

VABEV,A#B: (AB)¢E = Al;B|U-{A B}.

In addition, both the pairwise and the local Markov property are powerful
criteria to test whether a given graph is a conditional independence graph.

Of course, the three Markov properties can be defined not only for undi-
rected, but also for directed graphs [Lauritzen 1996].

Definition 4.17 Let (- lLs- | -) be a three-place relation representing the
set of conditional independence statements that hold in a given joint distri-
bution & over a set U of attributes. A directed acyclic graph G= (U, E) 18
said to have (w.r.t. the distribution ¢) the

pairwise Markov property
iff in & any attribute is conditionally independent of any mon-descendant
not among its parents given all remaining non-descendants, i.e., iff

VA,B € U : B € nondescs(A) —parents(A) = A 15 B | nondescs(A) —{B},

local Markov property
iff in & any attribute is conditionally independent of all remaining non-
descendants given its parents, i.e., iff

VAeU: A lsnondescs(A) — parents(A) | parents(A),

global Markov property
iff in & any two sets of attributes which are d-separated by a third® are
conditionally independent given the attributes in the third set, i.e., iff

VX,Y,ZCU: (X|Z|Y)g = XY |2

As for undirected graphs, we can make some pleasing observations: It is clear
that the parents of A d-separate A from all its non-descendants. The reason
is that a path to a non-descendant must either pass through a parent—and
then it is blocked by the set of parents—or it must pass through a descendant
of A at which it has converging edges—and then it is blocked by the fact that
neither this descendant nor any of its descendants are among the parents
of A. Hence the global Markov property implies the local. For the same

31t is understood that the three sets are disjoint.
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@ Figure 4.6: In general, the pair-

l \@—>® wise and the local Markov prop-
/ erty are not equivalent.

reasons the set of all remaining non-descendants d-separates a node A from
a non-descendant node B that is not among its parents. Therefore the
pairwise Markov property is also implied by the global. Finally, if the
relation (- s - | -) satisfies the semi-graphoid axioms, we also have that the
pairwise Markov property is implied by the local, since it follows from an
application of the weak union axiom. That is, for semi-graphoids we have

églobal(5) g g_iocal(d) g gpairwise(5)7

where Jprop (9) is the set of directed acyclic graphs having the Markov prop-
erty prop w.r.t. the distribution 0.

Unfortunately, despite the above inclusions, the three Markov properties
are again not equivalent in general [Lauritzen 1996]. Consider, for example,
four attributes A, B,C, and D with dom(4) = ... = dom(D) = {0,1}. Let
A =B =D, C independent of A, and P(A = 0) = P(C = 0) = 3. With
these presuppositions it is easy to check that the graph shown in figure 4.6
has the pairwise Markov property w.r.t. to the joint probability distribution
of A, B, C, and D, but not the local.

The equivalence of the three Markov properties can be established, as
for undirected graphs, if the graphoid axioms hold. However, one can also
make a stronger assertion.

Theorem 4.3 If a three-place relation (- LLs- | ) representing the set of
conditional independence statements that hold in a given joint distribution &
over a set U of attributes satisfies the semi-graphoid axioms, then the local
and the global Markov property of a directed acyclic graph G = (U, E) are
equivalent. If (- Lls- | -) satisfies the graphoid azioms, then the pairwise,
the local, and the global Markov property are equivalent.

Proof: The full proof of the first part of this theorem, which I had to
construct myself,* can be found in section A.3 in the appendix. Here I
confine myself to making plausible why such a proof is possible for directed

4[Lauritzen 1996], for example, only provides a proof of a weaker statement that
involves the factorization property of a directed acyclic graph w.r.t. probability distribu-
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acyclic graphs, although it is clearly not for undirected graphs. Let A
and B be two adjacent nodes that are separated by a set Z of nodes
from a set Y of nodes. For undirected graphs, to derive the corresponding
conditional independence statement from local conditional independence
statements, we have to combine A 15U — closure(A4) | boundary(A4) and
B 15U — closure(B) | boundary(B) in order to get a statement in which
A and B appear on the same side. However, it is A € boundary(B) and
B € boundary(A) and therefore the intersection axiom is needed. In con-
trast to this, in a directed acyclic graph it is either A € parents(B) or
B € parents(A), but not both. Therefore, under certain conditions, the
contraction axiom—which is similar to, but weaker than the intersection
axiom—suflices to combine the local conditional independence statements.

Given the first part of the theorem the proof of the second part is rather
simple. We already know that the local and the global Markov property are
equivalent and, from the observations made above, that the local Markov
property implies the pairwise. Therefore, all that is left to show is that the
pairwise Markov property implies the local. However, this is easily demon-
strated: We start from an arbitrary pairwise conditional independence state-
ment for a node and combine it step by step, using the intersection axiom,
with all other pairwise conditional independence statements for the same
node and thus finally reach the local conditional independence statement
for the node. O

As for undirected graphs this theorem allows us to define a conditional
independence graph in a more natural way based on the local or the pairwise
Markov property. It is particularly convenient, though, that for a definition
based on the local Markov property we only need to know that the semi-
graphoid axioms hold (instead of the graphoid axioms, which often fail).

4.1.6 Graphs and Decompositions

The preceding sections were devoted to how conditional independence state-
ments can be captured in a graphical representation. However, representing
conditional independences is not a goal in itself, but only a pathway to find-
ing a decomposition of a given distribution. To determine a conditional

tions (see below). However, since I consider not only probabilistic, but also possibilistic
networks, I either had to transfer the proof to the possibilistic case or, obviously more
desirable, I had to construct a proof for the more general statement made in the theorem.
I am not sure, though, whether the statement or its proof are new or not. I do not know
of a publication, but I am somewhat reluctant to claim that it has escaped recognition
by other researchers.
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independence graph for a given distribution is equivalent to determining
what terms are needed in a decomposition of the distribution, because they
can be read directly from the graph, and finding a minimal conditional inde-
pendence graph is tantamount to discovering the “best” decomposition, i.e.,
a decomposition into smallest terms. Formally, this connection is brought
about by the theorems of this section. I study undirected graphs first.

Definition 4.18 A probability distribution py over a set U of attributes
is called decomposable or factorizable w.r.t. an undirected graph
G = (U, E) iff it can be written as a product of nonnegative functions on the
mazimal cliques of G. That is, let M be a family of subsets of attributes,
such that the subgraphs of G induced by the sets M € M are the mazximal
cliques of G. Then there must exist functions ¢pr : Epr — ]R(J)r, M e M,

Va, € dom(A4,) : ...Va, € dom(A,) :

pU( /\ Ai:ai): H </5M( /\ Ai:ai).
AeU MeMm AieM

Similarly, a possibility distribution my over U is called decomposable
w.r.t. an undirected graph G = (U, E) iff it can be written as the mini-
mum of the marginal possibility distributions on the mazimal cliques of G.
That is, iff

Va; € dom(A4,) : ...Va, € dom(A4,) :

7rU( /\ A; 7(11)7 min 7TM( /\ A; faz)

A;eU

Note that the decomposition formulae are the same as in definition 3.13
on page 78 and in definition 3.8 on page 69, respectively. The undirected
graph G only fixes the set M of subsets of nodes in a specific way.

A simple example is shown in figure 4.7. This graph has four max-
imal cliques, namely those induced by the four node sets {4;, A, As},
{A3, As, Ag}, {A2, Ay}, and {Ay4, Ag}. Therefore, in the probabilistic case,
this graph represents the factorization

Va, € dom(A4y) : ...Vag € dom(Ag) :
pu(Ar =ai,...,A¢ =ag) = ¢a,4,4,(A1 =0a1,A =az, Az = a3)
PasAsAs(As = a3, As = a5, Ag = ag)
Ga,a, (A2 = az, Ay = aq)
dA,46(As = ag, Ag = ag).
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— Figure 4.7: A simple undirected

\ graph that represents a decompo-

@ @ sition/factorization into four terms
corresponding to the four maximal
_ cliques.

The following theorem connects undirected conditional independence graphs
to decompositions. It is usually attributed to [Hammersley and Clifford
1971], who proved it for the discrete case (to which I will confine myself,
to0o), although (according to [Lauritzen 1996]) this result seems to have been
discovered in various forms by several authors.

Theorem 4.4 Let py be a strictly positive probability distribution on a
set U of (discrete) attributes. An undirected graph G = (U, E) is a condi-
tional independence graph w.r.t. py iff pu is factorizable w.r.t. G.

Proof: The full proof, which is somewhat technical, can be found in sec-
tion A.4 in the appendix. In its first part it is shown that, if py is factorizable
w.r.t. an undirected graph G, then G has the global Markov property w.r.t.
conditional independence in py. This part exploits that two attributes which
are u-separated in G' cannot be in the same clique. Therefore, for any three
disjoint subsets X, Y, and Z of attributes such that (X | Z | Y')¢ the cliques
can be divided into two sets and the functions ¢y; can be combined into a
corresponding product of two functions from which the desired conditional
independence X 1L, Y | Z follows. It is worth noting that the validity of
this part of the proof is not restricted to strictly positive distributions py .

In the second part of the proof it is shown that py is factorizable w.r.t. a
conditional independence graph G. This part is constructive, i.e., it provides
a method to determine nonnegative functions ¢,; from the joint distribu-
tion py, so that py can be written as a product of these functions. O

The above theorem can be extended to more general distributions, for ex-
ample, to distributions on real-valued attributes, provided they have a pos-
itive and continuous density [Lauritzen 1996]. However, since in this thesis
I confine myself almost entirely to the discrete case, I do not discuss this ex-
tension. A possibilistic analog of the above theorem also holds and has been
proven first in [Gebhardt 1997]. However, it is less general than its proba-
bilistic counterpart. To show the desired equivalence of decomposition and
representation of conditional independence, the permissible graphs have to
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be restricted to certain subset. The graphs in this subset are characterized
by the so-called running intersection property of the family of attribute sets
that induce their maximal cliques.

Definition 4.19 Let M be a finite family of subsets of a finite set U and
let m = |M|. M is said to have the running intersection property iff
there is an ordering My, ..., M,, of the sets in M, such that

Vie{2,...,m}:3kell,... i1} Mm( U Mj)ng
1<j5<1

If all pairs of nodes of an undirected graph G are connected in G and the
family M of the node sets that induce the mazximal cliques of G has the
running intersection property, then G is said to have hypertree structure.

The idea underlying the notion of a hypertree structure is as follows: In
normal graphs an edge can connect only two nodes. However, we may
drop this restriction and introduce so-called hypergraphs, in which we have
hyperedges that can connect any number of nodes. It is very natural to use
a hyperedge to connect the nodes of a maximal clique, because by doing so
we can make these cliques easier to recognize. (Note that the connectivity
of the graph is unharmed if all edges of its maximal cliques are replaced
by hyperedges, and therefore we do not loose anything by this operation.)
If the sets of nodes that are connected by hyperedges have the running
intersection property, then the hypergraph is, in a certain sense, acyclic (cf.
section 4.2.2). Since acyclic undirected normal graphs are usually called
trees, the idea suggests itself to call such hypergraphs hypertrees. Therefore
an undirected graph which becomes a hypertree, if the edges of its maximal
cliques are replaced by hyperedges, is said to have hypertree structure.

For graphs with hypertree structure a possibilistic analog of the above
theorem can be proven [Gebhardt 1997], although the hypertree structure
of the conditional independence graph is only needed for one direction of
the theorem, namely to guarantee the existence of a factorization.

Theorem 4.5 Let wy be a possibility distribution on a set U of (discrete)
attributes and let G = (U, E) be an undirected graph over U. If wy is
decomposable w.r.t. G, then G is a conditional independence graph w.r.t. my.
If G is a conditional independence graph w.r.t. 7y and if it has hypertree
structure, then my is decomposable w.r.t. G.

Proof: The full proof can be found in section A.5 in the appendix. The first
part of the theorem can be proven in direct analogy to the corresponding
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part of the proof of the probabilistic counterpart of the above theorem.
Again it is exploited that two attributes that are u-separated cannot be in
the same clique and therefore the cliques can be divided into two sets. Note
that this part of the theorem does not require that the graph has hypertree
structure and thus is valid for arbitrary undirected graphs.

For the second part of the theorem the hypertree structure of G is essen-
tial, since it allows an induction on a construction sequence for the graph G
that exploits the global Markov property of GG. The construction sequence
is derived from the ordering of the cliques that results from the ordering
underlying the running intersection property. O

Unfortunately, the above theorem cannot be generalized to arbitrary graphs
as the following example demonstrates (this is a slightly modified version of
an example given in [Gebhardt 1997]). Consider the undirected graph and
the simple relation shown in figure 4.8 (and recall that a relation is only
a special possibility distribution). It is easy to check that the graph is a
conditional independence graph of the relation, since both conditional inde-
pendence statements that can be read from it, namely A 1l p C' | {B, D} and
BUgrD | {A C}, hold in the relation. However, it does not have hyper-
tree structure, because the set of its four maximal cliques does not have the
running intersection property, and, indeed, the relation is not decomposable
w.r.t. the graph. If it were decomposable, then it would be

Va € dom(A) : Vb € dom(B) : VC € dom(C) : Vd € dom(D) :
R(a,b,c,d) = min{R(a,b), R(b,c), R(c,d), R(d,a)},

where R(a,b) is an abbreviation of R(A = a,B = b) etc. However, it is
R(ay,b1,c¢1,d1) = 0 (since this tuple is not contained in the relation), but
R(a1,b1) =1 (because of the first or the second tuple), R(by,c1) =1 (first
tuple), R(c1,d1) = 1 (third tuple), and R(d;,a;) = 1 (second tuple) and
therefore min{R(a1,b1), R(b1,c1), R(c1,d1), R(d1,a1)} = 1. Note, however,
that a multivariate possibility distribution may be decomposable w.r.t. a
conditional independence graph that does not have hypertree structure. It
is only that it cannot be guaranteed that it is decomposable.
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In the following I turn to directed graphs. The connection of directed
acyclic graphs and decompositions, in this case chain rule decompositions,
is achieved in a similar way as for undirected graphs.

Definition 4.20 A probability distribution py over a set U of attributes is
called decomposable or factorizable w.r.t. a directed acyclic graph
G= (U, E) iff it can be written as a product of the conditional probabilities
of the attributes given their parents in é, i.e., iff

Va, € dom(A4,) :...Va, € dom(A,) :

Similarly, a possibility distribution 7y over U is called decomposable
w.r.t. a directed acyclic graph G = U, E) iff it can be written as the
minimum of conditional degrees of possibility of the attributes given their
parents in G. That 1s, iff

/\ A; :aj>.

Aj€parents 5 (A;)

Va, € dom(4y) : ...Va, € dom(A,) :
7TU( /\ Az = CLi) = min H(AL = Qa;

A;eU /\ 4= aj)'

A;eU Aj€Eparentsz A;

Note that the decomposition formulae are the same as the chain rule de-
composition formulae on page 80 and page 88, respectively. The directed
acyclic graph G only fixes the conditions of the conditional probabilities or
conditional degrees of possibility in a specific way.

A simple example graph is shown in figure 4.9. In the probabilistic case
this graph represents the factorization

Va; € dom(A4;) :...Var € dom(A7) :
pu(41=a1,..., A7 =ar)
= P(Ai=a1) - P(Ay=az| A1 = a1) - P(A3 = a3)
P(Ay=a4 | Ay =a1,A2 = a2) - P(As = a5 | A2 = a2, A3 = a3)
P(A¢ =ag | Ay = a4, A5 = a5) - P(A7 = a7 | A5 = as).

We have similar theorems for directed graphs as for undirected graphs re-
lating factorization and representation of conditional independence.

Theorem 4.6 Let py be a probability distribution on a set U of (discrete)
attributes. A directed acyclic graph G = (U, E) is a conditional indepen-
dence graph w.r.t. py iff pu is factorizable w.r.t. G.



4.1. CONDITIONAL INDEPENDENCE GRAPHS 117

()
\ / Figure 4.9: A simple directed acyclic

graph that represents a decomposi-
/ tion/factorization into terms with at

most two conditions.

Proof: The proof, which exploits the equivalence of the global and the local
Markov property, the latter of which is directly connected to the factoriza-
tion formula, can be found in section A.6 in the appendix. O

As for undirected graphs, there is only an incomplete possibilistic analog,
only that here it is the other direction that does not hold in general.

Theorem 4.7 Let wy be a possibility distribution on a set U of (discrete)
attributes. If a directed acyclic graph G = (U, E) is a conditional indepen-
dence graph w.r.t. wy, then my is decomposable w.r.t. G.

Proof: The proof, which can be found in section A.7 in the appendix, is
analogous to the proof of the corresponding part of the probabilistic case.
As usual when going from probabilities to degrees of possibility, one has to
replace the sum by the maximum and the product by the minimum. O

Note that the converse of the above theorem, i.e., that a directed acyclic
graph G is a conditional independence graph of a possibility distribution 7
if 7 is decomposable w.r.t. é, does not hold. To see this, consider the sim-
ple relation r 4 go shown on the left in figure 4.10 (and recall that a relation
is a special possibility distribution). Trivially, r4pc is decomposable w.r.t.
the directed acyclic graph shown on the right in figure 4.10, since it is

Va € dom(A) : Vb € dom(B) : Ve € dom(C) :
rapc(A=a,B=0b,C =c)
=min{R(A=a),R(B=b),R(C=c|A=a,B=0b)}
=min{R(A=a),R(B=0b),R(C=c¢,A=a,B=0)}

In the graph G the attributes A and B are d-separated given the empty
set, i.e., (A | 0 | B)g, and thus the global Markov property would imply
All,,,. B. However, this is not the case, as the projection of r4 g shown
in the center of figure 4.10 demonstrates.
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Figure 4.10: Relational and possibilistic decomposition w.r.t. a directed
acyclic graph do not imply the global Markov property of the graph.

Whether the set of graphs can be restricted to an easily characterizable
subset (like the undirected graphs with hypertree structure) in order to make
the converse of the above theorem hold, seems to be an open problem.

4.1.7 Markov Networks and Bayesian Networks

Since conditional independence graphs and decompositions of distributions
are so intimately connected (as shown in the preceding section), the idea
suggests itself to combine them in one structure. In such a structure qualita-
tive information is available about the conditional (in)dependences between
attributes in the form of a conditional independence graph, which indicates
the paths along which evidence about the values of observed attributes has
to be transferred to the remaining unobserved attributes. In addition, the
terms of the decompositions provide quantitative information about the pre-
cise effects that different pieces of evidence have on the probability or degree
of possibility of the unobserved attributes.

The combination of a conditional independence graph and the decom-
position it describes finally leads us to the well-known notions of a Markov
network and a Bayesian network.

Definition 4.21 A Markov network is an undirected conditional inde-
pendence graph of a probability distribution py together with the family of
non-negative functions ¢y of the factorization induced by the graph.

Definition 4.22 A Bayesian network is a directed conditional indepen-
dence graph of a probability distribution py together with the family of con-
ditional probabilities of the factorization induced by the graph.

I call both Markov networks and Bayesian networks probabilistic networks.
Note that often only networks that are based on minimal conditional inde-
pendence graphs are called Markov networks or Bayesian networks [Pearl
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1988]. Although minimal conditional independence graphs are certainly de-
sirable, in my opinion this is an unnecessary restriction, since, for example,
the propagation algorithms for the two network types work just as well for
networks based on non-minimal conditional independence graphs.

Notions analogous to Markov network or Bayesian network can, of
course, be defined for the possibilistic case, too, although there are no spe-
cial names for them. I call the analog of a Markov network an undirected
possibilistic network and the analog of a Bayesian network a directed
possibilistic network. Note that for undirected possibilistic networks we
need not require that the conditional independence graph has hypertree
structure, although this is needed to guarantee that a decomposition w.r.t.
the graph exists. Clearly, even if it is not guaranteed to exist, it may exist
for a given graph and a given distribution, and if it does, there is no reason
why we should not use the corresponding network.

4.2 Evidence Propagation in Graphs

Conditional independence graphs not only provide a way to find a decom-
position of a given multidimensional distribution as shown in the preceding
section, they can also be used as a framework for the implementation of ev-
idence propagation methods. The basic idea is that the edges of the graph
indicate the paths along which evidence has to be transmitted. This is
reasonable; because if two attributes are separated by a set S of other at-
tributes, then there should not be any transfer of information from the one
to the other if the attributes in S are instantiated. However, if all informa-
tion is transmitted along the edges of the graph, this would necessarily be
the result (at least for undirected graphs), provided we make sure that the
information cannot permeate instantiated attributes. (For directed graphs,
of course, we have to take special precautions due to the peculiar properties
of nodes with converging edges, cf. the definition of d-separation.)

In this section I briefly review two of the best-known propagation meth-
ods that are based on the idea described above: The polytree propagation
method developed by [Pearl 1986, Pearl 1988] (section 4.2.1) and the join
tree propagation method developed by [Lauritzen and Spiegelhalter 1988]
(section 4.2.2). Both algorithms have been developed for the probabilistic
setting and therefore I confine myself to explaining them w.r.t. Bayesian
and Markov networks. However, it is clear that the ideas underlying these
methods can be transferred directly to the possibilistic setting. It is worth
noting that join tree propagation underlies the evidence propagation in the
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commercial Bayesian network tool HUGIN [Andersen et al. 1989] and that
its possibilistic counterpart has been implemented in POSSINFER, [Geb-
hardt and Kruse 1996a, Kruse et al. 1994]. In addition, the approach has
been generalized to other uncertainty calculi like belief functions [Shafer and
Shenoy 1988, Shenoy 1992b, Shenoy 1993] in the so-called valuation-based
networks [Shenoy 1992a]. This generalized version has been implemented
in PULCINELLA [Saffiotti and Umkehrer 1991].

As its name already indicates, the polytree propagation method is re-
stricted to singly connected networks. It exploits the fact that in a polytree
there is only one path on which the information derived from an instanti-
ated attribute can travel to another attribute. This makes it very simple to
derive a message passing scheme for the evidence propagation, which can
be implemented by locally communicating node processors.

Multiply connected networks are much harder to handle, because there
may be several paths on which evidence can travel from one node to another
and thus it is difficult to ensure that it is used only once to update the prob-
abilities of the values of an attribute. However, the join tree propagation
method provides a general formal approach to deal with multiply connected
graphs. Its key idea is to transform a given network into a singly connected
structure, namely a join tree, for which a propagation scheme similar to the
one for polytrees can be derived.

Since we look back on several years of research, it is clear that these
methods are not the only possible ones. However, it is also clear that in this
thesis I cannot provide an exhaustive treatment of evidence propagation.
Therefore I only mention some other methods in section 4.2.3.

4.2.1 Propagation in Polytrees

The polytree propagation method for Bayesian networks, which was sug-
gested by [Pear] 1986], is the oldest exact probabilistic propagation method.
It exploits that a polytree (cf. definition 4.10 on page 100) is singly con-
nected, i.e., that there is only one path from a node to another and thus
there is no choice of how to transmit the evidence in the network.

The basic idea of the propagation method is to use node processors
that exchange messages with their parents and their children. There are
two types of messages: So-called m-messages® that are sent from a parent
to a child, and so-called A-messagesthat are sent from a child to a parent

51 regret the equivocation of 7, which also denotes a possibility distribution. How-
ever, I did not want to deviate from the standard notation of the polytree propagation
algorithm either. So I decided to retain the letter = to denote a message from a parent.
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@ Figure 4.11: Node processors

\)\ BoA communicating by message pass-

\ ing: m-messages are sent from

TA-BN parent to child and A-messages
. are sent from child to parent.

(cf. figure 4.11). Intuitively, a m-message represents the (influence of the)
information collected in the subgraph that can be reached from A if the way
to B is barred, and a A-message represents the (influence of the) information
collected in the subgraph that can be reached from B if the way to A is
barred. That the conditional independence graph is a polytree ensures that
the two subgraphs are indeed disjoint and thus no multiple transmission of
the same information occurs.

To derive the propagation formulae for the probabilistic case’, i.e., for a
Bayesian network, I assume first that no evidence has been added, i.e., that
no attributes have been instantiated. This simplifies the notation consider-
ably. Later I will indicate how instantiated attributes change the results.

The idea of the derivation is the same as for the simple example in
chapter 3, cf. pages 80ff, although I momentarily neglect the evidence: We
start from the definition of the marginal probability of an attribute. Then
we exploit the factorization formula and move terms that are independent
of a summation variable out of the corresponding sum. By comparing the
results for attributes that are adjacent in the graph we finally arrive at the
propagation formulae, i.e., at formulae that state how the outgoing messages
are computed from the incoming messages.

In the discrete case, to which I confine myself here, the marginal prob-
ability of an attribute is computed from a joint distribution by

P(Ag =a,) = Z P(/\Aj:aj)a
VA,eU—{Ay}: A;eU
a;Edom(A;)

where the somewhat sloppy notation w.r.t. the sum is intended to indicate
that the sum is to be taken over all values of all attributes in U except A,.
The index g was chosen to indicate that A, is the current “goal” attribute.
(In the following we need quite a lot of different indices, so it is conve-
nient to choose at least some of them mnemonically.) In the first step it

6Note that the derivation given here differs considerably from the derivation given in
[Pearl 1986] or in [Pearl 1988], although it leads, necessarily, to the same results.
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is exploited that the distribution is factorizable w.r.t. the conditional inde-
pendence graph of the Bayesian network (cf. definition 4.20 on page 116):

P(Agz(lg)z Z H P(Ak:ak‘ /\ Aj:aj).
VA;eU—{Ag}: AxeU Aj€parents(Ay)
a;€dom(A;)

In the second step it is exploited that the graph is a polytree, i.e., that it is
singly connected. A convenient property of a polytree is that by removing
an edge it is split into two unconnected subgraphs. Since I need to refer
several times to certain subgraphs that result from such splits, it is helpful
to define a notation for the sets of nodes underlying them. Let

U5(C)={C}u{DeU|D¥%C,G =(UE-{(4AB}},

i.e., let U4 (C) be the set of those attributes that can still be reached from
attribute C' if the edge A — B is removed from the graph. With this set
we can define the following sets which I need in the following:

v = J Uf©), U(AB)= U i)
Céeparents(A) Céeparents(A)—{B}
U= U U0, U(4B)= U Ug(C),
Cé&children(A) Cé&children(A)—{B}

Intuitively, Uy (A) are the attributes in the graph G, “above” attribute A
and U_(A) are the attributes in the graph G_ “below” it. Similarly,
U, (A, B) are the attributes “above” A except those that can be reached
via its parent B and U_(A, B) are the attributes “below” A except those
that can be reached via its child B.

A split in the graph gives rise to a partitioning of the factors of the above
product, since the structure of the graph is reflected in the conditions of the
conditional probabilities. If we split the graph G w.r.t. the goal attribute A,
into an upper graph G1(A,) and a lower graph G_(A4,), we get

P4y =a) = > (P(Ag = aq, AN 4= aj)

VA;eU—{Ag}: Aj€Eparents(Ag)
a;€dom(A;)
11 P(Ak = ak A A= %‘)
Ar€eUt(Ayg) Aj€parents(Ay)

I Pla=a A Ajzaj))

AreU_(Ay) Aj€parents(Ayg)
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Note that indeed the factors of the first product in the above formula refer
only to attributes the upper part of the graph, while the factors of the
second product refer only to attributes in the lower part of the graph (plus
the goal attribute A,), as can easily be seen from the structure of a polytree.

In the third step it is exploited that terms that are independent of a
summation variable can be moved out of the corresponding sum. In addition

we make use of zi:zj:aibj: (z;az)(zj:b’)

This yields a decomposition into two main factors, called the m-value and
the A-value of the attribute Ag4:

P(Ag = ay)
= ( Z P(Ag:ag‘ /\ Aj:aj)
VA;Eparents(Ag): Aj€parents(Ag)
a;€dom(A;)
. Z H P(Ak:ak‘ /\ Aj:aj) )
L VA, €U (Ag): Ar€U(Ay) Aj€parents(Ay) J
a;€dom(A;)
Z H P(Ak:ak‘ /\ Aj:aj>
L VA, €U_(Ay): AreU_(Ay) Aj€parents(Ay) d
a;€dom(A;)

= (A, =a,) - MAy = ay),

where U} (Ay) = U4 (Ay) —parents(A,). The first factor represents the prob-
abilistic influence of the upper part of the network, transmitted through the
parents of Ay, while the second factor represents the probabilistic influence
of the lower part of the network, transmitted through the children of A,. It
is clear that the second factor is equal to one if no evidence has been added
(as we currently assume).” However, this will change as soon as evidence is
added and therefore we retain this factor.

In the next step we consider the two factors more closely. We start with
the parent side (assuming that A, actually has parents, since otherwise this
factor is empty). Neglecting for a moment the conditional probability of

"This can be seen from the fact that for the sums over the values of the leaf attributes
in G_(Ay) all factors except the conditional probability for this attribute can be moved
out of the sum. Since we sum over a conditional probability distribution, the result must
be 1. Working recursively upward in the network, we see that the whole sum must be 1.
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the values of A, given the values of its parent attributes, we can derive,
exploiting again that we have a polytree, that

> 11 P(Ak:“k‘ A A=a)

VAU (Ag): AreUi(Ay) Aj€parents(Ayg)
a;€dom(A;)

ApEparents(Ag)

( E P(Ap:ap‘ /\ Aj:aj)

VA;Eparents(Ap): Aj€parents(Ay)
a;€dom(A;)
E H P(Ak:ak’ /\ Aj—aj)>
Lva T4, AveUi(4y) A;€parents(Ay) ]

a;€dom(A;)

Z H P(Ak:ak ’ /\ Aj:aj)

L VA;€U_(Ap,Ag): AreU_(Ap,Ag) Aj€eparents(Ay) J
a;€dom(A;)
= H m(Ap = ap)
ApEparents(Ay)
E H P(Ak:ak ‘ /\ Aj:aj)]
VA;€U_(Ap,Ag): Ar€U_(Ap,Ayg) Aj€parents(Ay)
a;€dom(A;)
- 11 Ta,—4, (Ap = ap),
ApEparents(Ag)

where U*(A,) = U4 (A,) —parents(A,). That is, we can represent the influ-
ence of the parent side as a product with one factor for each parent A, of A,.
(The index p was chosen to indicate that the A, are the parent attributes of
the current goal attribute.S) The notation 74,4, is intended to indicate
that this is a message sent from parent attribute A, to attribute A,. This
is justified, since the expression underlying it is obviously very similar to
the expression we could derive for P(A, = a,) in analogy to the expression
for P(A; = ag4). The first factor is identical and the second differs only
slightly: From it all terms are excluded that correspond to the subgraph

8The equivocation of p, which also denotes a probability distribution, is harmless here.
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“rooted” at Ay. Therefore it is reasonable to compute 74, . a,(4, = a,) not
w.r.t. Ay but w.r.t. A,, where it is needed anyway, and to send the result
to Ay. ma, 4, is parameterized only with A, = a,, because A, is the only
“free” attribute of the expression, i.e., the only attribute over the values of
which it is not summed. (Note that the goal attribute A, does not appear.)
Combining the two preceding equations we have

(A =qa4) = Z P(Ag =a, ’ /\ Aj = aj)

VA;€parents(Ag): Aj€parents(Agy)
a;€dom(A;)

H ﬂ—Ap"Ay(Ap = ap).

ApEparents(Ay)

Turning from the parents to the children of A,, we consider next the sec-
ond factor in the product for P(4, = a4) (assuming that A, actually has
children, since otherwise this factor would be empty). In a similar fashion
as above, exploiting again that we have a polytree, we can derive that

A(4g = ay)
= Z H P(Ak:ak‘ /\ Ajzaj)
VA;eU_(Ay): AreU_(Ay) Aj€parents(Ay)
a;€dom(A;)

= I 2

Ac€children(Agy) ac€dom(A.)
< P(Ac:ac /\ Aj:aj)
VA, Gparents(A )—{Ag}: Aj€parents(Ac)
a;€dom(A;)
)
VA, €U (Ac,Ag): Ar€U4(Ac,Ag) Aj€parents(Ayg)
a;€dom(A;)
»> [ p(amn] A 4w
VA;eU_(A.): AreU_(Ac) Aj€parents(Ay)
a;€dom(A;)

= H Ado—a,(Ag = ay),

Ac€children(Ay)
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where U7 (Ac, Ay) = UL (A, Ay) —parents(A.). That is, the influence of the
lower part of the network can be represented as a product with one factor for
each child A, of Ay. (The index ¢ was chosen to indicate that A, is a child
attribute of the current goal attribute.) The notation A4, 4, is intended to
indicate that this is a message sent from child attribute A. to attribute A,.
This is justified, since the expression underlying it is obviously very similar
to the expression we could derive for P(A. = a.) in analogy to the expression
for P(Ay = a4). The only differences are that the factors are summed over
all values of the attribute A, and that from the first factor of the outer sum
all terms are excluded that correspond to the subgraph “ending” in A,.
Therefore it is reasonable to compute /\AC_,AQ (Ay = ag4) not w.rt. A, but
w.r.t. A., where the necessary values are available anyway, and to send the
result to Ay. Aa, 4, is parameterized only with A, = a,, because A, is
the only “free” attribute of the expression, i.e., the only attribute over the
values of which it is not summed.

From the above formulae the propagation formulae can easily be derived.
To state them, I do no longer refer to a goal attribute Ay, but write the
formulae w.r.t. a parent attribute A, and a child attribute A., which are
considered to be connected by an edge from A, to A.. With this presuppo-
sition we get for the m-message

Ta,—a,(Ap = ap)

= 7(A4p = ap)
Z H P(Ak:ak ‘ /\ Aj:aj)]
VA, eU_(Ap,Ac): AreU_(Ap,AL) Aj€parents(Ay)
a;€dom(A;)
P(Ap = ap)

Aa,—a,(Ap = ap)

This formula is very intuitive. The message Aa,a,(4, = ap) sent from
child A, to parent A, represents information gathered in the subgraph
“rooted” in A.. Obviously, this information should not be returned to A..
However, all other information gathered at A, should be passed to A.. This
is achieved by the above formula. It combines all incoming A-messages ex-
cept the one from A, and all m-messages and passes the result to A.. Since
P(A, = a,) represents the information gathered in the whole network and
since the A-message from A, is only a factor in P(A4, = a,), we can derive
the simple quotient shown above.
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Similarly, the message 74, 4. (A, = a,) sent from parent A, to child A,
represents information gathered in the subgraph “ending” in A,. Obviously,
this information should not be returned to A,, but all other information
gathered at A. should be passed to A,. In analogy to the above, this can
also be seen as removing the influence of 74, 4, (A4, = a,) from P(A. = a.).
However, the influence of 74, .4, (A, = a,) on P(A. = a.) is a little more
complex then the influence of Aa, . 4,(4, = a,) on P(A, = a,) and thus
we cannot write the message as a simple quotient. Instead we only have

)\ACHAP (Ap = ap)

= Z )‘(Ac = ac)

ac.€dom(A.)
P(AC = Q¢ /\ Aj = aj)
VA;Eparents(A;)—{Ap}: Ajeparents(A.)
a;€dom(Ay)
H TA—a, (Ar = ag).

A Eparents(A:)—{A,}

In analogy to the formula for the m-message examined above, this formula
combines all incoming m-messages except the one from A, and all A-messages
and passes the result to A,.

Up to now I have assumed that no evidence has been added to the net-
work, i.e., that no attributes have been instantiated. However, if attributes
are instantiated, the formulae change only slightly. We have to add to the
joint probability distribution a factor for each instantiated attribute: If X pg
is the set of observed (instantiated) attributes, we have to compute

P(Ag =ay ’ /\ Ay = aéObs))

Ar€Xobs
—a > P(A4A4=q) I P(A=a|a=a™),
VA,eU—{A,}:  A;eU Ap € Xops
a;€dom(A;)
where the a,(CObs) are the observed values and « is a normalization constant,
1
o =

N
P (/\AkEXUbS Ay = agco S)>

The justification for this formula is very similar to the justification of the
introduction of similar evidence factors for the observed attributes in the
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simple three-attribute example discussed in chapter 3 (compare page 81):
Obviously, it is

P( /\ A; :aj‘ /\ A :a,(CObS))

AjeU Ak €Xobs
= o P( /\ AJ = CLj, /\ Ak — a,(:bs))
A€ AR €Xobs
— aP (/\AJEU A= aj) , if VA; € Xops 1 aj = a§obs)’
’ otherwise,
with o defined as above. In addition it is clear that
5 3 _ (obs)
VAk € Xobs : P (Ak = ag ‘ Ak — a](gobs)) _ ]., if ag 7.ak ,
0, otherwise,

and therefore

(obs)

I | P (Ak =ay ’ A = az(CObS)) - L i VA’“.E Kobs 1 ak = ay
0, otherwise.
AkeXobs

Combining the two equations, we arrive at the formula stated above. Note
that we can neglect the normalization factor « (i.e., need not compute it
explicitly), since it can always be recovered from the fact that a probability
distribution, whether marginal or conditional, must be normalized.

It is easy to see that, if the derivation of the propagation formula is
redone with the modified initial formula for the probability of a value of a
goal attribute Ag, the evidence factors P(Ak =ai | Ax = ag)bs)) only influ-
ence the formulae for the messages that are sent out from the instantiated
attributes: In the derivation each such factor accompanies the conditional
probability for the same attribute. Therefore we get the following formula
for the m-messages that are sent out from an instantiated attribute A,:

Ta,—a.(Ap = ap)

=P (Ap =ay ’ A, = a}(;’bs)> -m(Ap = ap)

3 I1 P(Ak:ak‘ A Ajaj)]

VA;eU_(Ap,Ac): AreU_(Ap,AL) Aj€eparents(Ay)
a;€dom(A;)

N

0, otherwise,
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where (3 is some constant. It is clear that we can choose § = 1: We already
have to determine the factor o by exploiting that the marginal probabilities
must be normalized, so another factor does not matter.

This formula is again very intuitive. In a polytree, any attribute A,
d-separates all attributes in the subgraph “above” it from those in the sub-
graph “below” it. Consequently, if A, is instantiated, no information gath-
ered in the upper network should be passed to the lower network, which ex-
plains why all m-messages from the parents of an instantiated attribute A,
are discarded. Similarly, in a polytree any attribute A, d-separates the
subgraphs corresponding to any two of its children and therefore the under-
lying attribute sets are conditionally independent given A,. Consequently,
if A is instantiated, no information from a child should be passed to another
child, which explains why all A-messages from the children of an instantiated
attribute A, are discarded.

For the A-messages sent out from an instantiated attribute A. we get:

A, —a,(Ap = ap)

= Y P(Ac=a|A=d™) M4 =a)

a.€dom(A,)
3 P(A. =a A A=q)

VA;€Eparents(A.)—{Ap}: Aj€parents(Ac)

a;€dom(Ay)
H TAy—A, (A = ar)

Ap€parents(Ac)—{Ap}

= v Z P(AC = ag)bs) ‘ /\ Aj = aj)
VA;€Eparents(Ac)—{Ap}: Aj€parents(A.)

a;€dom(Ay)
11 Ta,—a.(Ax = ax),

Ap€parents(Ac)—{Ap}

where v is some constant. It is clear that we can choose v = 1, for the same
reason why we could use a value of 1 for the constant § above.

Again the formula is very intuitive. That the A-messages from the chil-
dren of A, are discarded is due to the fact that in a polytree any attribute
d-separates the attributes in the subgraph “above” it from the attributes in
the subgraph “below” it (see above). However, the m-messages cannot be
discarded, since no attribute d-separates any two of its parents. Therefore
the m-messages from the parents of A. are still processed, although their

computation is, of course, restricted to the observed value ag)bs)
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The above formulae are all restricted to single values of attributes. How-
ever, we obviously need to determine the probability of all values of the goal
attribute and we have to evaluate, even in the above formulae, the messages
for all values of the message parameter attributes. Therefore it is convenient
to write the above equations in vector form, with a vector for each attribute
having as many elements as the attribute has values. The conditional prob-
abilities can then be represented as matrices. Rewriting the formulae is
straightforward, though, and therefore I do not restate them here.

With these formulae the propagation of evidence can be implemented by
locally communicating node processors. Each node receives messages from
and sends messages to its parents and its children. From these messages it
also computes the marginal probability of the values of the corresponding
attribute, conditioned on the available evidence. The node recomputes the
marginal probabilities and recomputes and resends messages whenever it
receives a new message from any of its parents or any of its children.

The network is initialized by setting all A-messages to 1 for all values
(reflecting the fact mentioned above that, without any evidence, the A-value
of an attribute is equal to 1 for all attribute values). The m-messages of the
root attributes of the polytree, i.e., the parentless attributes, are initialized
to the marginal probability of the values of these attributes (which are part
of the factorization). This initiates an update process for all child attributes,
which then, in turn, send out new messages. This triggers an update of their
children and parents. Finally, when all attributes have been updated, the
marginal probabilities of all attributes are established.

Whenever an attribute is instantiated, new A- and w-messages are com-
puted for this attribute. This triggers an update of the neighboring at-
tributes, thus spreading the information in the network as in the initializa-
tion phase. Finally the marginal probabilities conditioned on the observed
value are computed for all attributes.

It is important to note that, as the above explanations should have made
clear, evidence propagation consists in computing (conditioned) marginal
probability distributions for single attributes. Usually the most probable
value vector for several attributes cannot be found by selecting the most
probable value for each attribute (recall the explanations of section 3.5).

4.2.2 Join Tree Propagation

Directed acyclic graphs are not necessarily polytrees: There can be more
than one path connecting two nodes. At first sight it may seem to be
possible to apply the same method as for polytrees if two nodes are multiply
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Figure 4.12: Merging attributes can

¥
@ = make the polytree algorithm applicable
1

@ in multiply connected networks.

connected. However, such situations can be harmful, because evidence can
travel on more than one route from one node to another, namely if more than
one path is active given the set of instantiated attributes. Since probabilistic
update is not idempotent—that is, incorporating the same evidence twice
may invalidate the result—cycles must be avoided or dealt with in special
ways. Possibilistic evidence propagation, by the way, is less sensitive to such
situations, because the possibilistic update operation is idempotent (it does
not matter how many times a degree of possibility is restricted to the same
upper bound by the minimum operation) and thus the same evidence can be
incorporated several times without invalidating the result. Nevertheless it
can be useful to avoid multiply connected graphs in possibilistic reasoning,
too, because situations can arise where a cycle, which results from more than
one path connecting two nodes, must be traversed many times to reach the
reasoning result [Kruse et al. 1994]. However, it should be noted that in
possibilistic reasoning it is at most desirable to avoid cycles for reasons of
efficiency, whereas in probabilistic reasoning they must be avoided in order
to ensure the correctness of the inference results.

Multiply connected networks can be handled in several ways. One
method is to temporarily fix selected unobserved attributes in order to “cut
open” all cycles, so that the normal polytree propagation algorithm can
be applied. The available evidence is then propagated for each combina-
tion of values of the fixed attributes and the respective results are averaged
weighted with the probabilities of the value combinations [Pearl 1988]. This
procedure can also be seen as introducing artificial evidence to make the
propagation feasible and then to remove it again.

Another way to approach the problem is to merge attributes lying “op-
posite” to each other in a cycle into one pseudo-attribute in order to “flat-
ten” the cycle to a string of attributes. A very simple example is shown in
figure 4.12. Combining the attributes B and C into one pseudo-attribute
removes the cycle. In principle all cycles can be removed in this way and
thus one finally reaches a situation in which the polytree propagation algo-
rithm can be applied. Of course, if stated in this way, this is only a heuristic
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21 attributes: 11 — offspring ph.gr. 1
1 — dam correct? 12 — offspring ph.gr. 2
2 — sire correct? 13 — offspring genotype

3 — stated dam ph.gr. 1 14 — factor 40
4 — stated dam ph.gr. 2 15 — factor 41
5 — stated sire ph.gr. 1 16 — factor 42
6 — stated sire ph.gr. 2 17 — factor 43

7 — true dam ph.gr. 1 18 — lysis 40
8 — true dam ph.gr. 2 19 — lysis 41
9 — true sire ph.gr. 1 20 — lysis 42
10 — true sire ph.gr. 2 21 — lysis 43

The grey nodes correspond to observable attributes.

Figure 4.13: Domain expert designed network for the Danish Jersey cattle
blood type determination example. (“ph.gr.” stands for “phenogroup”.)

method, since it does not provide us with exact criteria which nodes should
be merged. However, it indicates the key principle that underlies several
methods to handle cycles, namely to transform a given network in such a
way that a singly connected structure results. For this singly connected
structure a propagation scheme can then easily be derived in analogy to the
polytree propagation method described in the preceding section.

The join tree propagation method [Lauritzen and Spiegelhalter 1988],
which I am going to discuss in this section, is based on a sophisticated ver-
sion of this node merging approach. Its basic idea is to add edges to a given
conditional independence graph so that it finally has hypertree structure.’
As already mentioned in section 4.1.6, a graph with hypertree structure is,
in a certain sense, acyclic. Thus it is possible that each maximal clique of
the resulting graph can be made a node of a so-called join tree, which can
be used to propagate evidence. I do not give this method a full formal treat-
ment, though, but confine myself to explaining it w.r.t. a simple example,
namely the application of a Bayesian network for blood group determination
of Danish Jersey cattle in the F-blood group system, the primary purpose of
which is parentage verification for pedigree registration [Rasmussen 1992].
This example also serves as an illustration of the more theoretical results
of the first section of this chapter. A more detailed treatment of join tree
propagation can be found in [Jensen 1996, Castillo et al. 1997].

9The notion of a hypertree structure was defined in definition 4.19 on page 114.
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sire | true sire || stated sire ph.gr. 1 Table 4.2: A small fraction

correct | ph.gr. 1 || F1 Vi V2 of the quantitative part of the
yes F1 1 0 0 Bayesian network, the condi-
ves \Val 0 1 0 tional independence graph of
yes V2 0 0 1 which is shown in figure 4.13:
no F1 058 0.10 0.32 Conditional probability distri-
no Vi 058 0.10 0.32 butions for the phenogroup 1
no V2 058 010 0.32 of the stated sire.

The section of the world modeled in this example is described by 21 at-
tributes, eight of which are observable. The size of the domains of these
attributes ranges from two to eight values. The total frame of discernment
has 26 - 310 .6-8% = 92 876 046 336 possible states. This number makes it
obvious that the knowledge about this world section must be decomposed
in order to make reasoning feasible, since it is clearly impossible to store
a probability for each state. Figure 4.13 lists the attributes and shows the
conditional independence graph, which was designed by human domain ex-
perts. The grey nodes correspond to the observable attributes. This graph
is the qualitative part of the Bayesian network.'”

According to theorem 4.4 (cf. page 113), a conditional independence
graph enables us to factorize the joint probability distribution into a prod-
uct of conditional probabilities with one factor for each attribute, in which
it is conditioned on its parents in the graph. In the Danish Jersey cattle
example, this factorization leads to a considerable simplification. Instead
of having to determine the probability of each of the 92 876 046 336 ele-
ments of the 21-dimensional frame of discernment €2, only 308 conditional
probabilities need to be specified. An example of a conditional probability
table, which is part of the factorization, is shown in table 4.2. It states the
conditional probabilities of the phenogroup 1 of the stated sire of a given
calf conditioned on the phenogroup 1 of the true sire of the calf and whether
the sire was correctly identified. The numbers in this table are derived from
statistical data and the experience of human domain experts. The set of
all 21 conditional probability tables is the quantitative part of the Bayesian
network for the Danish Jersey cattle example.

10 Actually, the original Bayesian network has an additional attribute “parent correct?”,
which has “dam correct?” and “sire correct?” as its children, so that in all there are
22 attributes. I decided to discard this attribute, since it does not carry real information
and without it the join tree construction is much simpler.
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After the Bayesian network is constructed, we want to exploit it to
draw inferences. In the Danish Jersey cattle example, for instance, the
phenogroups of the stated dam and the stated sire can be determined and
the lysis values of the calf can be measured. From the latter information
we want to infer the probable genotype of the calf and thus wish to assess
whether the stated parents of the calf are the true parents.

However, the conditional independence graph of the Danish Jersey cattle
example is no polytree and therefore the algorithm described in the previous
section cannot be applied. Instead we preprocess the graph, so that it gets
hypertree structure. This transformation is carried out in two steps. In the
first step the so-called moral graph of the conditional independence graph
is constructed and in the second the moral graph is triangulated.

A moral graph (the name was invented by [Lauritzen and Spiegelhal-
ter 1988]) is constructed from a directed acyclic graph by “marrying” the
parents of each attribute (hence the name “moral graph”). This is done
by adding undirected edges between all pairs of parents and by discarding
the directions of all other edges (the edges are kept, though). In general a
moral graph represents only a subset of the independence relations of the
underlying directed acyclic graph, so that this transformation may result
in a loss of independence information. The reason for this was already ex-
plained w.r.t. the simple example of figure 4.3 on page 106: In an undirected
graph we cannot represent a situation of marginal independence, but con-
ditional dependence, because u-separation is monotonous. Therefore edges
must be added between the parents of an attribute, because these parents
will become dependent if the child attribute (or any of its descendants)
is instantiated. The moral graph for the Danish Jersey Cattle example is
shown on the left in figure 4.14. The edges that were added when parents
were “married” are indicated by dotted lines.

Note that the moral graph can be chosen as the conditional independence
graph of a Markov network for the same domain. Hence, if we have a Markov
network, the join tree method can also be applied. We only have to leave
out the first step of the transformation.

In the second step, the moral graph is triangulated. An undirected
graph is called triangulated or chordal if all cycles with four or more nodes
have a chord, where a chord is an edge that connects two nodes that are
nonadjacent w.r.t. the cycle. To achieve triangulation, it may be necessary
to add edges, which may result in a (further) loss of independence infor-
mation. A simple, though not optimal algorithm to test whether a given
undirected graph is triangulated and to triangulate it, if it is not, is the
following [Tarjan and Yannakakis 1984, Pearl 1988, Castillo et al. 1997]:
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Figure 4.14: Triangulated moral graph (left) and join tree (right) for the
conditional independence graph shown in figure 4.13. The dotted lines are
the edges added when parents were “married”. The nodes of the join tree
correspond to the maximal cliques of the triangulated moral graph.

Algorithm 4.1 (graph triangulation)
Input:  An undirected graph G = (V, E).
Output: A triangulated undirected graph G' = (V, E') with E' D E.

1. Compute an ordering of the nodes of the graph using maximum cardi-
nality search, i.e., number the nodes from 1 to n = |V|, in increasing
order, always assigning the next number to the node having the largest
set of previously numbered neighbors (breaking ties arbitrarily).

2. From i =mn to i = 1 recursively fill in edges between any nonadjacent
neighbors of the node numbered i having lower ranks than i (including
neighbors linked to the node numbered i in previous steps). If no edges
are added, then the original graph is triangulated; otherwise the mew
graph is triangulated.

Note that this algorithm does not necessarily add the smallest possible
number of edges that are necessary to triangulate the graph. Note also
that the triangulated graph is still a conditional independence graph, since
it only represents fewer conditional independence statements. In the Danish
Jersey cattle example the moral graph shown on the left in figure 4.14 is
already triangulated, so no new edges need to be introduced.
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A triangulated graph is guaranteed to have hypertree structure'' and
hence it can be turned into a join tree [Lauritzen and Spiegelhalter 1988,
Castillo et al. 1997]. In a join tree there is a node for each maximal clique
of the triangulated graph and its edges connect nodes that represent cliques
having attributes in common. In addition, any attribute that is contained
in two nodes must also be contained in all nodes on the path between them.
(Note that in general, despite this strong requirement, a join tree for a given
triangulated graph is not unique.) A simple algorithm to construct a join
tree from a triangulated graph is the following [Castillo et al. 1997]:

Algorithm 4.2 (join tree construction)
Input: A triangulated undirected graph G = (V, E).
Output: A join tree G' = (V' E’) for G.

1. Determine a numbering of the nodes of G wusing maximum cardinality
search (see algorithm 4.1).

2. Assign to each clique the mazimum of the ranks of its nodes.
Sort the cliques in ascending order w.r.t. the numbers assigned to them.

4. Traverse the cliques in ascending order and connect each clique C; to
that clique of the preceding cliques C1,...,Ci;_1 with which it has the
largest number of nodes in common (breaking ties arbitrarily).

With a join tree we finally have a singly connected structure, which can be
used to derive propagation formulae. Note that the special property of a
join tree, namely that any attribute contained in two nodes must also be
contained in all nodes on the path between them, is important for evidence
propagation, because it ensures that we have to incorporate evidence about
the value of an attribute into only one node containing this attribute. Since
all nodes containing the attribute are connected, the evidence is properly
spread. Without this property, however, it may be necessary to incorporate
the evidence into more than one node, which could lead to the same update
anomalies as the cycles of the original graph: The same information could be
used twice to update the probabilities of the values of some other attribute,
thus invalidating the inference result. A join tree for the Danish Jersey
cattle example is shown on the right in figure 4.14.

Of course, a join tree is only the qualitative framework for a propa-
gation method. The quantitative part of the original network has to be
transformed, too. That is, from the family of conditional probability dis-
tributions of the original Bayesian network (or the factor potentials of the

' The notion of hypertree structure was defined in definition 4.19 on page 114.
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original Markov network), we have to compute appropriate functions, for
instance, marginal distributions, on the maximal cliques of the triangulated
graph. However, I do not consider this transformation here. Details can be
found, for example, in [Jensen 1996, Castillo et al. 1997].

Having constructed the quantitative part, too, we can finally turn to
evidence propagation itself. Evidence propagation in join trees is basically
an iterative extension and projection process, as was already demonstrated
in the simple examples of chapter 3. (Note that I used in the probabilistic
example used what we can now call a Markov network and that its join
tree has a node for each of the two subspaces of the decomposition.) When
evidence about the value of an attribute becomes available, it is first ex-
tended to a join tree node the attribute is contained in. This is done by
conditioning the associated marginal distribution. I call this an extension,
because by this conditioning we go from restrictions on the values of a single
attribute to restrictions on tuples of attribute values. Hence the informa-
tion is extended from a single attribute to a subspace formed by several
attributes (cf. also the relational example discussed in chapter 3). Then the
conditioned distribution is projected to all intersections of the join tree node
with other nodes (often called separator sets). Through these projections
the information can be transferred to other nodes of the join tree, where
the process is repeated: First it is extended to the subspace represented
by the node, then it is projected to the intersections connecting it to other
nodes. The process stops when all nodes have been updated. It is clear
that this process can be implemented, as the polytree propagation method
of the previous section, by locally communicating node processors.

4.2.3 Other Evidence Propagation Methods

Evidence propagation in inference networks like Bayesian networks has been
studied for quite some time now and thus it is not surprising that there is
an abundance of propagation algorithms. It is clear that I cannot deal with
all of them and therefore, in the preceding two section, I confined myself
to studying two of them a little more closely. In the following paragraphs I
only mention a few other approaches by outlining their basic ideas.
Stochastic simulation [Pearl 1988] consists in randomly generating a
large number of instantiations of all attributes w.r.t. to the joint proba-
bility distribution that is represented by a probabilistic network. Of these
instantiations those are discarded that are not compatible with the given
evidence. From the remaining ones the relative frequency of values of the
unobserved attributes is determined. The instantiation process is most eas-
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ily explained w.r.t. a Bayesian network. First all parentless attributes are
instantiated w.r.t. their marginal probability. This fixes the values of all
parents of some other attributes, so that the probability of their values can
be determined from the given conditional distributions. Therefore they can
be instantiated next. The process is repeated until all attributes have been
instantiated. Obviously, the attributes are most easily processed w.r.t. a
topological order, since this ensures that all parents are instantiated.

The main drawback of stochastic simulation is that for large networks
and non-trivial evidence a huge amount of instantiations has to be gener-
ated in order to retain enough of them after those incompatible with the
given evidence have been discarded. It should also be noted that stochastic
simulation can be used only in the probabilistic setting, because possibility
distributions do not allow for a random instantiation of the attributes.

The basic idea of iterative proportional fitting [Whittaker 1990, von Has-
seln 1998] is to traverse the given network, usually a Bayesian network, sev-
eral times and to make on each traversal small changes to the probabilities
of the values of unobserved attributes in order to fit them to the constraints
that are imposed by the conditional distributions and by the values of the
observed attributes. When equilibrium is reached, the probabilities of the
unobserved attributes can be read from the corresponding nodes.

Bucket elimination [Dechter 1996, Zhang and Poole 1996] is an evidence
propagation method that is not bound directly to graphs, although it can
be supported by a conditional independence graph. It is based on the idea
that an attribute can be eliminated (hence the name “bucket elimination”)
by summing the product of all factors in which it appears for all of the
values of the attribute. By successive summations all attributes except a
given goal attribute are eliminated, so that finally a single factor remains.
It is obvious that the efficiency of the bucket elimination algorithm depends
heavily on the order of the summations. If a wrong order is chosen, the
intermediate distributions can get very large, thus rendering the process
practically infeasible. To find a good order of the attributes a conditional
independence graph can be helpful.

It is clear that all algorithms mentioned in this section are applicable
even if the conditional independence graph is not a polytree and none of
them needs any preprocessing of the conditional independence graph. How-
ever, their drawbacks are that they are either inefficient (stochastic simula-
tion) or that the time for propagating given evidence is hard to estimate in
advance (iterative proportional fitting), whereas with join tree propagation
this time can easily be computed from the size of the maximal cliques and
the lengths of the paths in the join tree.



Chapter 5

Computing Projections

With this chapter I turn to learning graphical models from data. I start
by considering the problem of computing projections of relations and of
database-induced multivariate probability and possibility distributions to a
given subspace of the frame of discernment. That is, I consider the problem
of how to estimate a marginal distribution w.r.t. a given set of attributes
from a database of sample cases.'

Computing such projections is obviously important, because they form
the quantitative part of a graphical model, i.e., they are the components of
the factorization or decomposition of a multivariate distribution. Without
a method to determine them it is usually impossible to induce the structure
(i.e., the qualitative part) of a graphical model, because all algorithms for
this task presuppose such a method in one way or the other.

It turns out that computing projections is trivial in the relational and
the probabilistic case, which explains why this task is often not considered
explicitly for these types of networks. The possibilistic case, however, poses
an unpleasant problem. This is—at least to some extent—counterintuitive,
because computing the sum projections of the probabilistic case is so very
simple. However, it is not possible to use an analogous method, as I am
going to demonstrate with a simple example. Fortunately, the database to
learn from can be preprocessed (by computing its closure under tuple inter-
section [Borgelt and Kruse 1998c]) so that computing maximum projections
becomes simple and, for most practical problems, efficient.

1Recall the simple examples of chapter 3, especially the relational example, in order
to understand why I call the computation of a marginal distribution a projection.
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5.1 Databases of Sample Cases

Before I can state clearly the problems underlying the computation of pro-
jections from a database of sample cases, it is helpful to define formally what
I understand by “database”. I distinguish two cases: databases with precise
tuples and databases with imprecise tuples. However, since the latter are a
generalization of the former, it suffices to consider the latter case.

To define the notion of a database of imprecise tuples, I start by extend-
ing the definitions of a tuple and of a relation (cf. definition 3.1 on page 63)
to capture imprecision w.r.t. the values of the attributes underlying them.

Definition 5.1 Let U = {A;,...,A,} be a (finite) set of attributes with
respective domains dom(4;), i =1,...,n. A tuple over U is a mapping

ty:U— [ 290m@
AeU

satisfying VA € U : ty(A) C dom(A) and ty(A) # 0. The set of all tuples
over U is denoted Ty. A relation Ry over U is a set of tuples over U,
i.e., RU - TU.

I still write tuples similar to the usual vector notation. For example, a
tuple ¢ over {A, B, C'} which maps A to {a1}, B to {ba,bs} and C to {c1,c3}
is written ¢t = (A — {a1}, B — {b2,b4},C — {c1,¢3}). If an implicit order
is fixed, the attributes may be omitted. In addition, I still write dom(¢) = X
to indicate that ¢ is a tuple over X.

With the above definition a tuple can represent imprecise (i.e., set-
valued) information about the state of the modeled world section. It is,
however, restricted in doing so. It cannot represent arbitrary sets of instan-
tiations of the attributes, but only such sets that can be defined by stating
a set of values for each attribute. I chose not to use a more general defini-
tion (which would define a tuple as an arbitrary set of instantiations of the
attributes), because the above definition is usually much more convenient
for practical purposes. It should be noted, though, that all results of this
chapter can be transferred directly to the more general case, because the
restriction of the above definition is not exploited.

We can now define the notions of a precise and of an imprecise tuple.

Definition 5.2 A tuple ty over a set U of attributes is called precise iff
VA € U : [ty(A)| = 1. Otherwise it is called imprecise. The set of all

precise tuples over X is denoted T[(Jpredse),

Clearly, definition 3.1 on page 63 was restricted to precise tuples.
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Projections of tuples and relations are defined in analogy to the precise case
(cf. definitions 3.2 and 3.3 on page 63).

Definition 5.3 If tx is a tuple over a set X of attributes and ¥ C X,
then tx|y denotes the restriction or projection of the tuple tx to Y.
That is, the mapping tx|y assigns sets of values only to the attributes in
Y. Hence dom(tx|y) =Y, i.e., tx|y is a tuple over Y.

Definition 5.4 Let Rx be a relation over a set X of attributes and Y C X.
The projection projif(RX) of the relation Rx from X toY is defined as

) def
projy (Rx) = {ty € Ty | 3tx € Rx : ty =tx|y}.

It is clear that to describe a dataset of sample cases a simple relation does
not suffice. In a relation, as it is a set of tuples, each tuple can appear only
once. In contrast to this, in a dataset of sample cases a tuple may appear
several times, reflecting the frequency of the occurrence of the corresponding
case. Since we cannot dispense with this frequency information (we need it
for both the probabilistic and the possibilistic setting), we need a mechanism
to represent the number of occurrences of a tuple.

Definition 5.5 A database Dy over a set U of attributes is a pair
(Ry,wr, ), where Ry is a relation over U and wg, is a function map-
ping each tuple in Ry to a natural number, i.e., wr, : Ry — IN.

If the set U of attributes is clear from the context, I drop the index U. The
function wg,, is intended to indicate the number of occurrences of a tuple
t € Ry in a dataset of sample cases. I call wg,, (t) the weight of the tuple ¢.

When dealing with imprecise tuples, it is helpful to be able to speak of a
precise tuple being “contained” in an imprecise one or of one imprecise tuple
being “contained” in another (w.r.t. the set of represented instantiations of
the attributes). These terms are made formally precise by introducing the
notion of a tuple being at least as specific as another.

Definition 5.6 A tuple t1 over an attribute set X is called at least as
specific as a tuple ty over X, written t1 C to iff VA € X : t1(A) C t2(A).

Note that C is not a total ordering, since there are tuples that are incom-
parable. For example, t1 = ({a1},{b1,b2}) and ta = ({a1, a2}, {b1,b3}) are
incomparable, since neither t; C t5 nor 5 C ¢; holds. Note also that C is
obviously transitive, i.e., if ¢1, to, t3 are three tuples over an attribute set X
with t; C to and t5 C t3, then also t; C t3. Finally, note that C is preserved
by projection. That is, if ¢; and ¢ are two tuples over an attribute set X
with t; C to and if Y C X, then t1|y C tQ‘Y.
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5.2 Relational and Sum Projections

As already said above, computing projections from a database of sample
cases is trivial in the relational and in the probabilistic setting: Computing
the projection of a relation of precise tuples is an operation of relational
algebra (cf. also definition 3.3 on page 63). In order to deal with a rela-
tion Ry of imprecise tuples it suffices to note that such a relation can always
(at least formally) be replaced by a relation Ry, of precise tuples, because
in the relational case all we are interested in is whether a (precise) tuple
is possible or not. This relation R}, contains those precise tuples that are
contained in a tuple in Ry, or formally

2] _ {t/ c T((]precise) 3t e Ry - " Et}

Note that this replacement need not be carried out explicitly, because C is
maintained by projection (see above). Therefore we can work directly with
the projection of a relation of imprecise tuples as defined in definition 5.4,
which indicates equally well which tuples of the subspace are possible. Note
that in the relational case the tuple weights are disregarded.

In the probabilistic case it is usually assumed that the given database
represents a sample of independent cases, generated by some random pro-
cess that is governed by a multivariate probability distribution. With this
presupposition, in order to estimate a marginal probability distribution from
a database of precise tuples, the relational projection operation needs to be
extended only slightly, because we have to take the tuple weights into ac-
count. This is done by summing for each precise tuple tx of the subspace
defined by the set X of attributes the weights of all tuples ¢;; in the database
the projection of which is equal to tx (hence the name “sum projection”).

The result of this operation is an absolute frequency distribution on the
subspace, which can be represented as a database on the subspace. From
this distribution a marginal probability distribution is estimated using stan-
dard statistical techniques. We may, for example, use mazimum likelihood
estimation, which yields

Vay € dom(4y) : ...Va, € dom(A,) :

wx (A ,ieXAi:ai
px( N\ Ai=a) = d iux(g) )

A eX

where wx (/\AieX A, = ai) is the weight of the tuples in the database sat-
isfying A 4,cx Ai = a; (this number can be read from the sum projection)
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and wx (g) is the total weight of all tuples.? Alternatively, we may use
Bayesian estimation, which enables us to add a (uniform) prior expectation
of the probabilities by

Vay € dom(4,) : ...Va, € dom(A,,) :
wX(/\A ex Ai fal) + wyp
)

p Aj=a;) = )
X(Ai/e\x a) wx (e) +wo [[ 4,ex | dom(A;)]

where the term wg, which represents a uniform prior distribution, is most
often chosen to be 1.> This uniform prior expectation often features also
under the name of Laplace correction. It is clear that, by changing the above
formula appropriately, arbitrary prior distributions can be incorporated.
To deal with imprecise tuples, we may apply the insufficient reason prin-
ciple (cf. section 2.4.3), by which the weight of an imprecise tuple is dis-
tributed equally on all precise tuples contained in it. Formally, this enables
us to work with a database of precise tuples if we remove the restriction that
the weight function must assign natural numbers to the tuples. (Clearly,
to represent a distributed weight, we need fractions.) Of course, there are
also other methods to handle imprecise tuples. We may, for example, pre-
process the database and impute precise values (e.g. averages) or we may
apply more sophisticated statistical methods like, for instance, expectation
maximization (EM) [Dempster et al. 1977], and gradient descent [Russel et
al. 1995]. However, these other methods are beyond the scope of this thesis.

5.3 Maximum Projections

In the possibilistic case, if we rely on the context model interpretation of
a degree of possibility (cf. section 2.4), a given database is interpreted as a
description of a random set (cf. definition 2.1 on page 36). Each tuple is
identified with a context and thus the tuple weight is the context weight.
The sample space (2 is assumed to be the set T((]premse) of all precise tuples
over the set U of attributes of the database. With these presuppositions the
possibility distribution 7TU D) that is induced by a database D over a set U
of attributes can be defined as follows:

2T use the symbol € in analogy to its use in the theory of formal languages, namely to
denote an empty expression, i.e., an expression that does not restrict the set of tuples.

3Compare, for example, the K2 (Bayesian Dirichlet uniform) metric discussed in sec-
tion 7.2.4. The likelihood equivalent Bayesian Dirichlet uniform metric, however, uses a
different value (cf. the same section).
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Definition 5.7 Let D = (R,wgr) be a non-empty database (i.e., R # ()
over a set U of attributes. Then

ZsGR,tEs wR(S)

> scrWR(S)

is the possibility distribution over U induced by D.

m TP (01w () -

That is, the degree of possibility of each precise tuple ¢ is the relative weight
of those (imprecise) tuples that contain it (cf. definition 2.2 on page 37).

For a precise database computing maximum projections is equally simple
as computing sum projections. The only difference is, as the names already
indicate, that instead of summing the tuple weights we have to determine
their maximum. That this simple procedure is possible can easily be seen
from the fact that for a precise database the numerator of the fraction in
the definition of a database-induced possibility distribution is reduced to
one term. Therefore we have

max_ wg(ty)

Vix € Tx : wi)(tx) = Plty) = 2882
x et w0 = k0= 5

(cf. definition 2.8 on page 48 and definition 3.7 on page 68).

Unfortunately this simple procedure cannot be transferred to databases
with imprecise tuples, because in the presence of imprecise tuples the sum
in the numerator has to be taken into account.

5.3.1 A Simple Example

To understand the problems that result from databases of imprecise tuples
it is helpful to study a simple example. Consider the very simple database
shown in table 5.1 that is defined over two attributes A and B.

Database: ({a1,a2,a3},{bs}) : 1 Table 5.1: A very simple imprecise
({a1,a2},{b2,b3}) : 1 database with three tuples (con-
({as,as},{0:1}) :1 texts) having a weight of 1 each.

The possibility distribution on the joint domain of A and B that is induced
by this database is shown graphically in figure 5.1. This figure also shows
the marginal possibility distributions (maximum projections) for each of the
two attributes. Consider first the degree of possibility that attribute A has
the value as, which is % This degree of possibility can be computed by
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; Focal sets and context weights:
3] ({a1, az, a3}, {bs}) : /3
%f_\—- ({a1, a2}, {b2,bs}) : Vs
0 ({as,as}, {b1}) s
a1 ag az aq

1 1 1
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Figure 5.1: The possibility distribution induced by the three tuples of the
database shown in table 5.1.

taking the maximum over all tuples in the database in which the value ag is
possible: Both tuples in which it is possible have a weight of 1. On the other
hand, consider the degree of possibility that attribute A has the value as,
which is % To get this value, we have to sum the weights of the tuples in
which it is possible. Since both as and a3 are possible in two tuples of the
database, we conclude that neither the sum nor the maximum of the tuple
weights can, in general, yield the correct result.

Note that this problem of computing maximum projections results from
the fact that I consider unrestricted random sets. As can be seen from the
detailed discussion in section 2.4 and especially sections 2.4.6 and 2.4.7,
the problem vanishes if the focal sets of the random set are required to
be consonant. In this case, summing over the tuple weights always yields
the correct result, because disjoint tuples (like the first and the third in
the database), for which taking the maximum is necessary, are excluded.
However, it is also clear that consonance of the focal sets is almost never to
be had if random sets are used to interpret databases of sample cases.

Fortunately, the simple example of figure 5.1 not only illustrates the
problem that occurs w.r.t. computing maximum projections of database-
induced possibility distribution, but also provides us with a hint how this
problem may be solved. Obviously, the problem results from the fact that
the first two tuples “intersect” on the precise tuples (a1,bs) and (as, b3). If
this intersection were explicitly represented, with a tuple weight of 2, we
could always determine the correct projection by taking the maximum.
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Database Support Closure
({a1,az2,a3},{b3}) : 1 | (a1,b2) : 1 (as,b1) :1 | ({a1,a2,a3},{bs}) : 1
({al,ag}, {bg,bg,}) 01 (a17b3) 12 (a37b3) 01 ({al,ag}, {bg,bg}) 01
({ag,a4}, {bl}) 01 (ag,bg) 01 (a4,b1) 01 ({a3,a4}, {bl}) 01

(ag,bg) 12 ({(117(12}, {bg}) 12
3 tuples 7 tuples 4 tuples

Table 5.2: The maximum over tuples in the support equals the maximum
over tuples in the closure.

This is demonstrated in table 5.2. The first column restates the database
of table 5.1. The second column lists what I call the support of the database,
which is itself a database. This database consists of all precise tuples that
are contained in a tuple of the original database. The weights assigned to
these tuples are the values of the numerator of the fraction in the definition
of the database-induced possibility distribution. Obviously, the marginal
degrees of possibility of a value of any of the two attributes A and B can be
determined from this relation by computing the maximum over all tuples
that contain this value (divided, of course, by the sum of the weights of all
tuples in the original database), simply because this computation is a direct
implementation of the definition. Therefore we can always fall back on this
method of computing a maximum projection.

Note, however, that this method corresponds to the formal expansion
of the database mentioned for the relational case, but that, in contrast
to the relational case, we have to compute the expansion explicitly in or-
der to determine maximum projections. Unfortunately, this renders this
method computationally infeasible in most cases, especially, if there are
many attributes and several imprecise tuples (cf. the experimental results
in section 5.3.4). This problem is already indicated by the fact that even
for this very simple example we need seven tuples in the support database,
although the original database contains only three.

Consequently a better method than the computation via the support is
needed. Such a method is suggested by the third column of table 5.2. The
first three tuples in this column are the tuples of the original database. In
addition, this column contains an imprecise tuple that corresponds to the
“intersection” of the first two tuples. Since this tuple is at least as specific
as both the first and the second, it is assigned a weight of 2, the sum of
the weights of the first and the second tuple. By adding this tuple to the
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database, the set of tuples becomes closed under tuple intersection, which
explains the label closure of this column. That is, for any two tuples s and
t in this database, if we construct the (imprecise) tuple that represents the
set of precise tuples that are represented by both s and ¢, then this tuple
is also contained in the database. It is easily verified that, in this example,
the marginal degrees of possibility of a value of any of the two attributes A
and B can be determined from this database by computing the maximum
over all tuples that contain this value.

Hence, if we can establish this equality in general, preprocessing the
database so that it is closed under tuple intersection provides an alternative
to a computation of maximum projections via the support database. This is
especially desirable, since it can be expected that in general only few tuples
have to be added in order to achieve closure under tuple intersection. In
the example, for instance, only one tuple needs to be added (cf. also the
experimental results in section 5.3.4).

5.3.2 Computation via the Support

The remainder of this chapter is devoted to introducing the technical no-
tions needed to prove, in a final theorem, that a computation of a maximum
projection via the closure under tuple intersection is always equal to a com-
putation via the support of a probability distribution (which, by definition,
yields the correct value—see above).

I start by making formally precise the notions of the support of a relation
and the support of a database.

Definition 5.8 Let R be a relation over a set U of attributes. The sup-
port of R, written support(R), is the set of all precise tuples that are at
least as specific as a tuple in R, i.e.,

support(R) = {t € TL(,prCCiSC) IreR:tC 7‘} .
Obviously, support(R) is also a relation over U. Using this definition we
can define the support of a database.

Definition 5.9 Let D = (R, wg) be a database over a set U of attributes.
The support of D is the pair support(D) = (support(R), Wsupport(r)),
where support(R) is the support of the relation R and

Wsupport(R) * support(R) — NN, Wsupport(R) (t) = Z ’U}R(S)
SER,tCs
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Obviously, support(D) is also a database over U. Comparing this definition
to definition 5.7, we see that

W(D)(t) _ wiﬂwsupport(R) (t), if t € support(R),
u 0, otherwise,

where wo = ) . pwgr(s). It follows that any maximum projection of a

database-induced possibility distribution WI(JD) over a set U of attributes to

aset X C U can be computed from wgpport(r) as follows (although the two

(support(D)) (D)
X

projections are identical, I write 7 instead of 7wy’ to indicate

that the projection is computed via the support of D):
71_A(;upport(D)) . T;(precise) _ [0, 1]7

1 .
7_‘_(support(D))(t) e { wo slélgé) Wsupport(R) (S)a if S(t) 7é @7
. 0

otherwise,

where S(t) = {s € support(R) [t C s|x} and wo = > . p wr(S).

It should be noted that, as already mentioned above, the computation
of maximum projections via the support of a database is, in general, very
inefficient, because of the usually huge number of tuples in support(R).

5.3.3 Computation via the Closure

In this section I turn to the computation of a maximum projection via the
closure of a database under tuple intersection. Clearly, I must begin by
defining the notion of the intersection of two tuples.

Definition 5.10 Let U be a set of attributes. A tuple s over U is called
the intersection of two tuples t; and ty over U, written s = t1 Mto iff
VAeU:s(A)=t1(A)Nta(A).

Note that the intersection of two given tuples need not exist. For example,
t1 = (A = {al},B = {bl,bg}) and to = (A = {CI,Q},B = {bl,bg}) do not
have an intersection, since t1(A) Nt2(A) = (), but a tuple may not map an
attribute to the empty set (cf. definition 5.1 on page 140).

Note also that the intersection s of two tuples ¢; and t¢5 is at least as
specific as both of them, i.e., it is s C t; and s C 5. In addition, s is the
least specific of all tuples s’ for which s’ C ¢; and s’ C ¢, i.e.,

V' eTy: (SCtiAs Cty) = (s Cs=tMty).
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This is important, since it also says that any tuple that is at least as specific
as each of two given tuples is at least as specific as their intersection. (This
property is needed in the proof of theorem 5.1.)

Furthermore, note that intersection is idempotent, i.e., it is tMt =t.
(This is needed below, where some properties of closures under tuple inter-
section are collected.)

Finally, note that the above definition can easily be extended to the
more general definition of an imprecise tuple, in which it is defined as an
arbitrary set of instantiations of the attributes. Clearly, in this case tuple
intersection reduces to simple set intersection.

From the intersection of two tuples we can proceed directly to the notions
of closed under tuple intersection and closure of a relation.

Definition 5.11 Let R be a relation over a set U of attributes.
R is called closed under tuple intersection iff

Vi1, to € R: (HSGTUZSEtlﬂtQ):>S€R7

i.e., iff for any two tuples in R their intersection is also contained in R
(provided it exists).

Definition 5.12 Let R be a relation over a set U of attributes.
The closure of R, written closure(R), is the set

closure(R) = {t eTy ’ dSCR:t= DSS},

i.e. the relation R together with all possible intersections of tuples from R.

Note that closure(R) is, obviously, also a relation and that it is closed under
tuple intersection: If ¢1,ty € closure(R), then, due to the construction,

3, CR: ti= 113 and S CR: to= [1 s.
seST SES>

If now dt € Ty : t = t1 Mto, then

t=t;MNta= [1sn [1s= T1 s&closure(R).
s€S1 SES> s€S1US,

(The last equality in this sequence holds, since M is idempotent, see above).

Note also that a direct implementation of the above definition is not the
best way to compute closure(R). A better, because much more efficient way,
is to start with a relation R’ = R, to compute only intersections of pairs of
tuples taken from R/, and to add the results to R’ until no new tuples can
be added. The final relation R’ is the closure of R.



150 CHAPTER 5. COMPUTING PROJECTIONS

As for the support, the notion of a closure is extended to databases.

Definition 5.13 Let D = (R, wg) be a database over a set U of attributes.
The closure of D is the pair closure(D) = (closure(R), Welosure(r)), where
closure(R) is the closure of the relation R and

Welosure(R) * CIOSUI'G(R) — IN, Weclosure(R) (t) = Z wR(S)
SER,tCs

I assert (and prove in the theorem below) that any maximum projection of

7T[(JD) to a set X C U can be computed from weiosure(r) as follows (I write
wﬁ?“’sure(m) to indicate that the projection is computed via the closure of D):
7_rgglosure(D)) . T)((precise) _ [0’ 1}’

L max wclosure(R)(C)v if C(t) 7é (Z)a

(closure(D)) wo
m t) — ceC(t)
X () { 0, otherwise,

where C(t) = {c € closure(R) |t C ¢|x} and wo = Y . p wr(S).

Since, as already mentioned, closure(R) usually contains much fewer
tuples than support(R), a computation based on the above formula is much
more efficient. I verify my assertion that any maximum projection can be
computed in this way by the following theorem [Borgelt and Kruse 1998¢].

Theorem 5.1 Let D = (R, wg) be a database over a set U of attributes and
let X C U. Furthermore, let support(D) = (support(R), Wsupport(r)) and

closure(D) = (closure(R), Weiosure(r)) a8 well as wSupport(D)) and wgglosum(D))

be defined as above. Then

Vi € T)((precise) . 7_‘_gglosulre(D))(t) _ 7_l_gzupport(D))(t)

)

i.e., computing the maximum projection of the possibility distribution 7T[(JD)

induced by D to the attributes in X wia the closure of D is equivalent to
computing it via the support of D.

Proof: The assertion of the theorem is proven in two steps. In the first, it
)

is shown that, for an arbitrary tuple t € T)((preCise , it is

7_‘_gglosure(D)) (t) > 7_rg?upport(D)) (t)

3

and in the second that it is

7I_A()?losure(D))(t) < WE?UPPOY‘S(D))(t).
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dataset | cases | tuplesin | tuples in tuples in
R support(R) | closure(R)

djc 500 283 712818 291

soybean | 683 631 unknown 631

vote 435 342 98753 400

Table 5.3: The number of tuples in support and closure of three databases.

Both parts together obviously prove the theorem. The first part is car-
ried out by showing that for the (precise) tuple § in support(D), which
determines the value of WSUPPO”(D)) (t), there must be a corresponding (im-
precise) tuple in closure(D) with a weight at least as high as the weight of §.
The second part of the proof is analogous. The full proof can be found in

section A.8 in the appendix. O

5.3.4 Experimental Results

I tested the method suggested in the preceding sections on three datasets,
namely the Danish Jersey cattle blood type determination dataset (djc, 500
cases), the soybean diseases dataset (soybean, 683 cases), and the congress
voting dataset (vote, 435 cases). (The latter two datasets are well known
from the UCI Machine Learning Repository [Murphy and Aha 1994].) Each
of these datasets contains a lot of missing values, which I treated as an
imprecise attribute value. That is, for a missing value of an attribute A
I assumed dom(A) as the set of values the corresponding tuple maps A to.
Unfortunately I could not get hold of any real world dataset containing
“true” imprecise attribute values, i.e., datasets with cases in which for an
attribute A a set S C dom(A) with |S| > 1 and S # dom(A) was possible.
If anyone can direct me to such a dataset, I would be very grateful.

For each of the mentioned datasets I compared the reduction to a relation
(keeping the number of occurrences in the tuple weight), the expansion to
the support of this relation, and the closure of the relation. The results
are as shown in table 5.3. The entry “unknown” means that the resulting
relation is too large to be computed. Hence I could not determine its size.
It is obvious that using the closure instead of the support of a relation
to compute the maximum projections leads to a considerable reduction in
complexity, or, in some cases, makes it possible to compute a maximum
projection in the first place.
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A1 AQ e An w
a1 * * 1
a1,m, * T * 01 Table 5.4: A pathological example for
* a1 o * o1 the computation of the closure under
tuple intersection. Although there are
x apm, - N 1 only Y | m; tuples in this table, the
) closure under tuple intersection con-
: tains ([T, (m; + 1)) — 1 tuples.
* * Qn 1 1
* * cor Qpm, 1

5.3.5 Limitations

It should be noted that, despite the promising results of the preceding sec-
tion, computing the closure under tuple intersection of a relation with im-
precise tuples does not guarantee that computing maximum projections is
efficient. To see this, consider the pathological example shown in table 5.4.
a; j is the j-th value in the domain of attribute ¢ and m; = | dom(A4;)|. Stars
indicate missing values.

Although this table has only Y. | |dom(A4;)| tuples, computing its clo-
sure under tuple intersection constructs all [}, | dom(A;)| possible precise
tuples over U = {4;,...,A,} and all possible imprecise tuples with a pre-
cise value for some and a missing value for the remaining attributes. In all
there are ([]\,(]dom(A;)| + 1)) — 1 tuples in the closure, because for the
i-th element of a tuple there are |dom(A4;)| + 1 possible entries: | dom(A4;)]
attribute values and the star to indicate a missing value. The only tuple
that does not occur is the one having only missing values.

To handle this database properly, an operation to merge tuples—for
instance, tuples that differ in the (set of) value(s) for only one attribute—is
needed. With such an operation, the above table can be reduced to a single
tuple, having unknown values for all attributes. This shows that there is
some potential for future improvements of this preprocessing method.



Chapter 6

Naive Classifiers

In this chapter I consider an important type of classifiers, which I call naive
classifiers, because they naively make very strong independence assump-
tions. These classifiers can be seen as a special type of inference networks,
the structure of which is fixed by the classification task.

The best-known naive classifier is, of course, the naive Bayes classifier,
which is discussed in section 6.1. It can be seen as a Bayesian network with a
star-like structure. Due to the similarity of Bayesian networks and directed
possibilistic networks, the idea suggests itself to construct a possibilistic
counterpart of the naive Bayes classifier [Borgelt and Gebhardt 1999]. This
classifier, which also has a star-like structure, is discussed in section 6.2.

For both naive Bayes classifiers and naive possibilistic classifiers there
is a straightforward method to simplify them, i.e., to reduce the number of
attributes used to predict the class. This method is reviewed in section 6.3.

Finally, section 6.4 presents experimental results, in which both naive
classifiers are compared to a decision tree classifier.

6.1 Naive Bayes Classifiers

Naive Bayes classifiers [Good 1965, Duda and Hart 1973, Langley et al. 1992,
Langley and Sage 1994] are an old and well-known type of classifiers, i.e.,
of programs that assign a class from a predefined set to an object or case
under consideration based on the values of attributes used to describe this
object or case. They use a probabilistic approach, i.e., they try to compute
conditional class probabilities and then predict the most probable class.

153
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6.1.1 The Basic Formula

I start my discussion of naive Bayes classifiers by deriving the basic for-
mula underlying them. Let C be a class attribute with a finite domain
of m classes, i.e., dom(C) = {¢1,...,¢m}, and let U = {A;,...,A,} be a
set of other attributes used to describe a case or an object. These other
attributes may be symbolic, i.e., dom(Ay) = {ax1,. .., Gk m, }, Or numeric,
i.e., dom(Ax) = IR.! If the second index of an attribute value does not
matter, it is dropped and I simply write ax for a value of an attribute Ay.
With this notation a case or an object can be described, as usual, by an
instantiation (ay,...,ay) of the attributes Ay,..., A,.

For a given instantiation (aq,...,a,) a naive Bayes classifier tries to
compute the conditional probability P(C' = ¢; | 41 = a1,...,4, = ay)
for all ¢; and then predicts the class ¢; for which this probability is highest.
Of course, it is usually impossible to store all of these probabilities explicitly,
so that the most probable class can be found by a simple lookup. If there
are numeric attributes, this is obvious (in this case some parameterized
function is needed). But even if all attributes are symbolic, we have to store
a class (or a class probability distribution) for each point of the Cartesian
product of the attribute domains, the size of which grows exponentially
with the number of attributes. To cope with this problem, naive Bayes
classifiers exploit—as their name already indicates—Bayes’ rule and a set
of conditional independence assumptions. With Bayes’ rule the conditional
probabilities are inverted. That is, naive Bayes classifiers consider?

P(O:Ci‘Alzalw-wAn:an)

flAi =a1,..., A, =a, | C=¢) P(C=c¢)
f(Alzal,...,An:an) ’

Of course, for this inversion to be always possible, the probability density
function f(A; = as,...,A, = a,) must be strictly positive.

There are two observations to be made about this inversion. In the
first place, the denominator of the fraction on the right can be neglected,
since for a given case or object to be classified it is fixed and therefore does
not have any influence on the class ranking (which is all we are interested
in). In addition, its influence can always be restored by normalizing the

n this chapter I temporarily deviate from the restriction to finite domains, because
naive Bayes classifiers can be illustrated very well with numerical examples, see below.

2For simplicity I always use a probability density function f, although this is strictly
correct only if there is at least one numeric attribute (otherwise it should be a distribu-
tion P). The only exception is the class attribute, which must always be symbolic.
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distribution on the classes, i.e., we can exploit

f(A1 :al,...,An:an)

= Y fhi=a,...,Ay=a,|C=c;) P(C=¢).
j=1

It follows that we only need to consider

P(C:CZ |A1 :al,...,An:an)
1
= — - f(A1=ay,....,4,=a, |C=¢) P(C=¢),
Po
where pg is a normalization constant.

Secondly, we can see that merely inverting the probabilities does not
give us any advantage, since the probability space is equally large as it was
before. However, here the conditional independence assumptions come in.
To exploit them, we first apply the chain rule of probability to obtain

P(C:Ci|A1:al,~~~,An:an)

- P(C:Ci). e .
= 7}70 jl;[lf(A] aj;

/\i;llAk = ak,C = Ci).

Then we make the crucial assumption that, given the value of the class
attribute, any attribute A; is independent of any other. That is, we assume
that knowing the class is enough to determine the probability (density) for
a value aj, i.e., that we need not know the values of any other attributes. Of
course, this is a fairly strong assumption, which is truly “naive”. However,
it considerably simplifies the formula stated above, since with it we can
cancel all attributes Ay appearing in the conditions. Thus we get

P(C:Ci|A1:a17~-~7An:an)

PC:Ci L
_ %.Hf(/lj:ajczq).

This is the basic formula underlying naive Bayes classifiers. For a symbolic
attribute A; the conditional probabilities P(A; = a; | C = ¢;) are stored as
a simple table. This is feasible now, since there is only one condition and
hence only m - m; probabilities have to be stored.? For numeric attributes

3 Actually only m - (mj — 1) probabilities are really necessary. Since the probabilities
have to add up to one, one value can be discarded from each conditional distribution.
However, in implementations it is usually much more convenient to store all probabilities.
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it is often assumed that the probability density is a normal distribution and
hence only the expected values u;(c;) and the variances 0]2 (¢;) need to be
stored in this case. Alternatively, numeric attributes may be discretized
[Dougherty et al. 1995] and then handled like symbolic attributes.

Naive Bayes classifiers can easily be induced from a dataset of preclassi-
fied sample cases. All one has to do is to estimate the conditional probabili-
ties/probability densities f(A; = a; | C' = ¢;) using, for instance, maximum
likelihood estimation (cf. section 5.2). For symbolic attributes this yields

A N(A; =a;,C=¢
P(4; =a;| € =) = O C =)

where N(C = ¢;) is the number of sample cases that belong to class ¢; and
N(A; = a;,C = ¢;) is the number of sample cases which in addition have
the value a; for the attribute A;. To ensure that the probability is strictly
positive (see above), unrepresented classes are deleted. If an attribute value
does not occur given a class, its probability is either set to ﬁ, where NV
is the total number of sample cases, or a uniform prior of % is added to
the estimated distribution, which is then renormalized (cf. the notion of
Laplace correction mentioned in section 5.2). For a numeric attribute A;
the standard maximum likelihood estimation functions for the parameters
of a normal distribution may be used, namely

. 1
Nj(ci)ZM Z a; (k)

k=1

for the expected value, where a;(k) is the value of the attribute A; in the
k-th sample case belonging to class ¢;, and for the variance

5?(01‘) = m Z (a;(k) — ﬂj(ci))2~
Y k=1
6.1.2 Relation to Bayesian Networks

As already mentioned above, a naive Bayes classifier can be seen as a special
Bayesian network. This becomes immediately clear if we write the basic
formula of a naive Bayes classifier as

P(C’:ci,Alzal,...,An:an) = P(C:ci|A1:a1,...,An:an)-p0

= PC=c) [[F(A;=a;| C=cy),

Jj=1
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Figure 6.1: A naive Bayes classifier is a simple Bayesian network with a star-
like structure. This view has the advantage that the strong independence
assumptions underlying a naive Bayes classifier can be mitigated by adding
edges between attributes that are still dependent given the class.

which results from a simple multiplication by pg. Obviously, this is the fac-
torization formula of a Bayesian network with a star-like structure as shown
on the left in figure 6.1. That is, in this Bayesian network there is a distin-
guished attribute, namely the class attribute. It is the only unconditioned
attribute (the only one without parents). All other attributes are condi-
tioned on the class attribute and on the class attribute only. It is easy to
verify that evidence propagation in this Bayesian network (cf. section 4.2.1),
if all attributes A; are instantiated, coincides with the computation of the
conditional class probabilities of a naive Bayes classifier.

Seeing a naive Bayes classifier as a special Bayesian network has the ad-
vantage that the strong independence assumptions underlying the deriva-
tion of its basic formula can be mitigated. If there are attributes that are
conditionally dependent given the class, we may add edges between these at-
tributes to capture this dependence (as indicated on the right in figure 6.1).

Formally, this corresponds to not canceling all attributes Ay, after the
chain rule of probability has been applied to attain

P(C:ci|A1:a1,..-,An:an)

- PO L5y | Al =),

but only those of which the attribute A; is conditionally independent given
the class and the remaining attributes. That is, we exploit a weaker set of
conditional independence statements. Naive Bayes classifiers that had been
improved in this way were successfully applied in the telecommunication
industry [Ezawa and Norton 1995].
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iris type

iris setosa

iris versicolor

iris virginica

prior probability | 0.333 0.333 0.333
petal length 1.46 £0.17 | 4.26 £ 0.46 5.55 + 0.55
petal width 0.24 +£0.11 | 1.33+0.20 2.03+£0.27

Table 6.1: A naive Bayes classifier for the iris data. The normal distributions
are described by i + 6 (i.e., expected value + standard deviation). From
this table it is easy to see how different petal lengths and widths provide
evidence for the different types of iris flowers.

6.1.3 A Simple Example

As an illustrative example of a naive Bayes classifier and its possible im-
provement, I consider the well-known iris data [Anderson 1935, Fisher 1936,
Murphy and Aha 1994]. The classification problem is to predict the iris type
(iris setosa, iris versicolor, or iris virginica) from measurements of the sepal
length and width and the petal length and width. However, I confine my-
self to the latter two measures, which are the most informative w.r.t. a
prediction of the iris type. The naive Bayes classifier induced from these
two measures and all 150 cases (50 cases of each iris type) is shown in ta-
ble 6.1. The conditional probability density functions used to predict the
iris type are shown graphically in figure 6.2 on the left. The ellipses are
the 20-boundaries of the (bivariate) normal distribution. These ellipses are
axis-parallel, which is a consequence of the strong conditional independence
assumptions underlying a naive Bayes classifier: The normal distributions
are estimated separately for each dimension and no covariance is taken into
account. However, even a superficial glance at the data points reveals that
the two measures are far from independent given the iris type. Especially
for iris versicolor the density function is a rather bad estimate. Neverthe-
less, the naive Bayes classifier is successful: It misclassifies only six cases
(which can easily be made out in figure 6.2).

However, if we allow for an additional edge between the petal length
and the petal width, which, in this case, is most easily implemented by
estimating the covariance matrix of the two measures, a much better fit to
the data can be achieved (see figure 6.2 on the right, again the ellipses are
the 20-boundaries of the probability density function). As a consequence
the number of misclassifications drops from six to three (which can easily
be made out in figure 6.2).
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A petal width A petal width

<
k%
petal length @i petal length
© iris setosa o iris versicolor * iris virginica

Figure 6.2: Naive Bayes density functions for the iris data (axis-parallel el-
lipses, left) and density functions that take into account the covariance of the
two measures (general ellipses, right). The ellipses are the 20-boundaries.

6.2 A Naive Possibilistic Classifier

Due to the structural equivalence of probabilistic and possibilistic networks,
which I pointed out in the chapters 3 and 4, the idea suggests itself to
construct a naive possibilistic classifier in strict analogy to the probabilistic
case [Borgelt and Gebhardt 1999]: Let 7 be a possibility distribution over
the attributes A;,..., A, and C. Because of the symmetry in the definition
of a conditional degree of possibility (cf. definition 2.9 on page 49), we have

W(C:ci|A1:a1,...,An:an) = ’/T(Alial,...,An:an|C:Ci).

This equation takes the place of Bayes’ rule. It has the advantage of be-
ing much simpler than Bayes’ rule and thus we need not take care of a
normalization constant.

In the next step we apply the possibilistic analog of the chain rule of
probability (cf. page 88 in section 3.4.4) to obtain

W(O:Ci|A1:a17...,A”:an)

_ ion _ Jj—1 _ _
= minj_, W(Aj =aj 1Ak = a, C = Ci>~

Finally we assume, in analogy to the probabilistic conditional independence
assumptions, that given the value of the class attribute all other attributes
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are independent. With this assumption we arrive at
m(C=ci| A1 =a1,...,Ap =a,) =minj_; 7(A; = a; | C =¢;).

This is the fundamental equation underlying a naive possibilistic classifier.
Given an instantiation (ai,...,a,) it predicts the class ¢; for which this
equation yields the highest conditional degree of possibility. It is obvious
that, as a naive Bayes classifier is a special Bayesian network, this possibilis-
tic classifier is a special possibilistic network and, as a naive Bayes classifier,
it has a star-like structure (cf. the left part of figure 6.1). It is also clear that
a naive possibilistic classifier may be improved in the same way as a naive
Bayes classifier by adding edges between attributes that are conditionally
dependent given the class (cf. the right part of figure 6.1).

To induce a possibilistic classifier from data, we must estimate the con-
ditional possibility distributions of the above equation. To do so, we can
rely on the database preprocessing described in section 5.3, by exploiting

W(Ajzaj ‘ Czcz) = W(Aj :aj,C:ci).

However, this method works only for possibility distributions over attributes
with a finite domain. If there are numeric attributes, it is not even clear
how to define the joint possibility distribution that is induced by a database
of sample cases. The main problem is that it is difficult to determine a
possibility distribution on a continuous domain, if some sample cases have
precise values for the attribute under consideration (strange enough, for
possibilistic approaches precision can pose a problem). A simple solution
would be to fix the size of a small interval to be used in such cases. However,
such considerations are beyond the scope of this thesis and therefore, in the
possibilistic case, I confine myself to attributes with finite domains.

6.3 Classifier Simplification

Both a naive Bayes classifier and a naive possibilistic classifier make strong
independence assumptions. It is not surprising that these assumptions are
likely to fail. If they fail—and they are the more likely to fail, the more
attributes there are—, the classifier may be worse than necessary. To cope
with this problem, one may try to simplify the classifiers, naive Bayes as
well as possibilistic, using a simple greedy attribute selection. With this
procedure it can be hoped that a subset of attributes is found for which the
strong assumptions hold at least approximately. The experimental results
reported below indicate that this approach seems to be successful.
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The attribute selection methods I used are the following: In the first
method we start with a classifier that simply predicts the majority class.
That is, we start with a classifier that does not use any attribute infor-
mation. Then we add attributes one by one. In each step we select the
attribute which, if added, leads to the smallest number of misclassifications
on the training data. We stop adding attributes when adding any of the
remaining attributes does not reduce the number of errors.

The second method is a reversal of the first. We start with a classifier
that takes into account all available attributes and then remove attributes
step by step. In each step we select the attribute which, if removed, leads
to the smallest number of misclassifications on the training data. We stop
removing attributes when removing any of the remaining attributes leads
to a larger number of errors.

6.4 Experimental Results

I'implemented the suggested possibilistic classifier along with a normal naive
Bayes classifier [Borgelt 1999] and tested both on four datasets from the
UCT machine learning repository [Murphy and Aha 1994]. In both cases I
used the simplification procedures described in the preceding section. The
results are shown in table 6.2, together with the results obtained with a
decision tree classifier The columns “add att.” contain the results obtained
by stepwise adding attributes, the columns “rem. att.” the results obtained
by removing attributes. The decision tree classifier? is similar to the well-
known decision tree induction program C4.5 [Quinlan 1993]. The attribute
selection measure used for these experiments was information gain ratio
and the pruning method was confidence level pruning with a confidence
level of 50% (these are the default values also used in C4.5).

It can be seen that the possibilistic classifier performs equally well as
or only slightly worse than the naive Bayes classifier. This is encouraging,
since none of the datasets is well suited to demonstrate the strengths of a
possibilistic approach. Although all of the datasets contain missing values
(which can be seen as imprecise information, cf. section 5.3.4), the relative
frequency of these missing values is rather low. None of the datasets contains
true set valued information, which to treat possibility theory was designed.

4This decision tree classifier, which I implemented myself, was already mentioned in
a footnote in the introduction (cf. page 10, see also [Borgelt 1998]).
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dataset possibilistic classifier naive Bayes classifier decision tree
tuples | add. att. rem. att. add. att. rem. att. unpruned  pruned
audio train 113 | 7( 6.2%) 2( 1.8%) | 12(10.6%) 16(14.2%) | 13(11.5%) 16(14.2%)
test 113 | 33(29.2%) 36(31.9%) | 35(31.0%) 31(27.4%) | 25(22.1%) 25(22.1%)
69 atts. | selected 15 21 9 42 14 12
bridges | train 54 | 8(14.8%) 8(14.8%) | 10(18.5%) 7(13.0%) 9(16.7%) 9(16.7%)
test 54 | 23(42.6%) 23(42.6%) | 24(44.4%) 19(35.2%) | 24(44.4%) 24(44.4%)
10 atts. | selected 6 6 5 8 8 6
soybean | train 342 | 18( 5.3%) 20( 5.9%) | 17( 5.0%) 14( 4.1%) | 16( 4.7%) 22( 6.4%)
test 341 | 59(17.3%) 57(16.7%) | 48(14.1%) 45(13.2%) | 47(13.8%) 39(11.4%)
36 atts. | selected 15 17 14 14 19 16
vote train 300 | 9( 3.0%) 8( 2.7%) 9( 3.0%) 8( 2.7%) 6( 2.0%) 7( 2.3%)
test 135 | 11( 8.2%) 10( 7.4%) | 11( 8.2%) 8( 5.9%) | 11( 8.2%) 8( 5.9%)
16 atts. | selected 2 3 2 4 6 4

Table 6.2: Experimental results on four datasets from the UCI machine learning repository.




Chapter 7

Learning Global Structure

In this chapter I study methods to learn the global structure of a graphical
model from data. By global structure I mean the structure of the graph un-
derlying the model. As discussed in section 4.1.6 this graph indicates which
conditional or marginal distributions constitute the represented decompo-
sition. In contrast to this the term local structure refers to regularities in
the individual conditional or marginal distributions of the decomposition.
Learning local structure, although restricted to directed graphs (i.e., condi-
tional distributions), is studied in the next chapter.

In analogy to chapter 3 I introduce in section 7.1 the general principles
of learning the global structure of a graphical model based on some simple
examples (actually the same as in chapter 3), which are intended to provide
an intuitive and comprehensible background. I discuss these examples in the
same order as in chapter 3, i.e., I start with the relational case and proceed to
the probabilistic and finally to the possibilistic case. The rationale is, again,
to emphasize with the relational case the simplicity of the ideas, which can
be disguised by the numbers in the probabilistic or the possibilistic case.

Although three major approaches can be distinguished, the structure of
all learning algorithms for the global structure of a graphical model is very
similar. Usually they consist of an evaluation measure (also called scoring
function) and a (heuristic) search method. Often the search is guided by the
value of the evaluation measure, but nevertheless the two components are
relatively independent and therefore I discuss them in two separate sections,
namely 7.2 and 7.3. Only the former distinguishes between the three cases
(relational, probabilistic, and possibilistic), since the search methods are
independent of the underlying calculus.

163
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7.1 Principles of Learning Global Structure

As already indicated above, there are three main approaches to learn the
global structure of a graphical model:

e Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical rep-
resentation, but can also be carried out w.r.t. other representations of
the set of subspaces to be used to compute the (candidate) decompo-
sition of the given distribution.

e Find an independence map by conditional independence tests.

This approach exploits the theorems of section 4.1.6, which connect
conditional independence graphs and graphs that represent decompo-
sitions. It has the advantage that by a single conditional independence
test, if it fails, several candidate graphs can be excluded.

e Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based
on the frequently valid assumption that in a conditional independence
graph an attribute is more strongly dependent on adjacent attributes
than on attributes that are not directly connected to it.

Note that none of these methods is perfect. The first approach suffers from
the usually huge number of candidate graphs (cf. section 7.3.1). The sec-
ond often needs the strong assumption that there is a perfect map w.r.t. the
considered distribution. In addition, if it is not restricted to certain types of
graphs (for example, polytrees), one has to test conditional independences
of high order (i.e., with a large number of conditioning attributes), which
tend to be unreliable unless the amount of data is enormous. The heuristic
character of the third approach is obvious. Examples in which it fails can
easily be found, since under certain conditions attributes that are not adja-
cent in a conditional independence graph can exhibit a strong dependence.

Note also that it is arguable that the Bayesian approaches to learn
Bayesian networks from data are not represented by the above list. How-
ever, I include them in the third approach, since in my view they only use
a special dependence measure, although the statistical foundations of this
measure may be somewhat stronger than those of other measures.

In the following I illustrate the three approaches using the simple geo-
metrical objects example of chapter 3 in order to provide an intuitive back-
ground (cf. sections 3.2.1, 3.3.1, and 3.4.2).



7.1. PRINCIPLES OF LEARNING GLOBAL STRUCTURE 165

7.1.1 Learning Relational Networks

For the relational case the first approach to learn the global structure of a
graphical model from data consists in computing, for the given relation, the
intersection of the cylindrical extensions of the projections to the subspaces
indicated by the graph to be tested (or, equivalently, the natural join of
the projections, cf. section 3.2.4). The resulting relation is compared to the
original one and if it is identical, an appropriate graph has been found.

This is exactly what I did in section 3.2.2 to illustrate what it means to
decompose a relation (cf. figure 3.5 on page 58). In that section, however,
I confined myself to the graph that actually represents a decomposition
(and one other to show that decomposition is not a trivial property, cf.
figure 3.8 on page 60). Of course, when learning the graph structure from
data, we do not know which graph is the correct one. We do not even know
whether there is a graph (other than the complete one') that represents a
decomposition of the relation. Therefore we have to search the space of all
possible graphs in order to find out whether there is a suitable graph.

For the simple relation used in section 3.2.1 (cf. table 3.1 on page 54)
this search is illustrated in figure 7.1. It shows all eight possible undirected
graphs over the three attributes A, B, and C' together with the intersections
of the cylindrical extensions of the projections to the subspaces indicated
by the graphs. Clearly, graph 5 is the only graph (apart from the complete
graph 8)? for which the corresponding relation is identical to the original
one and therefore this graph is selected as the search result.

As discussed in section 3.2.3, the relation R4p¢ is no longer decompos-
able w.r.t. a graph other than the complete graph, if the tuple (a4, b3, c2) is
removed. In situations like this one either has to work with the relation as
a whole (i.e., with the complete graph) or be contented with an approxima-
tion that contains some additional tuples. Usually the latter alternative is
chosen, since in applications the former is most often impossible because of
the high number of dimensions of the world section to be modeled. Often
an approximation has to be accepted even if there is an exact decompo-

ISince a complete undirected graph consists of only one maximal clique, there is no
decomposition and thus, trivially, a complete graph can represent any relation. This also
follows from the fact that a complete graph is a trivial independence map. However, it
is clear that a complete graph is useless, since it leads to no simplification.

2Note, again, that the complete graph 8 trivially represents the relation, since it
consists of only one maximal clique. This graph does not represent the intersection of
the cylindrical extensions of the projections to all three two-dimensional subspaces (cf.
definition 4.18 on page 112). As demonstrated in section 3.2.3, this intersection need not
be identical to the original relation.
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Figure 7.1: All eight possible graphs and the corresponding relations.

sition, because the exact decomposition contains one or more very large
maximal cliques (i.e., maximal cliques with a large number of attributes),
which cannot be handled efficiently. Therefore the problem of decomposing
a relation can be stated in the following more general way: Given a relation
and a maximal size for the maximal cliques, find an exact decomposition
with maximal cliques as small as possible, or, if there is no suitable exact
decomposition, find a “good” approximate decomposition of the relation,
again with maximal cliques as small as possible.
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Obviously, the simplest criterion for what constitutes a “good” approxi-
mation is the number of additional tuples in the relation corresponding to a
given graph [Dechter 1990]: This relation cannot contain fewer tuples than
the original relation and thus the number of additional tuples is an intuitive
measure of the “closeness” of this relation to the original one. Based on
this criterion graph 5 of figure 7.1 would be chosen for the relation Rapc
with the tuple (a4, b3, c2) removed, because the relation corresponding to
this graph contains only one additional tuple (namely the tuple (a4, b3, c2)),
whereas any of the other graphs (except the complete graph 8, of course)
contains at least four additional tuples.

Note that in order to rank two graphs we need not compute the number
of additional tuples, but can directly compare the number of tuples in the
corresponding relations, since the number of tuples of the original relation is,
obviously, the same in both cases. This simplifies the assessment: Find the
graph among those of acceptable complexity (w.r.t. maximal clique size),
for which the corresponding relation is the smallest among all such graphs,
i.e., for which it has the least number of tuples.

Let us now turn to the second approach to learn a graphical model from
data, namely finding an independence map by conditional independence
tests. As already mentioned above, this approach draws on the theorems of
section 4.1.6 which state that a distribution is decomposable w.r.t. its con-
ditional independence graph (although for possibility distributions and thus
for relations one has to confine oneself to a restricted subset of all graphs if
undirected graphs are considered). For the simple relational example this
approach leads, as the approach discussed above, to a selection of graph 5,
since the only conditional independence that can be read from it, namely
A1l C| B, holds in the relation Rapc (as demonstrated in section 3.2.6)
and therefore this graph is an independence map. All other graphs, how-
ever, are no independence maps (expect the complete graph 8, which is a
trivial independence map). For instance, graph 3 indicates that A and B
are marginally independent, but clearly they are not, since, for example,
the values a; and b3 are both possible, but cannot occur together. Note
that the fact that A and B are not marginally independent also excludes,
without further testing, graphs 1 and 4. That such a transfer of results to
other graphs is possible is an important advantage of this approach.

To find approximate decompositions with the conditional independence
graph approach we need a measure for the strength of (conditional) depen-
dences. With such a measure we may decide to treat two attributes (or sets
of attributes) as conditionally independent if the measure indicates only a
weak dependence. This enables us to choose a sparser graph. It should be
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noted, though, that in this case the approximation is decided on “locally”
(i.e., w.r.t. a conditional independence that may involve only a subset of all
attributes) and thus need not be the “globally” best approximation.

In order to find a measure for the strength of the relational dependence
of a set of attributes, recall that two attributes are relationally independent
if their values are freely combinable (cf. definition 3.10 on page 70) and
that they are dependent if there is at least one combination of values which
cannot occur (although both values of this combination can occur in com-
bination with at least one other value). Therefore it is plausible to measure
the strength of the relational dependence of two attributes by the num-
ber of possible value combinations: The fewer there are, the more strongly
dependent the two attributes are.

Of course, we should take into account the number of value combinations
that could be possible, i.e., the size of the (sub)space scaffolded by the two
attributes. Otherwise the measure would tend to assess that attributes with
only few values are more strongly dependent than attributes with many
values. Therefore we define as a measure of the relational dependence of a
set of attributes the relative number of possible value combinations, i.e., the
quotient of the number of possible value combinations and the size of the
subspace scaffolded by the attributes. Clearly, the value of this measure is
one if and only if the attributes are independent, and it is the smaller, the
more strongly dependent the attributes are.

This measure is closely related to the Hartley information gain, which
is based on the Hartley entropy or Hartley information [Hartley 1928] of a
set of alternatives (for example, the set of values of an attribute).

Definition 7.1 Let S be a finite set of alternatives. The Hartley en-
tropy or Hartley information of S, denoted HM2)(S)  is the binary
logarithm of the number of alternatives in S, i.e., HH1eY)(G) = log, |S|.

The idea underlying this measure is the following: Suppose there is an oracle
that knows the “correct” or “obtaining” alternative, but which accepts only
questions that can be answered with “yes” or “no”. How many questions
do we have to ask? If we proceed in the following manner, we have to ask at
most [log, n| questions, where n is the number of alternatives: We divide
the set of alternatives into two subsets of about equal size (subsets of equal
size if n is even, sizes differing by one if n is odd). Then we choose arbitrarily
one of the sets and ask whether the correct alternative is contained in it.
Independent of the answer, one half of the alternatives can be excluded. The
process is repeated with the set of alternatives that were not excluded until
only one alternative remains. Obviously, the information received from the
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Figure 7.2: Computation of Hartley information gain.

oracle is at most [logyn] bits: one bit per question. By a more detailed
analysis and by averaging over all alternatives, we find that the expected
number of questions is about log, n.”

The Hartley information gain is computed from the Hartley information
as demonstrated in figure 7.2. Suppose we want to find out the values
assumed by two attributes A and B. To do so, we could determine first the
value of attribute A using the question scheme indicated above, and then
the value of attribute B. That is, we could determine the “coordinates”
of the value combination in the joint domain of A and B. If we apply
this method to the example shown in figure 7.2, we need log, 12 ~ 3.58
questions on average. However, since not all value combinations are possible,
we can save questions by determining the value combination directly, i.e.,
the “coordinate pair”. There are six possible combinations, hence we need
log, 6 ~ 2.58 questions on average and thus gain one question.

Formally Hartley information gain is defined as follows:

Definition 7.2 Let A and B be two attributes and R a binary possibility
measure with Ja € dom(A) : 3b € dom(B) : R(A=a,B =b) =1. Then

Iézllz;rtley)(A B) = log, ( Z R(A= a)) + log, ( Z R(B = b))
acdom(A) bedom(B)

- log2< Z Z —a,B:b))

acdom(A) bedom(B)

1 (Z‘IEdom(A) R(A = a)) (Zbedom(B) R(B = b))
= Og ,
2 Zaedom(A) Zbedom(B) R(A = a, B = b)

is called the Hartley information gain of A and B w.r.t. R.

3Note that log,n is not a precise expected value for all n. A better justification
for using log, n is obtained by considering the problem of determining sequences of cor-
rect alternatives (cf. the discussion of the more general Shannon entropy or Shannon
information in section 7.2.4).
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attributes | relative number of Hartley information gain
possible value combinations

A, B 2 =13 =50% log, 3 4 logy 4 —log, 6 =1

A C T =2=~67% log, 3 + logy 4 — log, 8 &~ 0.58

B,C 25 = 2 ~ 56% log, 3 +logy 3 — log, 5 ~ 0.85

Table 7.1: The number of possible combinations relative to the size of the
subspace and the Hartley information gain for the three attribute pairs.

With this definition the connection of Hartley information gain to the rel-
ative number of possible value combinations becomes obvious: It is simply
the binary logarithm of the reciprocal of this relative number. It is also
clear that this definition can easily be extended to more than two attributes
by adding factors to the product in the numerator.

Note that Hartley information gain is zero if and only if the relative
number of value combinations is one. Therefore the Hartley information
gain is zero if and only if the considered attributes are relationally indepen-
dent. If the attributes are dependent, it is the greater, the more strongly
dependent the attributes are. Consequently, the Hartley information gain
(or, equivalently, the relative number of possible value combinations) can
be used directly to test for (approximate) marginal independence. This is
demonstrated in table 7.1, which shows the relative number of possible value
combinations and the Hartley information gain for the three attribute pairs
of the simple relational example discussed above, namely the relation Rapc
(with or without the tuple (aq4,bs, ca), since removing this tuple does not
change the two-dimensional projections). Clearly no pair of attributes is
marginally independent, not even approximately, and hence all graphs with
less than two edges (cf. figure 7.1) can be excluded.

In order to use Hartley information gain (or, equivalently, the relative
number of possible value combinations) to test for (approximate) conditional
independence, one may proceed as follows: For each possible instantiation
of the conditioning attributes the value of this measure is computed. (Note
that in this case for the size of the subspace only the values that are possible
given the instantiation of the conditions have to be considered—in contrast
to a test for marginal independence, where usually all values have to be
taken into account; cf. definition 7.2) The results are aggregated over all
instantiations of the conditions, for instance, by simply averaging them.
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Figure 7.3: Using the Hartley information gain to test for approximate
conditional independence.

As an example consider the relation R4pc without the tuple (ag, bs, ¢2),
which is shown in the top left of figure 7.3. This figure also shows the
averaged Hartley information gain for B and C given the value of A (top
right), for A and C given the value of B (bottom left) and for A and B given
the value of C' (bottom right). Obviously, since none of these averages is
zero, neither Bl C | Anor AL C | Bnor AL C | B holds. But since A
and C' exhibit a rather weak conditional dependence given B, we may decide
to treat them as conditionally independent and thus may choose graph 5 of
figure 7.1 to approximate the relation.

The notion of a measure for the strength of the dependence of two at-
tributes brings us directly to the third method to learn a graphical model
from data, namely to determine a suitable graph by measuring only the
strength of (marginal) dependences. That such an approach is feasible can
be made plausible as follows: Suppose that we choose the number of ad-
ditional tuples in the intersection of the cylindrical extensions of the pro-
jections of a relation to the selected subspaces as a measure of the overall
quality of an (approximate) decomposition (see above). In this case, to find
a “good” approximate decomposition it is plausible to choose the subspaces
in such a way that the number of possible value combinations in the cylin-
drical extensions of the projections to these subspaces is as small as possible,
because the smaller the cylindrical extensions, the smaller their intersection.
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Obviously, the number of tuples in a cylindrical extension depends directly
on the (relative) number of possible value combinations in the projection.
Therefore it seems to be a good heuristic method to select projections in
which the ratio of the number of possible value combinations to the size of
the subspace is small (or, equivalently, for which the Hartley information
gain—generalized to more than two attributes, if necessary—is large).

Another way to justify this approach is the following: If two attributes
are conditionally independent given a third, then their marginal dependence
is “mediated” through other attributes (not necessarily in a causal sense).
But mediation usually weakens a dependence (cf. section 7.3.4, where this
is discussed in detail for the probabilistic case w.r.t. to trees). Therefore at-
tributes that are conditionally independent given some (set of) attribute(s)
are often less strongly dependent than attributes that are conditionally de-
pendent given any (set of ) other attribute(s). Consequently, it seems to be a
good heuristic method to choose those subspaces, for which the underlying
sets of attributes are as strongly dependent as possible.

It is clear that with this approach the search method is especially im-
portant, since it determines which graphs are considered. However, for the
simple relational example, i.e., the relation R4pc (with or without the tu-
ple (a4,bs3,c2)) we may simply choose the well-known Kruskal algorithm
[Kruskal 1956], which determines an optimum weight spanning tree. As
edge weights we may choose the relative number of possible value combi-
nations (and determine a minimum weight spanning tree) or the Hartley
information gain (and determine a maximum weight spanning tree). These
weights are shown in table 7.1. This leads to the construction of graph 5 of
figure 7.1, in agreement with the results of the other two learning methods.

Note that the Kruskal algorithm always yields a spanning tree. Therefore
this search method excludes the graphs 1 to 4 of figure 7.1. However, with
a slight modification of the algorithm these graphs can also be reached
(although this is of no importance for the example discussed). As is well
known, the Kruskal algorithm proceeds by arranging the edges in the order
of descending or ascending edge weights (depending on whether a maximum
or a minimum weight spanning tree is desired) and then adds edges in
this order, skipping those edges that would introduce a cycle. If we fix a
lower (upper) bound for the edge weight and terminate the algorithm if
all remaining edges have a weight less than (greater than) this bound, the
algorithm may stop with a graph having fewer edges than a spanning tree.

For the discussed example the third method is obviously the most effi-
cient. It involves the fewest number of computations, because one only has
to measure the strength of the marginal dependences, whereas the condi-
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Figure 7.4: The Hartley information gain is only a heuristic criterion.

tional independence method also needs to assess the strength of conditional
dependences. Furthermore, we need not search all graphs, but can construct
a graph with the Kruskal algorithm (although this can be seen as a special
kind of—very restricted—search). However, this efficiency is bought at a
price. With this method we may not find a graph that represents an exact
decomposition, although there is one. This is demonstrated with the simple
relational example shown in figure 7.4. It is easy to verify that the relation
shown in the top left of this figure can be decomposed into the projections
to the subspaces {A, B} and {4, C}, i.e., w.r.t. the graph

No other selection of subspaces yields a decomposition. However, if the

Kruskal algorithm is applied with Hartley information gain providing the
edge weights, the subspaces {A, B} and {B,C} are selected, i.e., the graph

is constructed. The corresponding relation contains an additional tuple,
namely the tuple (a3, b1,c1) and thus a suboptimal graph is chosen. But

since the approximation of the relation is rather good, one may decide to
accept this drawback of this learning method.
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7.1.2 Learning Probabilistic Networks

Learning probabilistic networks is basically the same as learning relational
networks. The main differences are in the criteria used to assess the quality
of an approximate decomposition and in the measures used to assess the
strength of the dependence of two or more attributes.

For the first method, i.e., the direct test for decomposability w.r.t. a
given graph, suppose first that we are given a multi-dimensional probability
distribution, for which we desire to find an exact decomposition. In this case
we can proceed in the same manner as in the relational setting. That is, we
compute the distribution that is represented by the graph and compare it to
the given distribution. If it is identical, a suitable graph has been found. To
compute the distribution represented by the graph we proceed as follows:
For a directed graph we determine from the given distribution the marginal
and conditional distributions indicated by the graph—their product is the
probability distribution represented by the graph. For an undirected graph
we compute functions on the maximal cliques as indicated in the proof of
theorem 4.4 (cf. section A.4 in the appendix). Again their product is the
probability distribution represented by the graph.

For the simple example discussed in section 3.3 (figure 3.11 on page 75)
this approach leads to a selection of graph 5 of figure 7.1 on page 166.
I refrain from illustrating the search in detail, because the figures would
consume a lot of space, but are not very instructive.

Of course, as in the relational case, there need not be an exact decompo-
sition of a given multi-dimensional probability distribution. In such a case,
or if the maximal cliques of a graph that represents an exact decomposi-
tion are too large, we may decide to be contented with an approximation.
A standard measure for the quality of a given approximation of a probability
distribution, which corresponds to the criterion of the number of additional
tuples in the relational case, is the Kullback-Leibler information divergence
[Kullback and Leibler 1951, Chow and Liu 1968, Whittaker 1990]. This
measure is defined as follows:

Definition 7.3 Let p; and py be two strictly positive probability distribu-
tions on the same set € of events. Then

n(E)

p2(E)

Ixvraiv(p1,p2) Z pi(E)log, 2
Bee

is called the Kullback-Leibler information divergence of p; and ps.
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It can be shown that the Kullback-Leibler information divergence is non-
negative and that it is zero only if p; = ps (cf. the proof of lemma A.4 in
section A.15 in the appendix). Therefore it is plausible that this measure
can be used to assess the approximation of a given multi-dimensional dis-
tribution and the distribution that is represented by a given graph: The
smaller the value of this measure, the better the approximation.

Note that this measure does not treat the two distributions equally,
but that it uses the values of the distribution p; as weights in the sum.
Therefore this measure is not symmetric in general, i.e., in general it is
Ixrdiv(P1,02) # Ixrdiv(p2,p1). Consequently, one has to decide which of
p1 and py should be the actual distribution and which the approximation.
We may argue as follows: The quotient of the probabilities captures the
difference of the distributions w.r.t. single events E. The influence of such
a “local” difference depends on the probability of the occurrence of the
corresponding event E and therefore it should be weighted with the (actual)
probability of this event. Hence p; should be the actual distribution.

As an illustration of this approach figure 7.5 shows, for the simple three-
dimensional probability distribution depicted in figure 3.11 on page 75, all
eight candidate graphs together with the Kullback-Leibler information di-
vergence of the original distribution and its approximation by each of the
graphs (upper numbers). This figure is the probabilistic counterpart of
figure 7.1. Clearly, graph 5 represents an exact decomposition of the dis-
tribution, since the Kullback-Leibler information divergence is zero for this
graph. Note that, as in the relational case, the complete graph 8 always
receives or shares the best assessment, since it consists of only one maximal
clique and thus represents no real decomposition.

Up to now I have assumed that the multi-dimensional probability distri-
bution, for which a decomposition is desired, is already given. However, in
applications this is usually not the case. Instead we are given a database of
sample cases. Clearly, the direct approach to handle this situation, namely
to estimate the joint probability distribution from this database, so that
we can proceed as indicated above, is, in general, infeasible. The reason
is that the available data is rarely sufficient to make the estimation of the
joint probabilities reliable, simply because the number of dimensions is usu-
ally large and thus the number of probabilities that have to be estimated is
enormous (cf., for example, the Danish Jersey cattle example discussed in
section 4.2.2, which is, in fact, a rather simple application). For a reliable
estimation the number of sample cases must be a multiple of this number.

Fortunately, if we confine to a maximum likelihood estimation approach,
there is a feasible indirect method: The basic idea of maximum likelihood
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Figure 7.5: The Kullback-Leibler information divergence of the original dis-
tribution and its approximation (upper numbers) and the natural logarithms
of the probability of an example database (log-likelihood of the data, lower
numbers) for the eight possible candidate graphical models.

estimation is to choose that model or that (set of) probability parameter(s)
that makes the observed data most likely. Yet, if we have a model, the prob-
ability of the database can easily be computed. Hence the idea suggests it-
self to estimate from the data only the marginal or conditional distributions
that are indicated by a given graph. This is feasible, since these distribu-
tions are usually of a limited size and therefore even a moderate amount of
data is sufficient to estimate them reliably. With these estimated distribu-
tions we have a fully specified graphical model, from which we can compute
the probability of each sample case (i.e., its likelihood given the model).
Assuming that the sample cases are independent, we may then compute
the probability of the database by simply multiplying the probabilities of
the individual sample cases, which provides us with an assessment of the
quality of the considered graphical model.

As an illustration reconsider the simple three-dimensional probability
distribution shown in figure 3.11 on page 75 and assume that the numbers
are the (absolute) frequencies of sample cases with the corresponding value
combination in a given database. The natural logarithms of the probabilities
of this database given the eight possible graphical models, computed as
outlined above, are shown in figure 7.5 (lower numbers). Obviously, graph 5
would be selected.
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Let us now turn to the second approach to learn a graphical model from
data, namely finding an independence map by conditional independence
tests. If we assume that we are given a probability distribution and that
we desire to find an exact decomposition, it is immediately clear that the
only difference to the relational case is that we have to test for conditional
probabilistic independence instead of conditional relational independence.
Thus it is not surprising that for the example of a probability distribution
shown in figure 3.11 on page 75 graph 5 of figure 7.5 is selected, since the
only conditional independence that can be read from it, namely A Il B | C,
holds in this distribution (as demonstrated in section 3.3.1).

To find approximate decompositions we need, as in the relational case, a
measure for the strength of dependences. For a strictly positive probability
distribution, such a measure can easily be derived from the Kullback-Leibler
information divergence by comparing two specific distributions, namely the
joint distribution over a set of attributes and the distribution that can be
computed from its marginal distributions under the assumption that the
attributes are independent. For two attributes this measure can be defined
as follows [Kullback and Leibler 1951, Chow and Liu 1968]:

Definition 7.4 Let A and B be two attributes and P a strictly positive
probability measure. Then

P(A=a,B
Ini(A,B)= > Y PA=aB=b) %2 54 = o) BB =)’
acdom(A) bedom(B)

is called the mutual (Shannon) information or the (Shannon) cross
entropy of A and B w.r.t. P.

This measure is also known from decision tree induction [Quinlan 1986,
Quinlan 1993], where it is usually called (Shannon) information gain. (This
name indicates a close relation to the Hartley information gain.) Mutual
information can be interpreted in several different ways, one of which is pro-
vided by the derivation from the Kullback-Leibler information divergence.
Other interpretations are discussed in section 7.2.4.

By recalling that the Kullback-Leibler information divergence is zero if
and only if the two distributions coincide, we see that mutual information is
zero if and only if the two attributes are independent, since their joint distri-
bution is compared to an (assumed) independent distribution. In addition,
the value of this measure is the larger, the more the two distributions differ,
i.e., the more strongly dependent the attributes are. Therefore this measure
can be used directly to test for (approximate) marginal independence.
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Figure 7.6: Mutual information/cross entropy in the simple example.

This is demonstrated in figure 7.6 for the three-dimensional example
discussed above (cf. figure 3.11 on page 75). On the left the three possible
two-dimensional marginal distributions are shown, on the right the corre-
sponding (assumed) independent distributions, to which they are compared
by mutual information. Clearly, none of the three pairs of attributes are
independent, although the dependence of A and C' is rather weak.

In order to use mutual information to test for (approximate) conditional
independence, we may proceed in a similar way as with Hartley informa-
tion gain in the relational case: We compute this measure for each possi-
ble instantiation of the conditioning attributes and then sum these values
weighted with the probability of the corresponding instantiation. That is,
for one conditioning attribute, we may compute

Imu(A,B | C)
_ Pla,b]c)
= Z P(c) Z Z P(a,b|c) log, Wa
cedom(C) a€dom(A) bedom(B)

where P(c) is an abbreviation of P(C = ¢) etc.

With this measure it is easy to detect that, in the example distribution of
figure 3.11 on page 75, the attributes A and C' are conditionally independent
given the attribute B.
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If we are not given a probability distribution (as I assumed up to now
for the conditional independence graph approach), but a database of sample
cases, it is clear that we have to estimate the conditioned joint distributions
of the attributes, for which we want to test whether they are conditionally
independent. Of course, this can lead to problems if the order of the tests
is large, where the order of a conditional independence test is the number
of conditioning attributes. If the number of conditioning attributes is large,
there may be too few tuples having certain instantiation of these attributes
to estimate reliably the conditioned joint distribution of the two test at-
tributes. Actually this is a serious drawback of this method, although there
are heuristic approaches to amend it (cf. section 7.3), like, for instance, fix-
ing an upper bound for the order of the tests to be carried out and assuming
that all tests of higher order will fail if all tests with an order up to this
bound failed.

Finally, let us consider the third approach to learn a graphical model,
which is based on measuring only the strengths of (marginal) dependences.
As in the relational case, we may use the same measure as for the (approxi-
mate) independence tests. For the simple example discussed above we may
apply the Kruskal algorithm with mutual information providing the edge
weights (cf. figure 7.6). This leads to a construction of graph 5 of figure 7.5,
in agreement with the results of the other two learning methods.

Note that this method can be applied as well if we are given a database
of sample cases, because we only have to estimate marginal distributions on
(usually small) subspaces, which can be made reliable even with a moderate
amount of data. Note also that in the probabilistic setting this method is
even better justified than in the relational setting, since it can be shown that
if there is a tree representing a decomposition of a given strictly positive
probability distribution, then the Kruskal algorithm with either mutual in-
formation or the y?-measure (cf. section 7.2.4) providing the edges weights
will construct this tree. It can even be shown that with mutual information
providing the edge weights, this approach finds the best tree-structured ap-
proximation of a given distribution w.r.t. the Kullback-Leibler information
divergence [Chow and Liu 1968, Pearl 1988] (cf. section 7.3.4).

If, however, the conditional independence graph is more complex than
a tree, it can still happen that a suboptimal graph gets selected. This is
demonstrated with the simple example shown in figure 7.7. It is easy to
check that the graph shown in the top left of this figure is a perfect map
of the probability distribution shown in the top right: C 1L D | {4, B} is
the only conditional independence that holds in the distribution. Suppose
that we tried to find this conditional independence graph by the following
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Figure 7.7: Constructing a graphical model based on the strengths of
marginal dependences can lead to suboptimal results.

algorithm, which seems to be a plausible approach to learning graphical
models with a conditional independence graph that is more complex than
a tree: First we construct a maximum weight spanning tree w.r.t. mutual
information with the Kruskal algorithm. Then we enhance this skeleton
graph with edges where we find that the conditional independences indicated
by the graph do not hold in the distribution.* Unfortunately, with this
approach the only edge that is missing in the perfect map, namely the edge
C— D, is selected first, as can easily be seen from the marginal distributions.

7.1.3 Learning Possibilistic Networks

Learning possibilistic networks is even more closely related to learning rela-
tional networks than learning probabilistic networks. The reason is that the
measures used in the relational case can be used directly to construct a cor-
responding measure for the possibilistic case, since a possibility distribution
can be interpreted as a representation of a set of relations.

4This approach is inspired by an algorithm by [Rebane and Pearl 1987] for learning
polytree-structured directed conditional independence graphs, which first constructs an
undirected skeleton and then directs the edges (cf. section 7.3.4).
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This interpretation is based on the notion of an a-cut—a notion that is
transferred from the theory of fuzzy sets [Kruse et al. 1994].

Definition 7.5 Let II be a possibility measure on a sample space Q. The
a-cut of I, written [I],, is the binary possibility measure

1, if I(E)>a,

. of
I, : 2 — {0, 1}, B { 0, otherwise.

Of course, this definition can easily be adapted to possibility distributions,
the a-cut of which is, obviously, a relation. As an example consider the
three-dimensional possibility distribution discussed in section 3.4 (cf. fig-
ure 3.14 on page 85). For 0.04 < a < 0.06 the a-cut of this possibility
distribution coincides with the relation studied in section 3.2 (cf. table 3.1
on page 54 and figure 3.2 on page 56) and reconsidered in section 7.1.1.
If « is increased, tuples are removed from the a-cut (for example the tu-
ple (as,bs, c3) together with four others as the value of o exceeds 0.06). If
« is decreased, tuples are added (for example the tuple (a1, bs, ca) together
with three others as « falls below 0.04).

The notion of an a-cut is convenient, because it is obviously preserved by
projection, i.e., by computing marginal possibility distributions. Whether
we compute a marginal distribution and then determine an a-cut of the
resulting marginal distribution, or whether we compute the a-cut first and
then project the resulting relation does not matter: The result is always
the same. The reason is, of course, that the projection operation used in
the possibilistic case is the same as in the possibility-based formalization
of the relational case (cf. sections 3.2.5 and 3.4.1). Therefore we can treat
the possibilistic case by drawing on the results for the relational case: We
simply consider each a-cut in turn, which behaves exactly like a relation,
and then we integrate over all values of .

With this general paradigm in mind let us consider the first approach
to learn a graphical model, i.e., the direct test for decomposability w.r.t.
a given graph. In order to find an exact decomposition of a given multi-
dimensional possibility distribution we have to find a graph w.r.t. which all
a-cuts of the distribution are decomposable. Of course, this test may also
be carried out by computing the possibility distribution that is represented
by a given graph and by comparing it to the original distribution. If the
two are identical, a suitable graph has been found.

However, the fact that we can test for possibilistic decomposability by
testing for the relational decomposability of each a-cut provides an idea how
to assess the quality of an approximate decomposition. In the relational case
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the quality of an approximate decomposition may be assessed by counting
the number of additional tuples in the approximation (cf. section 7.1.1).
In the possibilistic case we may do the same for each a-cut and then we
integrate over all values of a. This leads to the following measure for the
“closeness” of an approximate decomposition to the original distribution:

diff (1, m2) = /01 (Z[Wz]a(E) - Z[Wl]a(E)) dar,

Ee& Eec€&

where 71 is the original distribution, mo the approximation, and & their
domain of definition. Obviously, this measure is zero if the two distributions
coincide, and it is the larger, the more they differ.

It should be noted that the above measure presupposes that Vo € [0, 1] :
VE € & : [m]a(E) > [m1]a(E), since otherwise the difference in the num-
ber of tuples would not have any significance (two relations can be disjoint
and nevertheless have the same number of tuples). Therefore this measure
cannot be used to compare arbitrary possibility distributions. However, for
possibility distributions 7y that are computed from approximate decompo-
sitions we know that VE € £ : mo(E) > 7 (E) and this obviously implies
Va € [0,1] : VE € € : [m2]a(FE) > [m]a(E).

An alternative measure, which is very closely related to the above, can
be derived from the notion of the nonspecificity of a possibility distribution

[Klir and Mariano 1987], which is defined as follows:

Definition 7.6 Let  be a (multi-dimensional) possibility distribution on a
set € of events. Then

nonspec(w) = /OSUPEEE " log, ( Z [W]Q(E)) da

Ee€
is called the nonspecificity of the possibility distribution .

Recalling the paradigm that a possibility distribution can be seen as a set
of relations—one for each value of a—, this measure can easily be justified
as a generalization of Hartley information (cf. definition 7.1 on page 168) to
the possibilistic setting [Higashi and Klir 1982, Klir and Folger 1988]. The
nonspecificity of a possibility distribution 7 reflects the expected amount
of information (measured in bits) that has to be added in order to identify
the correct tuple within the relations [r], of alternatives, if we assume a
uniform probability distribution on the set [0,supgce m(E)] of possibility
levels @ [Gebhardt and Kruse 1996b].
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Distributions w9 that are computed from approximate decompositions
obviously satisfy sup g m2(E) = supgee m1(E), where 7y is the original dis-
tribution. Consequently, we may construct from the nonspecificity measure
the following measure for the “closeness” of an approximate decomposition
to a given possibility distribution [Gebhardt and Kruse 1996b:

Definition 7.7 Let w1 and mo be two possibility distributions on the same
set € of events with VE € £ : mo(E) > m1(E). Then

Saiv(m1, m2) = /OSUPEeg ) log, ( Z [WQ]Q(E)) — log, ( Z [ﬂ'ﬂa(E)) da

Ee€ Ee€
is called the specificity divergence of m; and ms.

As the measure discussed above, this measure is obviously zero if the two
distributions coincide, and it is the larger, the more they differ. Note that
this measure may also be written as

swpee T (E) S [1o]o(E)
S (. ) = log,, 2zBeel™lalZ) 4
aiv (1, 72) /0 82 Y peelmla(E) !

or simply as
Saiv (71, m2) = nonspec(ms) — nonspec(my ),

since the integral can be split into two parts.

The name of this measure is, of course, chosen in analogy to the Kull-
back-Leibler information divergence, which is very similar. Note, however,
that in contrast to the Kullback-Leibler information divergence, which can
be used to compare arbitrary probability distributions (on the same set £
of events), the specificity divergence presupposes VE € & : mo(E) > w1 (FE).
Note also that for a relation (which can be seen as a special, i.e., binary pos-
sibility distribution, cf. chapter 3), this measure may also be called Hartley
information divergence, because for the relational case nonspecificity ob-
viously coincides with Hartley information.

As an illustration reconsider the possibility distribution shown in fig-
ure 3.14 on page 85. The specificity divergence of the original distribution
and the possibility distributions represented by the eight possible graphs are
shown in figure 7.8 (upper numbers). Obviously, graph 5 would be selected,
which is indeed the graph that represents a decomposition of the distribu-
tion (cf. section 3.4.2). Note that, as in the relational and the probabilistic
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Figure 7.8: The specificity divergence of the original distribution and the
possibility distributions represented by the eight possible candidate graphs
(upper numbers) and the evaluation of the eight graphs on an example
database that induces the possibility distribution (lower numbers).

case, the complete graph 8 always receives or shares the best assessment,
since it consists of only one clique and thus represents no real decomposition
of the distribution.

Note also that in order to rank two graphs we need not compute the
specificity divergences, but can confine to computing the nonspecificities of
the distributions corresponding to the graphs, since the nonspecificity of
the original distribution is fixed. This simplifies the assessment: Find the
graph among those of acceptable complexity (w.r.t. maximal clique size) for
which the corresponding distribution is most specific.

Up to now I have assumed that the multi-dimensional distribution, for
which a decomposition is desired, is already given. However, as in the
probabilistic setting, this is usually not the case in applications. Instead
we are given a database of sample cases. Clearly, the situation parallels
the probabilistic case: It is infeasible to estimate first the joint possibility
distribution from the database, so that we can proceed as indicated above.

In order to derive a feasible indirect method we may reason as follows:
An approximation of a given possibility distribution may be compared to
this distribution by integrating the differences in the number of tuples for
each a-cut over the possible values of « (see above). However, this formula
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can be transformed as follows:

i) = [ (Sllal®) ~ Ylmlu(®) da

0 “Egee Eeé&
1 1
-/ S lrla()de - / 2 [mle(E)do
> [ mla(Byda- by | () da
= Z'TTQ(E>_ ZWI(E)'
EceE Ee&

Note, by the way, that this representation simplifies computing the value
of this measure and that in order to rank two candidate graphs, we may
discard the second sum, since it is identical for both graphs.

Unfortunately, the size of the joint domain (the size of the set £ of events)
still makes it impossible to compute the measure, even in this representation.
However, we may consider restricting the set £ from which this measure is
computed, so that the computation becomes efficient. If we select a proper
subset of events, the resulting ranking of different graphs may coincide with
the ranking computed from the whole set £ (although, of course, this cannot
be guaranteed). A natural choice for such a subset is the set of events
recorded in the database to learn from, because from these the distribution
is induced and thus it is most important to approximate their degrees of
possibility well. In addition, we may weight the degrees of possibility for
these events by their frequency in order to capture their relative importance.
That is, we may compute for a given database D = (R, wg)

Q) = walt) - ma(t)

teER

as a measure of the quality of a given graphical model G [Borgelt and Kruse
1997b]. Obviously, this measure is very similar to the likelihood measure
that may be used in the probabilistic case (cf. section 7.1.2). However, it
should be noted that this measure is to be minimized whereas the likelihood
measure is to be maximized.

Of course, computing the value of this measure is simple only if all tuples
in the database are precise, because only for a precise tuple a unique degree
of possibility can be determined from the graphical model to evaluate. For
an imprecise tuple some kind of approximation has to be used. We may, for
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A | B | C | freq.

ai * C2 10
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ay | by | * 10 figure 3.14 on page 85 result.

Q4 bg * 10

instance, compute an aggregate, e.g. the average or the maximum, of the
degrees of possibility of all precise tuples that are at least as specific as”
an imprecise tuple [Borgelt and Kruse 1997b]. Since we are trying to mini-
mize the value of the measure, it seems natural to choose pessimistically the
maximum as the worst possible case. This choice has the additional advan-
tage that it can be computed efficiently by simply propagating the evidence
contained in an imprecise tuple in the given graphical model [Borgelt and
Kruse 1997b], whereas other aggregates suffer from the fact that we have to
compute explicitly the degree of possibility of the compatible precise tuples,
the number of which can be very large.

As an example consider a database with 1000 tuples that induces the
possibility distribution shown in figure 3.14 on page 85. Such a database
may consist of the imprecise tuples shown in table 7.2 (stars indicate missing
values) having the absolute frequencies indicated in this table plus precise
tuples of suitable absolute frequencies (which can easily be computed from
the possibility distribution and the frequencies of the imprecise tuples). If
we evaluate the eight possible graphs with the procedure outlined above,
we arrive at the lower numbers shown in figure 7.8 on page 184. Clearly,
this method ranks the graphs in the same way as specificity divergence and
thus the same graph, namely graph 5, is chosen as the search result.

Let us now turn to the second approach to learn a graphical model from
data, namely finding an independence map by conditional independence
tests. Formally, there is no difference to the relational case, because (con-
ditional) possibilistic independence coincides with (conditional) relational

5The notion “at least as specific as” was introduced in definition 5.6 on page 141.
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Figure 7.9: Illustration of the idea of specificity gain.

independence, except that the latter is computed from a binary possibility
measure. Thus it is not surprising that for the example of a possibility dis-
tribution shown in figure 3.14 on page 85 graph 5 of figure 7.8 is selected,
since the only conditional independence that can be read from it, namely
A1l B| C, holds in the distribution (as demonstrated in section 3.4).

To find approximate decompositions we need, as in the relational and
the probabilistic case, a measure for the strength of dependences. Drawing
on the paradigm that a possibility distribution can be seen as a set of
relations, we can construct such a measure [Gebhardt and Kruse 1996b],
which may be called specificity gain [Borgelt et al. 1996], from the Hartley
information gain. The idea is illustrated in figure 7.9 for a two-dimensional
possibility distribution. For each a-cut of the possibility distribution the
Hartley information gain is computed. These values are then aggregated by
integrating over all values of a [Borgelt and Kruse 1997a).

Definition 7.8 Let A and B be two attributes and I1 a possibility measure.

Seam(4,B) = /OsupnlogQ( > (A=)

acdom(A)

+log, (> Ma(B=1))

bedom(B)

flogQ( Z Z [H]Q(A:a,B:b))da

ac€dom(A) bedom(B)

is called the specificity gain of A and B w.r.t. II.
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In the example of figure 7.9 the computation can be simplified due the fact
that the a-cuts are the same for certain intervals of values of « (this is the
case due to the finite number of tuples in the database to learn from). Hence
we can compute the specificity gain as

Seain(4,B) = (0.1 —-0.0) - (logy 4 + logy 3 — log, 8)
+(0.2 = 0.1) - (logy 3+ log, 2 — log, 5)
+(0.3-0.2) - ( 3)
+(0.4—10.3) - (logy 1 4 logy 1 — log, 1)
~ 0.1-0.5840.1-0.26+0.1-042+0.1-0 = 0.126.

log,y 2 + log, 2 — log,

This simplification is useful to remember, because it can often be exploited
in implementations of learning algorithms for possibilistic graphical models.

It should be noted that the specificity gain may also be derived from
the specificity divergence in the same way as mutual (Shannon) informa-
tion is derived from the Kullback-Leibler information divergence, namely
by comparing two special distributions: the joint distribution and an as-
sumed independent distribution. This is possible, because the a-cuts of the
assumed independent distribution can be represented as

Va € dom(A) : Vb € dom(B) :
(A= a,B=b) = [Ma(A=a) [Ma(B=1)

(since [I]4(E) can assume only the values 0 and 1 the product coincides
with the minimum) and thus specificity gain may be written as

Sgain(Av B)
/supnl (ZacdomnMal4 = @) ( Sheaom(z MalB =)
0 082 ZaEdom(A) Zbedom(B)[H]a(A =a,B=1)

In addition, specificity gain may be written simply as

da.

Seain (A, B) = nonspec(m4) + nonspec(mg) — nonspec(mag),

since the integral may be split into three parts, which refer to the three
marginal distributions 74, wg, and 7w4p, respectively. This form is very
convenient, since it can be exploited for an efficient implementation.

It is obvious that the specificity gain is zero if and only if the two at-
tributes are independent, and that it is the larger, the more strongly depen-
dent the two attributes are. Therefore this measure can be used directly
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Figure 7.10: Specificity gain in the simple example.

to test for (approximate) marginal independence. This is demonstrated
in figure 7.10 for the simple example discussed above (cf. figure 3.14 on
page 85). On the left the three possible two-dimensional marginal distri-
butions are shown, on the right the corresponding (assumed) independent
distributions, to which they are compared by specificity gain. Clearly, none
of the three pairs of attributes are independent. This result excludes the
four graphs 1 to 4 of figure 7.8.

In order to use specificity gain to test for (approximate) conditional in-
dependence, we may proceed in a similar way as with Hartley information
gain in the relational case and mutual (Shannon) information in the proba-
bilistic case: We compute this measure for each possible instantiation of the
conditioning attributes and then sum the results weighted with the relative
(marginal) degree of possibility of the corresponding instantiation. That is,
for one conditioning attribute, we may compute

Sgain(A4, B | C)
II(c
Y (0)

c€dom(C) c¢’€dom(C) H(Cl)

/sup I 1 ( EaGdom(A) [H]Q<G;‘C>) ( Zbedom(B) [H]a(b|c))
0 o2 > acdom(A) 2abedom(s) [Ha(a, blc)

da,
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where II(c¢) is an abbreviation of II(C' = ¢) etc. Note that II(c) is normal-
ized by dividing it by the sum of the degrees of possibility for all values of
the attribute C. This is necessary, because (in contrast to the probabilistic
case) this sum may exceed 1 and may differ for different (sets of) condition-
ing attributes. Hence, without normalization, it would not be possible to
compare the value of this measure for different (sets of) conditions.

With this measure it is easy to detect in the example distribution of
figure 3.14 on page 85 that the attributes A and C' are conditionally inde-
pendent given the attribute B.

It is clear that this approach suffers from the same drawbacks as the
analogous probabilistic approach, namely that it can be computationally
infeasible if the order of the conditional independence tests (i.e., the number
of conditioning attributes) is large. However, it is also clear that we can
amend it in the same way as the analogous probabilistic approach can be
amended, for example, by fixing an upper bound for the order of the tests
to be carried out and assuming that all tests of higher order will fail if all
tests with an order up to this bound failed.

Finally, let us consider the third approach to learn a graphical model,
namely to determine a suitable graph by measuring only the strengths of
(marginal) dependences. As in the relational and the probabilistic case, we
may use the same measure as for the (approximate) independence tests. For
the simple example discussed above we may apply the Kruskal algorithm
with specificity gain providing the edge weights (these edge weights are
shown in figure 7.10). This leads to a construction of graph 5 of figure 7.8,
in agreement with the results of the other two learning methods.

Note that, as in the probabilistic case, this method can be applied as
well if we are given a database of sample cases, because we only have to
determine marginal possibility distributions on (usually small) subspaces.
(A method to compute these efficiently was discussed in chapter 5.)

Note also that this approach suffers from the same drawback as the cor-
responding relational approach, i.e., it may not find an exact decomposition
although there is one: The relational example of figure 7.4 on page 173 can
be transferred directly to the possibilistic case, since, as already mentioned
several times, a relation is a special possibility distribution.

7.1.4 Components of a Learning Algorithm

Up to now, there is no (computationally feasible) analytical method to
construct optimal graphical models from a database of sample cases. In
part this is due to the fact that there is no consensus about what constitutes
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an “optimal” model, because there is, as usual, a tradeoff between model
accuracy and model simplicity. This tradeoff is hard to assess: How much
accuracy must be gained in order to make a more complex model acceptable?
However, the main reason is more technical, namely the number of candidate
graphs, which is huge unless the number of attributes is very small and
which makes it impossible to inspect all possible graphs (cf. section 7.3.1).
Although there are methods by which large sets of graphs can be excluded
with single tests (cf. the conditional independence tests mentioned in the
preceding sections), the number of tests is often still too large to be carried
out exhaustively or the tests require too much data to be reliable.

Since there is no (computationally feasible) analytical method, all algo-
rithms for constructing a graphical model perform some kind of (heuristic)
search, evaluating networks or parts of networks as they go along and finally
stopping with the best network found. Therefore an algorithm for learning
a graphical model from data usually consists of

1. an evaluation measure (to assess the quality of a given network) and

2. a search method (to traverse the space of possible networks).

It should be noted, though, that restrictions of the search space introduced
by an algorithm and special properties of the evaluation measure used some-
times disguise the fact that a search through the space of possible network
structures is carried out. For example, by conditional independence tests
all graphs missing certain edges can be excluded without inspecting these
graphs explicitly. Greedy approaches try to find good edges or subnetworks
and combine them in order to construct an overall model and thus may not
appear to be searching. Nevertheless the above characterization is apt, since
an algorithm that does not explicitly search the space of possible networks
usually carries out a (heuristic) search on a different level, guided by an
evaluation measure. For example, some greedy approaches search for the
best set of parents of an attribute by measuring the strength of dependence
on candidate parent attributes; conditional independence test approaches
search the space of all possible conditional independence statements also
measuring the strengths of (conditional) dependences.

Although the two components of a learning algorithm for graphical mod-
els usually cooperate closely, since, for instance, in a greedy algorithm the
search is guided by the evaluation measure, they can be treated indepen-
dently. The reason is that most search methods and evaluation measures can
be combined freely. Therefore I focus on evaluation measures in section 7.2,
whereas search methods are discussed in section 7.3.
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7.2 Evaluation Measures

An evaluation measure serves to assess the quality of a given candidate
graphical model w.r.t. a given database of sample cases (or w.r.t. a given
distribution), so that it can be determined which of a set of candidate graph-
ical models best fits the given data. In this section I am going to discuss
systematically a large variety of evaluation measures for relational, proba-
bilistic, and possibilistic graphical models (although restricted to attributes
with a finite set of values) and the ideas underlying them.

7.2.1 General Considerations

Although the evaluation measures discussed in the following are based on a
wide range of ideas and thus are bound to differ substantially w.r.t. the com-
putations that have to be carried out, several of them share certain general
characteristics, especially w.r.t. how they are applied in certain situations.
Therefore it is useful to start this section with some general considerations,
so that I need not repeat them for each measure to which they apply. Most
of these considerations are based on the following distinction:

Apart from the obvious division into relational, probabilistic, and possi-
bilistic measures, evaluation measures may also be classified w.r.t. whether
they are holistic or global, i.e., can be computed only for a graphical model
as a whole, or whether they are decomposable or local, i.e., can be com-
puted by aggregating local assessments of subnetworks or even single edges.
Drawing on the examples of section 7.1, the number of additional tuples
is a global evaluation measure for a relational graphical model, since these
tuples cannot be determined from a single subspace relation, but only from
the combination of all subspace relations of the graphical model. In contrast
to this, the mutual (Hartley or Shannon) information is a local evaluation
measure, since it is computed for single edges.

It is clear that local evaluation measures are desirable, not only because
they are usually much simpler to compute, but also because their decom-
posability can be exploited, for example, by greedy search methods (cf.
section 7.3.4). In addition, local evaluation measures are advantageous in
the probabilistic case if the database to learn from has missing values and
we do not want to employ costly methods like expectation maximization
to handle them (cf. section 5.2). With a global evaluation measure all we
can do in such a case is to discard all incomplete tuples of the database,
thus throwing away a lot of valuable information. With a local evaluation
measure, we only have to discard tuples selectively w.r.t. the component of
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the graphical model to be evaluated. That is, for each component all tuples
of the database that do not miss a value for the attributes underlying the
component can be taken into account [Borgelt and Kruse 1997b].

Global evaluation measures need no further consideration, since the ap-
plication of each of them is, in a way, unique. Local evaluation measures,
however, share that they all must be aggregated over the components they
are computed on. In addition, all of them are either derived from a measure
for the strength of the dependence of two attributes or at least can be in-
terpreted as such a measure, partly because several of them were originally
devised for feature selection or for decision tree induction (as can be seen
from the references given for these measures).

It is clear that a measure for the strength of the dependence of two at-
tributes is sufficient if we only have to evaluate single edges of a conditional
independence graph. Note, however, that we have to take care of the fact
that certainly any such measure can be used to evaluate a directed edge,
but not all are suited to evaluate an undirected edge. The reason is that for
evaluating an undirected edge the measure should be required to be sym-
metric, i.e., it should remain unchanged if the two attributes are exchanged,
simply because an undirected edge does not distinguish between the two at-
tributes it connects and thus there is no way to assign the attributes based
on the properties of the edge. This is no real constraint, though, because
any non-symmetric evaluation measure can be turned into a symmetric one
by simply averaging its value for the two possible cases.

Unfortunately, evaluating single edges is sufficient only if the graphical
model to be assessed is based on a (directed or undirected) tree, because
only in this case the components of the decomposition are associated with
single edges. If the graphical model is based on a polytree or on a multiply
connected graph, the components of the decomposition are the conditional
distributions of a chain rule decomposition or the functions on the maximal
cliques (usually represented by marginal distributions, cf. section 4.1.6). In
such cases evaluating single edges is not appropriate.

To see this, recall from section 7.1 the intuition underlying the learning
approach based on measuring the strengths of marginal dependences, espe-
cially, reconsider this approach in the relational example. The rationale was
to select those subspaces, the scaffolding attributes of which are strongly de-
pendent. However, it is clear that three or more attributes that are strongly
dependent—that the subspaces were only two-dimensional in the relational
example is, obviously, only due to the simplicity of this example—need not
exhibit strong pairwise dependence. As an example consider the extreme
case of three binary attributes, one of which is computed as the exclusive
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or of the other two. In this case all pairs of attributes are independent,
but all three are, of course, strongly dependent, and thus measuring only
the strengths of mutual dependences does not assess the situation correctly.
Note that in this case it does not matter whether we consider a maximal
clique with these attributes or one of them conditioned on the other two:
In any case we have to take all three attributes into account.

Consequently, we have to find ways of extending a measure for the
strength of the dependence of two attributes to a measure for the strength
of the dependence of one attribute on several others (i.e., its parents in
a directed acyclic graph) and to a measure for the strength of the joint
dependence of several attributes (i.e., the attributes of a maximal clique
of an undirected graph). The former is always possible: We only have to
combine all conditioning attributes into one pseudo-attribute, the values of
which are all distinct instantiations of the conditioning attributes. Thus we
reduce this case to the two-attribute case. The latter, however, is usually
much harder to achieve, because the resulting measure must exhibit a high
symmetry, i.e., it must be invariant under any permutation of the attributes,
since in a maximal clique no attribute can be distinguished from any other.

As an example of such extensions consider mutual (Shannon) informa-
tion (cf. definition 7.4 on page 177) for n attributes A;,..., A,. Combining
the attributes As, ..., A, into one pseudo-attribute yields the formula

I (A, A

= Z Z P(Alzal,...,An:an)
a1 €dom(Aq) anE€dom(A,,)
log P(Alzal,...,An:an)
2P(A1:al)-P(Agzag,...,An:an)'

On the other hand, treating all attributes equally yields

11(11213‘5("417 cee ,An)

= Z Z P(Ai=ay,..., A, = ayp)

a;€dom(Aq) ap€dom(Ay)
P(A1 = al,...,An = Cln)
[l P(Ae = ar)

log,

Obviously, the former is best suited for evaluating an attribute (here A;)
conditioned on its parent attributes (here As, ..., A, ), whereas the latter is
better suited for evaluating a maximal clique of attributes.
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®_ Figure 7.11: A simple undirected

| / graph with overlapping maximal

©_é cliques.

Having seen this example, it should not be surprising that several eval-
uation measures can be extended in the same manner. Since the extensions
are usually very easy to find, I do not consider them explicitly. In the fol-
lowing I state all evaluation measures w.r.t. two attributes A and C, where
C is the child attribute if we have a directed edge and A is the parent.

After an assessments of all components of a graphical model has been
computed, they have to be aggregated. Usually this is done by simply
summing them. Such a simple aggregation is, obviously, satisfactory if the
graph is a directed acyclic graph, because in this case the components of
the decomposition are clearly “separated” from each other by the condition-
ing and thus there can be no interaction between the evaluations of these
components. For undirected graphs, however, the situation is different. If
two cliques overlap on more than one attribute, then the dependence of
the attributes in the overlap is, in a way, “counted twice”, since it has an
influence on the assessment of both cliques. As a consequence the quality
of the graph may be overrated.

As an example consider the simple undirected graph shown in figure 7.11.
The maximal cliques are induced by the node sets {4, B,C} and {B, C, D},
which overlap on {B,C}. Hence the mutual dependence of B and C' is
“counted twice” and thus the graph may be overrated compared to one in
which the cliques overlap only on single attributes.

In order to cope with this problem one may consider deducing the assess-
ments of the overlaps from the summed assessments of the maximal cliques.
(Note that this may involve fairly complicated computations in case the
overlap of several pairs of cliques has a nonempty intersection, since we
may have to re-add the assessment of the intersection of overlaps, which is
no longer captured etc.) Of course, this is only a heuristic approach, since
it may not be justifiable for all evaluation measures. (It can be justified,
though, for mutual (Shannon) information, see below).

An alternative to cope with the evaluation problem for undirected graphs
is to direct the edges in such a way that a directed acyclic graph results
and then to apply the “directed version” of the chosen evaluation measure.
Unfortunately, not all undirected graphs can be turned into an equivalent
directed acyclic graph (cf. section 4.1.4) and thus this approach may not
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be applicable. That it is applicable can be guaranteed, though, if the undi-
rected graphs has hypertree structure®, a circumstance that may be seen as
another argument in favor of such graphs. (A simple algorithm to construct
the corresponding directed acyclic graph is given in section 7.3.2.) How-
ever, even in this case the resulting graph need not be unique and thus the
assessment may depend on the edge directions chosen.

Nevertheless, the idea to turn an undirected graph into a directed acyclic
one is useful, since it can often be used to justify the approach mentioned
above, namely to deduce the assessments of the overlaps from the summed
assessments of the cliques. As an example reconsider the simple undirected
graph of figure 7.11. If we apply the deduction method to a mutual (Shan-
non) information evaluation of this graph, we get

o P(a,b,c)
22 2 Pl s pnging
)

@1

acdom(A) bedom(B) cedom(c)

P(b,¢,d
2> D Plhed los purpp

bedom(B) cedom(C) dedom(D)

P(b,c)
— Z Z P(b, C) 10g2 W,

bedom(B) cedom(C)

_|_

where P(a) is an abbreviation of P(A = a) etc. On the other hand, if we
turn the graph into a directed acyclic graph by directing the edges (4, B)
and (A, C) towards A, the edges (B, D) and (C, D) towards D, and the edge
(B, C) towards C' (although the latter direction does not matter), we get

P(b,c)
= (b,c) logg =————
R T
P(a,b,c)
b, c) logy ——————
+ Z Z Z (a,b,c) log, P(a)P(b,c)
a€dom(A) bedom(B) cedom(c)
P(b,c,d)
P(b,c,d) logg ——————.
+ z Z Z & 082 P(d)P(b,c)
bedom(B) cedom(C) dedom(D
By exploiting logQ% = logy x — log, y it is easy to verify that these two
expressions are equivalent. Hence deducing the assessment of the overlap

yields a consistent and plausible result in this case. Other measures may be
treated in a similar way, for example, specificity gain (cf. section 7.2.5).

6The notion of hypertree structure was introduced in definition 4.19 on page 114.
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7.2.2 Notation and Presuppositions

Since a graphical model is usually evaluated w.r.t. a database of sample
cases, I assume that we are given a database D = (R,wpg) as defined in
definition 5.5 on page 141 and that the values needed to compute the chosen
evaluation measure are determined from this database.

As already indicated above, I will state all local evaluation measures
w.r.t. two attributes C' and A, with the attribute C' taking the place of
the child, if a directed edge is to be evaluated, and attribute A taking the
place of the parent. The extension to more than two attributes is usually
straightforward (see above) and thus omitted. Carrying on the restriction to
attributes with a finite domain, I assume that the domain of attribute A has
n 4 values, i.e., dom(A) = {ay,...,a,, }, and that the domain of attribute C
has ne values, i.e., dom(C) = {c1,...,¢ne }-

To simplify the notation, I use the following abbreviations to state local
evaluation measures for relational graphical models:

r;.  Indicator whether there is a tuple having the value ¢; for attribute C,
ie,r; =1iff 3t € R: t|c = ¢;, and r;, = 0 otherwise.

r;  Indicator whether there is a tuple having the value a; for attribute A,
ie,r; =1iff 3t € R:t|s = a;, and r ; = 0 otherwise.

r;;  Indicator whether there is a tuple having the value ¢; for attribute C'
and the value a; for attribute A, ie., r; = 1iff It € R : tlc = ¢
A tla = aj, and r;; = 0 otherwise.

From the above lists it is already clear that I always use the index ¢ with

values of attribute C' and index j with values of attribute A, so that the

index is sufficient to identify the attribute referred to.

For stating some of the evaluation measures it is necessary to refer to
the number of sample cases in the database having certain properties. For
these I use the following abbreviations:

N..  The total number of sample cases, i.e., N. = ,.p wr(t).

N;.  Absolute frequency of the attribute value ¢;, i.e.,
Ni. = Zte{selﬂs\c:ci} wr(t).

N Absolute frequency of the attribute value aj, i.e.,
Nj =2 tefseRrls|a=a,y WR(E):

N;; Absolute frequency of the combination of the values ¢; and aj, i.e.,
Nij = Zte{seR\slc:ciAs\A:aj} wr(t).

Obviously, it is N;. = Z?;‘l N;j and Nj = > " N;j.
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Some evaluation measures for probabilistic graphical models are defined
directly in probabilities. Since I assume that we are given a database of
sample cases, these probabilities have to be estimated from the database.
In general, I assume that maximum likelihood estimation is used for this,
although it is clear that other estimation methods, e.g. Laplace corrected
maximum likelihood estimation, may also be employed (cf. section 5.2). For
these probabilities I use the following abbreviations:

N.

pi.  (Estimated) probability of the attribute value c;, i.e., p;. = R
N

p.; (Estimated) probability of the attribute value aj, i.e., p;j = 2.
pi; (Estimated) probability of the combination of the attribute values ¢;

. N;j
and ay, i.e., pi; = F*.

pij; (Estimated) conditional probability of the attribute value c; given that

: . _ pij _ Nij
attribute A has the value a;, i.e., p;; = p_j = N—j
p;ii  (Estimated) conditional probability of the attribute value a; given
that attribute C' has the value ¢;, i.e., p;;; = Py — %7
Pi. i

The evaluation measures for possibilistic graphical models are usually de-
fined in degrees of possibility. For these I use the abbreviations:

m;.  (Database-induced) degree of possibility of the attribute value ¢;.
7; (Database-induced) degree of possibility of the attribute value a;.

m;;  (Database-induced) degree of possibility of the combination of the
attribute values ¢; and a;.

All of these values are assumed to be computed as described in section 5.3,

i.e., by determining the maxima of the elementary degrees of possibility over

all values of all other attributes.

7.2.3 Relational Evaluation Measures

There are only a few relational evaluation measures, mainly because the
information provided by a relation is so scarce, but also because relational
decomposition is usually studied by completely different means in database
theory, namely by exploiting known functional dependences between at-
tributes [Maier 1983, Date 1986, Ullman 1988]. The few there are, however,
are important, because from each of them at least one evaluation measure
for the possibilistic case can be derived, for example, by drawing on the
a-cut view” of a possibility distribution (cf. section 7.1.3).

"The notion of an a-cut was introduced in definition 7.5 on page 181.
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Hartley Information Gain

Hartley information gain was already defined in definition 7.2 on page 169.
Restated with the abbreviations introduced in the preceding section it reads:

nc na

ngc na
log, (Z n) + log, ZTJ —log, ZZT”
i=1 j=1 i=1 j=1
( :l:cl Ti.) ( ?21 T.j)

(Zre )

The idea underlying this measure was discussed in detail in section 7.1.1
(cf. figure 7.2 on page 169): If the two attributes are relationally indepen-
dent, then the numerator and the denominator of the fraction are equal and
thus the measure is 0. The more strongly dependent the two attributes are,
the smaller the denominator and thus the larger the measure.

Note that Hartley information gain may also be written as

I(Hartley) (C A)

gain

= log,

I(HaTtleY)(C A) — H(Hartley)(o) +H(Hart1ey) (A) _H(Hartley)(c’ A)

gain

if we define the Hartley entropy of an attribute C' as

ng
H(Hartley)(c) = log, (Zﬁ)
i=1

(cf. definition 7.1 on page 168) and provide an analogous definition for the
entropy of the combination of two attributes C' and A. This indicates a
direct connection to Shannon information gain, which is studied in sec-
tion 7.2.4. In that section some variants of Shannon information gain will
be considered, which were originally devised to overcome its bias towards
many-valued attributes. (This bias was discovered when Shannon informa-
tion gain was used for decision tree induction [Quinlan 1993].) If Hartley
information gain is written as above, analogous variants can be constructed.
In this way we obtain the Hartley information gain ratio

(Hartley)
JHartley) (0 4) = Tam (G, 4)
gr ’ | (Hartley) (A)

and two versions of a symmetric Hartley information gain ratio, namely

I(Hartley)(c A)
(Hartley) o gain
Isgrl (O A) - | (Hartley) (07 A) and
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(Hartley) (C A) _ Ig(girtley (C A) .

’ | (Hartley) (C’) + | (Hartley) (A)
I do not provide an explicit justification of these measures here, because it
can be derived from the justification of the more general measures based on
Shannon information gain by noting that Hartley entropy is only a special
case of Shannon entropy (cf. section 7.2.4).

Hartley information gain, as it was described above, is computed from
the joint relation of the values of the attributes C' and A. However, we may
also consider computing an analogous measure from the conditional rela-
tions of the values of attribute C' given the values of attribute A, especially
if we have to evaluate a directed edge A — C. That is, we may compute

artle 1 = <
e, a) - E—z (1 (37 ) <o (3o
j=1 7j=1 i=1

na

Zr log, 111.

7.11]

Isgr2

This measure may be called conditional Hartley information gain, since it
is computed from conditional relations. Note that in order to emphasize
in the notation that conditional relations are considered we may write r;);
instead of 7;; by exploiting definition 3.9 on page 70.

Reconsidering the illustration of ordinary Hartley information gain in
figure 7.2 on page 169 (with attribute C replacing attribute B) we see that
this measure evaluates the relation “column by column”: For each condi-
tional relation the number of tuples is compared to the number of tuples
in the marginal relation (this comparison is done in the argument of the
logarithm). If these numbers are the same for all conditional relations, the
two attributes are, obviously, independent. The more they differ, the more
strongly dependent the two attributes are. The results of these compar-
isons are aggregated over all conditional relations containing at least one
tuple (that only non-empty relations are considered is achieved with the
factor r ;). This aggregate is normalized by dividing it by E 2, r; to make
it independent of the number of possible values of the attrlbute A

Note that, in contrast to the ordinary Hartley information gain, this
measure is, in general, not symmetric. Hence we cannot obtain symmetric
gain ratios as for ordinary Hartley information gain, but have to rely on

I(Hartley) (C A) + I(Hartley) (A C)

(Hartley) __ “cgain cgain
ISCgr Y (07 A) - H(Hartley)(c) + | (Hartley) (A)




7.2. EVALUATION MEASURES 201

Number of Additional Tuples

Evaluating a given relational graphical model by simply counting the addi-
tional tuples in the relation represented by the model compared to the orig-
inal relation was already discussed extensively in section 7.1.1. Therefore I
only mention it here for reasons of completeness. Note that this measure
is a global evaluation measure—in contrast to the Hartley information gain
and its variants, which are all local evaluation measures.

7.2.4 Probabilistic Evaluation Measures

There is an abundance of probabilistic evaluation measures, although only
few of them have been used for learning probabilistic graphical models from
data yet. One reason for this may be that many probabilistic evaluation
measures were originally developed either as independence tests in statis-
tics or for the purposes of feature selection and decision tree induction in
machine learning [Borgelt and Kruse 1998b] and that the connection to
learning graphical models was simply not recognized. However, since all
that is required of an evaluation measure in order to make it usable for
learning graphical models is that it yields an assessment of the strength of
the dependence of two attributes, there is no reason why one should not
consider using them.

Shannon Information Gain

Shannon information gain was already defined in definition 7.4 on page 177,
although I used the synonymous names mutual Shannon information and
Shannon cross entropy in that definition. Restated with the abbreviations
introduced in section 7.2.2 it reads:

nc na

Ig(zsuk;annon C A Z Zplj 10g2

i=1 j=1 P.j

In section 7.1.2 Shannon information gain was interpreted as a measure of
the difference between the joint probability distribution (represented by p;;)
and the distribution that can be computed from the marginal distributions
under the assumption that C' and A are independent (represented by p.;p ;).
Clearly, if C' and A are actually independent, this measure is zero. It can
be shown (see below) that this is indeed the only case in which it is zero.
For all other joint distributions this measure is greater than zero and it is
the larger, the more strongly dependent the two attributes are.
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P(s1) =0.40, P(s2) =0.19, P(s3) =0.16, P(s4) =0.15, P(s5)=0.10
Shannon Entropy: 2.15 bits/symbol

Shannon-Fano Coding (1948) Huffman Coding (1952)
$1, 52, 53,54, S5 51,52, 583,54, S5
0.59 0.41 0.60
51,52 53,54, S5 52,53,54, S5
| |
0.25 | 0.35 0.25
54, S5 52,53 54, S5
| |
0.40 0.19 0.16 [0.15 0.10 0.40 [0.19 0.16] [0.15 0.10]
S1 S2 83 S4 S5 S1 82 53 S84 S5
2 2 2 3 3 1 3 3 3 3
Average code length: Average code length:
2.25 bits/symbol 2.20 bits/symbol

Figure 7.12: Question/coding schemes based on a probability distribution.

A different interpretation of this measure, which is preferred in connec-
tion to decision tree induction [Quinlan 1993], is based on the notion of the
Shannon entropy of a set of alternatives [Shannon 1948].

Definition 7.9 Let S = {s1,...,8,} be a finite set of alternatives having
positive probabilities P(s;), i =1,...,n, satisfying >, P(s;) = 1. Then

H(Shannon)(s) - _ Z P(s;)logy P(s;).

i=1
is called the Shannon entropy or Shannon information of S.

Intuitively, Shannon entropy can be interpreted as the expected number
of yes/no-questions that have to be asked in order to determine the ob-
taining alternative. As an example consider the five alternatives sy, ..., ss
with probabilities as shown in figure 7.12, so that the Shannon entropy
of this set of alternatives is approximately 2.15. Suppose there is an or-
acle, which knows the obtaining alternative, but which will respond only
if the question asked can be answered with “yes” or “no”. A better ques-
tion scheme than asking for one alternative after the other is easily found
(cf. section 7.1.1): We divide the alternatives into two subsets of about
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equal size. Then we choose arbitrarily one of the two sets and ask whether
the obtaining alternative is contained in it. Independent of the answer
the alternatives in one of the subsets can be ruled out. The other sub-
set is divided again and the interrogation proceeds in this way until only
one alternative remains. Obviously, the number of questions needed with
this scheme is bounded by [log, n], where n is the number of alternatives.
That is, in our example we can determine the obtaining alternative with
at most 3 questions. A more detailed analysis shows that the expected
number of questions is at most 2.59, even if we choose the most disadvan-
tageous divisions of the set of alternatives: If we divide it into the sets
{51, 82,83} and {s4, s5} and the first of these into {s1,s2} and {s3} if the
oracle’s answer indicates that it contains the obtaining alternative, we need
3P(s1) +3P(s2) + 2P(s3) + 2P(s4) + 2P(s5) = 2.59 questions on average.

It is clear that this question scheme can be improved by exploiting the
known probabilities of the alternatives. The basic idea is that we should
strive for a question scheme, with which we have to ask only few questions in
order to identify a highly probable alternative as the obtaining one, while we
accept more questions for identifying improbable alternatives. It is plausible
that in this way the average number of questions can be reduced.

Of course, the problem is how to find a good scheme with this property.
A simple, though not optimal, method has been suggested by [Shannon
1948] and Fano: Instead of dividing the set of alternatives into two subsets
of about equal size, we sort the alternatives w.r.t. their probability and then
divide them into subsets of about equal probability respecting the order of
the probabilities. For the simple example considered above the resulting
question scheme is shown on the left in figure 7.12. With this scheme we
need 2P(s1) + 2P(s2) + 2P(s3) + 3P(s4) + 3P(s5) = 2.25 questions on
average. However, this is not the best possible method as can already be
guessed from the fact that in the left branch of the division tree the two
subsets differ considerably w.r.t. their probabilities.

A better method has been found by [Huffman 1952]: Instead of start-
ing with the complete set of alternatives and recursively dividing it, thus
constructing the division tree top-down, one element sets are taken as the
starting point and the tree is constructed bottom-up. In each step the two
sets having the smallest probability are joined, until all alternatives are con-
tained in a single set. For the simple example the resulting question scheme
is shown on the right in figure 7.12. We actually obtained a better question
scheme, since with it we only need 1P(s1) 4+ 3P(s2) + 3P(s3) + 3P(s4) +
3P(s5) = 2.20 questions on average.

[Huffman 1952] has shown that his method is optimal if we have to de-
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termine the obtaining alternative in a single instance. If, however, we are
concerned with a sequence of (independent) situations, for each of which the
set of alternatives and their respective probabilities are the same, even this
sophisticated method can be improved upon. The idea is to process this
sequence not instance by instance, applying Huffman’s scheme in each case,
but to combine two or more consecutive instances and to ask directly for the
combination of alternatives obtaining in such a subsequence. Although the
question tree is enlarged by this, the expected number of questions per iden-
tification is reduced, since with each interrogation the obtaining alternative
is determined not only for one, but for several situations, and it is reduced
the more, the more situations are considered in combination. However, the
expected number of questions cannot be made arbitrarily small. As [Shan-
non 1948] showed for the general case, there is an ultimate lower bound
for the expected number of questions. This lower bound is the Shannon
entropy, which is 2.15 questions for the simple example.

W.r.t. the following sections, especially the section on the measures
based on the minimum description length principle, it is useful to note
that a question scheme can also be interpreted as a coding rule. In this case
the alternatives considered are symbols that may appear in a message, for
instance, the letters of the alphabet. Each of the symbols has a probability
of occurrence. For example, the letter ‘e’ is much more frequent than the
letter ‘q’. A message is coded by mapping the symbols it consists of to
sequences of zeros and ones, which are then transmitted. Such a mapping
can easily be obtained by simply assigning a 0 to the answer “no” and a 1
to the answer “yes”. With this assignment each symbol can be coded by the
sequence of answers that would lead to its identification as the obtaining
alternative. (It is clear that a coded message formed by concatenating the
codes for individual symbols that were obtained in this way can easily be
decoded, even if the length of the code is not the same for all symbols.) The
Shannon entropy is a lower bound for the average number of bits needed to
encode a symbol, provided the symbols are independent of each other.®

Note also that Hartley entropy or Hartley information, which was stud-
ied in section 7.2.3, is only a special case of Shannon entropy. It results if
all probabilities are equal, i.e., if Vi € {1,...,n}: P(s;) = %, viz:

n

1 1 1
H(Shannon)(su) _ Z ﬁ 10g2 ﬁ _ 10g2 ﬁ _ 10g2 n— H(Hartley)(Su),

i=1

8Note that this is not the case for normal texts, in which, for instance, the letter ‘u’
is not very likely to be followed by the overall most frequent letter ‘e’
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where the index u is meant to indicate that the probability distribution on S
is uniform. Hence most things considered w.r.t. Shannon information gain
can be transferred more or less directly to Hartley information gain.

From the definition of the Shannon entropy it is immediately clear that
we can write the Shannon information gain as (in the following I drop the
upper index “(Shannon)”, since no confusion is to be expected)

Igain(c7 A) = H(C) + H(A) - H(C7 A)7

if we define the Shannon entropy of an attribute C' as

ZP =¢;)logy, P(C = ¢;)

and provide an analogous definition for the Shannon entropy of the combi-
nation of two attributes C' and A. (Note that we can interpret the events
underlying the conditions C' = ¢; as the alternatives referred to in the def-
inition.) If it is written in this way, we see that Shannon information gain
measures how many questions can be saved by asking directly for the value
combination of C' and A instead of asking for each of the values indepen-
dently. This is directly analogous to the intuitive interpretation of Hartley
information gain that was discussed w.r.t. figure 7.2 on page 169.
Another way to understand Shannon information gain is to write it as

Isain(C,A) = H(C)— H(C | A), where

H(C | A) = ijzp” logz ij sz\]loggpw

is the expected (Shannon) entropy of C' given A. That is, H(C | A) is the
expected value of the average number of questions we have to ask in order
to determine the value of the attribute C' if the value of the attribute A
becomes known. Subtracting this number from the number of questions
we need without knowing the value of A (or disregarding it), we get the
expected reduction of the average number of questions we have to ask.
Using the interpretation of the Shannon entropy as an average code length
per symbol, we may also say that Shannon information gain measures the
expected reduction of the message length if an “unconditional” coding of
the values of the attribute C' is replaced by a “conditional” coding that
takes into account the value of the attribute A.
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It should be noted that this way of writing Shannon information gain
is directly analogous to conditional Hartley information gain. However,
in contrast to conditional Hartley information gain, which differs from its
ordinary version, conditional Shannon information gain is identical to its
ordinary version, as a simple calculation shows.

Although Shannon information gain is a well-founded measure for the
strength of the dependence of two attributes, it has an unpleasant property:
When it was used for decision tree induction [Quinlan 1993], it was discov-
ered that it is biased towards many-valued attributes. That is, it is likely
that Igain(C, A1) < Igain(C, Ag) if the attribute A, has more possible val-
ues than A; and the probabilities are estimated from a database of sample
cases. In other words: W.r.t. a given database two attributes can appear
to be more strongly dependent than two others, simply because the former
have more possible values.

The reasons for this effect are twofold. The first is that Shannon infor-
mation gain can only increase if the number of values of a given attribute is
increased, for example, by splitting them. Formally this can be studied by
comparing an attribute A to the combination of A and another attribute B.

Lemma 7.1 Let A, B, and C be three attributes with finite domains and
let their joint probability distribution be strictly positive, i.e., Va € dom(A) :
Vb € dom(B) : Ve € dom(C) : P(A=a,B=0b,C =c¢) > 0. Then it is

Igain(ca AB) > Igain(ca B),

with equality obtaining only if the attributes C and A are conditionally in-
dependent given B.

Proof: The proof, which is a mainly technical task, can be found in sec-
tion A.10 in the appendix. I provide a full proof (derived from a proof in
[Press et al. 1992] that Shannon information gain is always non-negative),
because it is rarely spelled out clearly. O

Note that with the above lemma it is easily established that Shannon in-
formation gain is always nonnegative and zero only for independent at-
tributes: Assume that the attribute B has only one value. In this case
it is Igain(C, B) = 0, since the joint distribution on the values of the two
attributes clearly coincides with the distribution on the values of C. In
addition, the combination of the two attributes A and B is obviously in-
distinguishable from A alone and thus we get Igain(C, AB) = Igin(C, A).
Consequently, we have the following corollary:
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Corollary 7.1 Let C and A be two attributes with finite domains and let
their joint probability distribution be strictly positive, i.e., V¢ € dom(C) :
Va € dom(A) : P(C =c¢,A=a) > 0. Then it is

Igain(c7 A) Z 03
with equality obtaining only if C and A are (marginally) independent.

The second reason for the bias of Shannon information gain towards many-
valued attributes is the quantization of the probabilities that is caused by the
fact that they are estimated from a database. Since the database contains
only a finite number of sample cases, the probabilities are restricted to a
finite set of rational numbers. However, under these circumstances it is
clear that Shannon information gain can increase even if an attribute A
and a “split attribute” B are actually independent, simply because the
probabilities needed to represent the independence may not be in this set
of rational numbers. In such a case an attribute that is equivalent to the
combination of A and B is judged to be more strongly dependent on an
attribute C than the attribute A alone, merely because this attribute has
more possible values.

In order to compensate the unpleasant bias towards many-valued at-
tributes, several normalized variants of Shannon information gain have been
suggested. The most widely known of these suggestions is the (Shannon)
information gain ratio [Quinlan 1993], which is defined as

I.in(C,A) H(C)+ H(A)— H(CA)

O =gy - H(A) '

The idea underlying this normalization is that an attribute with a larger
number of values not only yields a higher information gain, but also has a
higher entropy. Hence it is hoped that by dividing the information gain by
the attribute entropy the two effects cancel each other.

Note that the so-called uncertainty coefficient [Press et al. 1992] is equiv-
alent to the (Shannon) information gain, although it is defined as

H(C) - H(C'| A)

U(C | 4) = =

since it is obvious that H(C) + H(C' | A) = H(A) + H(A | C) and thus
U(C | A) = I (A, C). Hence the only difference is the “direction” of the
measure (recall that for evaluating directed graphs we associate C' with the
child attribute of a directed edge and A with its parent).
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However, the advantage of this way of writing the measure is that we
can see that I (A, C) (as well as I (C, A)) must be less than or equal to 1:
By assuming that one of the attributes has only one value, we can easily
derive from corollary 7.1 that a (conditional) entropy cannot be negative.
Consequently, the numerator of the uncertainty coefficient cannot be greater
than H(C) and thus the fraction cannot be greater than 1. Since from
corollary 7.1 we also known that Ig.in (C, A) > 0, we have 0 < I (C, A) < 1.

The (Shannon) information gain ratio is not symmetric, i.e., in general
it is I (C, A) # Ig(A,C). Hence it is not suited to evaluate undirected
edges. The symmetric information gain ratio [Lopez de Mantaras 1991]

 ILei(C,A)  H(C)+ H(A) — H(CA)
Lo (€, A) = H(CA) — H(CA)

avoids this drawback by dividing the (Shannon) information gain by the
entropy of the combination of the attributes A and C. With a similar
argument as above we obtain 0 < Iy (C, A) < 1.

Another symmetric normalization can be achieved by dividing by the
sum of the individual entropies [Borgelt and Kruse 1998b], i.e.,

Igain(C, A) H(C)+H(A)—-H(CA)

Of course, both of these normalizations compensate the bias of (Shannon)
information gain towards many-valued attributes.

Note that the second symmetric information gain ratio is almost iden-
tical to the symmetric uncertainty coefficient, which is defined as a kind of
weighted average of the uncertainty coefficients U(C' | A) and U(A | C):

HC)U(C|A)+HAUA|C) 2H(C) +H(A) - H(A,C)
H(C)+ H(A) N H(C)+ H(A) '

U(C,A) =

From the left part of this formula it is clear that 0 < U(C, A) < 1, since, as
shown above, 0 < U(C'| A) < 1. Hence we have 0 < Ii0(C, A) < 3.

Quadratic Information Gain

As described in the preceding section, Shannon information gain can be
based on Shannon entropy. However, Shannon entropy is not the only known
type of entropy, since the concept of an entropy measure has been extended,
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e.g., by [Daréczy 1970]. His generalized entropy is defined as follows:

enera. 2[3_1 - -
HEF(8) = WZP(&) (1= P(s)"™)

2551_1< Zpsz )

From this generalized entropy the Shannon entropy can be derived as

n

H(Shannon) (S) _ glinl Hégeneral) (S) - _ Z P(sl) log2 P(SZ)
i=1

Another often used specialized version is the quadratic entropy

H*(S) = HEQ™ = 2i P(si)(1 — P(s;)) =2 — 2iP<s¢>2.

i=1

An intuitive interpretation of the quadratic entropy is the following: In order
to determine the obtaining alternative we do not ask an imagined oracle as
with Shannon entropy, but we simply guess. In doing so, we respect the
known probabilities of the alternatives, i.e., we choose each alternative with
its respective probability. Of course, we cannot be sure to guess the correct
alternative. But we can determine how often our guess will probably be
wrong. If our guess is the alternative s;, the guess will be wrong with
probability 1 — P(s;), because this is the probability that an alternative
other than s; is the obtaining one. Since we choose each alternative s; with
its probability P(s;), the probability that our guess is wrong is

n

P(wrong guess) = Z P(s;)(1 = P(s;)).
i=1

The only difference of the quadratic entropy to this formula is the additional
factor 2. Therefore, since the above expression is a probability, we can infer
that it is 0 < H?(S) < 2. (Actually it must be strictly less than 2, since it
is impossible that the probability of a correct guess vanishes.)

It is clear that the quadratic entropy can be used in direct analogy to
the Shannon entropy to derive the quadratic information gain
C,A) = H*(C) + H*(A) — H*(CA).

galn(

For this measure a similar lemma holds as for Shannon information gain.
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Lemma 7.2 Let A, B, and C be attributes with finite domains. Then it is

2 2
Igain(ca AB) 2 I

gain

(C,B).

Proof: The proof, which is a mainly technical task, can be found in sec-
tion A.11 in the appendix. O

Note that the lemma is not restricted to strictly positive distributions and
that we do not have the assertion that equality only holds if the attributes C
and A are conditionally independent given B. Indeed, as the proof of this
lemma shows, the two measures cannot be equal unless at least one of the
attributes A and C has only one value with a non-vanishing probability.

In analogy to Shannon information gain we have the following corollary if
we consider an attribute B with only one value. In this case it is H2(B) = 0,
H?%*(AB) = H%(A), H*(CB) = H*(C), and H?(CAB) = H?(CA).

Corollary 7.2 Let C' and A be attributes with finite domains. Then it is
2
Iin(C, A) > 0.

From lemma 7.2 it is to be expected that quadratic information gain is even
more strongly biased towards many-valued attributes than Shannon infor-
mation gain. In order to counteract this bias normalized versions may be
considered. However, since they are defined in exact analogy to the normal-
ized variants of Shannon information gain, I do not state them explicitly.

Gini Index

The conditional version of Shannon information gain is identical to the or-
dinary version, but with Hartley information gain we already saw a measure
for which these two versions differed. For quadratic information gain they
differ, too, and this provides us with another measure. This measure is well-
known from decision tree induction, where it is usually called Gini index

[Breiman et al. 1984, Wehenkel 1996]. It can be defined as

nc na nc
Gini(C, A) = % (H*(C) = H*(C|A)) = 1= pl =) p; (1 - Zpﬁj)
i=1 j=1 i=1

ngc

na nc
= 2. Py~ P
j=1 i=1 i=1

(Note that the factor % only removes the factor 2 of the quadratic entropy.)
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Drawing on the interpretation given for the quadratic entropy in the
preceding section, we may say that the Gini index measures the expected
reduction of the probability of a wrong guess.

In analogy to Shannon information gain and quadratic information gain
the Gini index may be normalized in order to remove a bias towards many-
valued attributes. I confine myself here to the symmetric version suggested
by [Zhou and Dillon 1991].

H2(C) — H2(C|A) + H2(A) — H2(A|C)
H2(C) + H2(A)

nc na na nc ngc na
DI D ARD I DD TED DD
i=1  j=1 j=1 i=1 i=1 j=1
nc na
2- ZP? - Zp?j
i=1 j=1

Note that the numerator is the sum of the two possible “directions” of the
Gini index, since in general it is Gini(C, A) # Gini(4, C).

Another way to reduce or even eliminate a bias towards many-valued
attributes is the modified Gini index, which was suggested by [Kononenko
1994, Kononenko 1995] and which is closely related to the relief measure,
which is discussed in the next section. It is defined as

Ginipmeq(C, A) Z Z 2 ZP,“ sz

Jll

Ginigym (C, A) =

The only difference to the ordinary Gini index is that it uses

2
P . P
s instead of = =D
2?21 p.2j 2?21 b !
By squaring the probabilities of the values of the attribute A, more prob-
able values have a higher influence on the value of the measure. This also

reduces the bias towards many-valued attributes, as can be made plausible
by considering a uniform distribution on the values of the attribute A.

Relief Measure

The relief measure [Kira and Rendell 1992, Kononenko 1994, Kononenko
1995], which is closely related to the Gini index, has been devised mainly for
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feature selection and decision tree induction and thus it is strongly aimed
at classification tasks. The idea underlying it is to assess a (descriptive)
attribute A based on how well suited it is to predict the values of the (class)
attribute C. Obviously, a good prediction can be achieved if the values of A
correspond well with single values of C. At best, each value of A occurs
always in conjunction with the same value of C.

The strength of such a correspondence can be measured by consider-
ing the probability that two sample cases having different values for the
attribute C also have different values for the attribute A (this probability
should be as large as possible) and the probability that two sample cases
having the same value for the attribute C' have different values for the
attribute A (this probability should be as small as possible). Hence, the
quality of an attribute A can be assessed by computing

Relief(C, A) = P(t1|a # ta]a | tilo # t2lc) — P(ti|la # ta]a | tilo = t2]c),

where t; and t5 are two tuples that represent two sample cases. This differ-
ence can easily be transformed into

Relief(C,A) = (1—P(t1|A=t2|A |t1|c§ét2|c))
—(1=P(t1la =ta2]a [ tilc = t2c))
P(ti|a = t2la Ntilo = t2|c)
P(tilc = t2|c)
~ P(ti|la =ta]a) — P(ti]a = t2la Atilc = t2|c)
1= P(ti|c = t2|c) '

Next we exploit the obvious relations

na
P(ty|a = t2]a) = Zp_zj,

P(ti|lc =t2lc) = Zpl , and
nc na
P(ti]a =tola Ati|lc =ta|c) = ZZPZJ
=1 j=1

These hold, since the probability that two sample cases have the same
value a; is clearly pZJ, and thus the probability that they have the same
value, whichever it may be, is "4 o1 P> 5+ The two other cases are analogous.
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Thus we arrive at

ng na o ne na
ZZP%‘ Zp.zj—Zprj
Relief(C, A) = i:;izl _j=1 :;1 i=1
pr. 1- Zp?.
T
z; z;pzﬂ Zpy sz
=1 =

<2p> (1 - zp>

na nc
Z ZP%‘ = Zpi- pru
j=1 i=1

i=1 j=1

Using the equation

we may also derive

na ne
ij Z "A 2 szb sz
J i=1

Relief(C, A) = =
(Zpi) (1 —Zp?.)

na
Zp?j Ginimeq(C, A)

j=1

(zp) (1 . zp) |

by which the close relation to the Gini index is revealed.

Weight of Evidence

The weight of evidence [Michie 1989] was originally defined for binary at-
tributes C, i.e., attributes with dom(C) = {¢1, 2}, as

na

WEvid Cu § p;

pz\j (]- *pilj)

pi A —p) | Th?




214 CHAPTER 7. LEARNING GLOBAL STRUCTURE

(Note that it is easy to verify that always wgyia(c1, A) = wgyia(ce, 4).)

The idea underlying this measure is to compare the odds of a bet on
a value ¢;, i.e., the quotient odds(p) = p/(1 — p), if we know the value of
the attribute A, to the odds of a bet if we do not know it. Obviously, the
intention is again to assess how well suited a (descriptive) attribute A is
to predict the value of a (class) attribute C, by which it is revealed that
this measure, too, was devised for classification purposes. It is clear that an
attribute A is judged to be the better, the greater the value of this measure.

The weight of evidence can easily be extended to attributes C' with more
than two values by defining it as [Kononenko 1995]

nc
wivia(C, A) = Zpi.wEvid(CiaA)

nc

sz ZP;

i.e., by computing the weighted average over all values c;.

( pl\j)
pi./(L=pi)

logy ————== Pilj/ 3~ = Pily)
’L

Relevance

As the relief measure and the weight of evidence the relevance [Baim 1988]
is also a measure devised for classification purposes. It is defined as

R(C,A) = Z >

C_l i1 i Liima(f) PF
1 iz Di|j Di|j
= 1- D 7 max —2 |,
nc—ljz:; j(;pi. i

where ¢; . (;) is the most probable value of the attribute C' given that the
attribute A has the value a;.

This measure is based on the same idea as the relief measure, namely
that for a reliable identification of the value of a (class) attribute C' it is
best if each value of a (descriptive) attribute A uniquely indicates a value
of C. Consequently, the conditional probability p;; of the most probable
value ¢; of C' given that the attribute A has the value a; should be as large
as possible. However, in order to avoid giving false merits to an attribute A
for a value ¢; with a high prior probability, these probabilities are considered
relative to the prior probability p; ..
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x> Measure

In section 7.1.2 T interpreted Shannon information gain as a measure for the
difference of the actual joint distribution and an assumed independent dis-
tribution of two attributes C' and A. The x? measure, which is well-known
in statistics, does the same, but instead of the pointwise quotient (as Shan-
non information gain does) it computes the pointwise squared difference of
the two distributions. The x? measure is usually defined as

XA(C,A) = ZZ E where E;; = 1]\7 J
=1 j=1 ij o
2
g (Nl ¥
= 22 g
i=1 j=1 N. N..
nc na )

NZZ pz p] pzy

i1 =1 Pi. D.j

With the above transformation it is obvious that the numerator of the frac-
tion is the squared difference of the actual joint distribution and the assumed
independent distribution. The denominator serves to weight these pointwise
differences. In order to render this measure independent of the number of
sample cases, the factor IV, is often discarded.

For the x? measure we have a direct analog of lemma 7.1:

Lemma 7.3 Let A, B, and C be three attributes with finite domains and
let their joint probability distribution be strictly positive, i.e., Va € dom(A) :
Vb € dom(B) : Ve € dom(C) : P(A=a,B=0b,C =c¢) > 0. Then it is

X*(C,AB) = x*(C, B),

with equality obtaining only if the attributes C' and A are conditionally
independent given B.

Proof: The proof, which is mainly technical, can be found in section A.12
in the appendix. O

Note that we need no corollary in this case, because from the definition of
the x? measure it is already obvious that y2(C, A) > 0.

The above lemma indicates that the x? measure, like Shannon informa-
tion gain and quadratic information gain, is biased towards many-valued
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attributes. However, in this case there is no simple way to eliminate this
bias, because there is no obvious normalization.

A closely related measure, which differs from the x2 measure only in the
way in which it weights the squared differences, is

nc mna

Breigniea(CsA) = D> pij (pi pj — pis)*.

i=1 j=1

Although this measure is fairly obvious and, in a way, more natural than
the 2 measure, it seems to have been neglected in the literature.

Bayesian-Dirichlet Metric

The Bayesian-Dirichlet metric is the result of a Bayesian approach to learn-
ing Bayesian networks from data, i.e., an approach that is based on Bayes’
rule. It was first derived in the special form of the K2 metric by [Cooper and
Herskovits 1992], which was later generalized by [Heckerman et al. 1995].

The derivation of this measure starts with a global consideration of the
probability of a directed acyclic graph given a database of sample cases.
Thus the explanation of this measure is more complex than that of the
measures discussed above and involves an extension of the notation intro-
duced in section 7.2.2. However, I try to be as consistent as possible with
my usual notation in order to avoid confusion.

The idea of the K2 metric is as follows [Cooper and Herskovits 1992]:
We are given a database D of sample cases over a set of attributes, each
having a finite domain. It is assumed (1) that the process that generated
the database can be accurately modeled by a Bayesian network, (2) that
given a Bayesian network model cases occur independently, and (3) that
all cases are complete, i.e., there are no missing or imprecise values. With
these assumptions we can compute from the directed acyclic graph G and
the set of conditional probabilities © underlying a given Bayesian network
the probability of the database D. That is, we can compute P(D | G, ©),
i.e., the likelihood of the database given the model (cf. section 7.1.2). This
probability can then be used to determine the probability of the Bayesian
network given the database via Bayes’ rule:”

P(D|G,0)- f(G,0)

P(G,0| D)= 365)]

9Note that we need a probability density function f for the prior probability of the
Bayesian network, since the space of the conditional probabilities © is continuous.
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However, this is not exactly what we want. Since we are concerned only
with learning the structure of a Bayesian network, we should eliminate the
conditional probabilities ©. This is done by simply integrating the above
formula over all possible choices of ©. Thus we get

PG| D)= ﬁ/ep(mé, 0)£(G,©)de.

Of course, to evaluate this formula, we need to know the prior probabil-

ities f(G,©) of the Bayesian network and P(D) of the database. Fortu-

nately, though, the prior probability of the database can be dispensed with,

because we only need to be able to compare graph structures. For this the

joint probability of the graph and the database is sufficient, since obviously
P(G1| D) _ P(G1,D)

P(Go| D) P(G2, D)

Often this quotient, which is usually called a Bayes factor, is used explic-
itly to evaluate different graphs Gy wrt. a given reference structure Go.
A commonly used reference structure is a graph without any edges.

In the following, however, I confine myself to P(é, D). Starting from the
formula derived above and applying the product rule of probability theory
to the density f(G,©), we arrive at

P(G, D) = /@ P(D| G,0)f(© | G)PG)do

as an assessment of the quality of a network structure G given a database D
of sample cases. f(© | G) is a density function on the space of possible
conditional probabilities and P(C_j) is the prior probability of the graph G.

In order to be able to evaluate this formula, it is assumed that all pos-
sible graphs G are equally likely and that the density functions f(© | é)
are marginally independent for all pairs of attributes and for all pairs of
instantiations of the parents of an attribute. This enables us to write the
density function f(© | é) as a product of density functions with one factor
for each attribute and each instantiation of its parents. This yields

T Mg Nk
PG, 0) =[] // (Heggk>
k=15=1 " 4 i=1

FOujks o Onpii) dO1jk - . . dOn, ik,
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where v is a constant that represents the identical prior probability of each
graph, r is the number of attributes used to describe the domain under con-
sideration, my, is the number of distinct instantiations of the parents of the
attribute Ay in the graph é, and ny, is the number of values of attribute Ay.
6;1 is the probability that attribute Aj assumes the i-th value of its domain,
given that its parents are instantiated with the j-th combination of values,
and Njji is the number of cases in the database, in which the attribute Ay
is instantiated with its ¢-th value and its parents are instantiated with the
j-th value combination. Note that the notation N;;j is consistent with the
notation introduced in section 7.2.2, because the additional index k only
distinguishes the N;; defined in that section for different child attributes.
In the following this index is dropped, since I confine myself to single factors
of the outermost product of the above expression, i.e., I consider only the
contribution of the assessment of a single attribute and its parents in the
graph to the overall quality of the graph G. In addition, I confine myself
to a child attribute C' having only one parent A, since the (re)extension
to more than one parent is obvious (cf. section 7.2.1). Thus the following
considerations are in line with the paradigm of the preceding sections.

In order to actually compute the factors of the above product, we need
still another assumption, namely an assumption about the density func-
tion f(61;,...,0n.;) on the space of the conditional probabilities. [Cooper
and Herskovits 1992] assumed a uniform distribution, i.e., they assumed
that f(64,...,0n;) = 7;, where y; is a constant, so that

/.../’Yj d91j...d9ncj =1.
GU

This leads to y; = (n¢ —1)!. Intuitively, this formula can be made plausible
as follows: Since the 0;; are conditional probabilities, their sum must be one,
ie, > " 6;; = 1. Hence we only have nc — 1 free parameters. Suppose
first that ng = 2, so that there is only one free parameter. This parameter
can be chosen freely from the interval [0, 1] and thus the uniform density
function on the parameter space is f(z) = 1. Suppose next that nc = 3. In
this case we have two free parameters, the choices of which can be visualized
as points in a plane. Since their sum must not exceed one, the points we
may choose are restricted to the triangle that is formed by the coordinate
axes and the line  +y = 1. This triangle clearly has an area of % and thus
the uniform distribution on the possible parameters must be f(z,y) = 2.
For nc = 4 and thus three parameters the parameter space is the pyramid
formed by the coordinate planes and the plane z + y+ z = 1, which has the
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volume % and thus the uniform density function is f(z,y, z) = 6. In general,
the hyper-pyramid in no — 1 dimensions that defines the parameter space

has a hyper-volume of ﬁ, and thus the density function must have the

value (nc — 1)!. A formal justification of v; = (n¢ — 1)! is obtained with
Dirichlet’s integral [Dirichlet 1839]

ngc nc
N, [[5 DNy +1)
/ /H“’ POy dnes = SR
g

where T is the well-known generalized factorial
[(z) = / e 't lde, YneIN:T'(n+1)=nl,
0

by simply choosing N;; = 0. This integral also provides us with means to
evaluate the resulting formula. We arrive at [Cooper and Herskovits 1992]

4 i N
H/ /(H%”) (ng — 1)1 d6y; ... d60,,
j=1 i=1

K»(C, A)

This measure is known as the K2 metric, since it is used in the K2 algo-
rithm [Cooper and Herskovits 1992]. Clearly, the greater the value of this
evaluation measure (that is, its product over all variables), the better the
corresponding graph G. To simplify the computation often the logarithm
of the above function is used:

na nc

logQ(KQ C A Z 10g2 m + Z Z 10g2 ”

j=11i=1

In addition, since the value of this measure depends on the number of sample
cases in the database, one may consider dividing this logarithm by the total
number N, of sample cases [Borgelt et al. 1996].

As already mentioned at the beginning of this section the K2 metric was
generalized to the Bayesian-Dirichlet metric by [Heckerman et al. 1995].
The idea underlying this generalization is very simple. Instead of assuming a
uniform distribution on the space of the conditional probabilities, an explicit
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prior density function is used. For simplicity, this prior density function is
assumed to be representable as a Dirichlet distribution, i.e., as

Nj;—1
F(01j, . 0nej) He

for appropriate values NZ-’j. It should be noted, though, that it is possible
to justify this somewhat arbitrary choice by plausible additional assump-
tions [Heckerman et al. 1995]. Inserting the above product instead of the
term (nc — 1)! into the formulae derived above, we get

o T(NY) TS T(NG + N
D(C, A) HFN+NWH TN

where N/, = >l N;;. Note that it is necessary to use the I'-function,
since the Nl’] need not be integer numbers. Note also that the K2 metric is
a special case of this measure, which results for Vi, j : Ni'j =1.

Intuitively, the N/, can be seen as derived from a database (other than
the one to learn from) representing prior knowledge about the domain of
consideration. Of course, such an interpretation is consistent only, if cer-
tain conditions hold. For example, N’ = "¢ Zn“ Nj; (or the extended
version for more than one parent) must be the same for all attributes C,
since, obviously, the size of the imagined database must be the same for all
attributes. In addition, the frequency of an attribute value must not depend
on whether the attribute is considered as a child or as a parent etc.

This consideration brings us directly to the notion of likelihood equiva-
lence. An evaluation measure is called likelihood equivalent if it assigns the
same value to all Markov equivalent graphs, where two graphs are called
Markov equivalent if they represent the same set of conditional indepen-
dence statements. As a very simple example of Markov equivalent graphs
consider the three graphs A - B —-C, A« B — C,and A~ B« C. All
three represent only the conditional independence statement A 1. C | B.'"
Since a database of sample cases does not provide us with any information
by which we could distinguish between two Markov equivalent graphs, it is
desirable that an evaluation measure is likelihood equivalent.

The Bayesian-Dirichlet metric is likelihood equivalent if the Nj; can
be interpreted consistently as derived from a database representing prior

10Note that the notion of Markov equivalence is useful only for directed acyclic graphs,
since no two distinct undirected graphs can represent the same set of conditional inde-
pendence statements.
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information. This can be made plausible as follows: Consider two Markov
equivalent graphs. For each choice of the probability parameters for one
of them there is a corresponding choice for the other, since any probability
distribution representable by one graph must be representable by the other.
Next we exploit the fact that the Bayesian-Dirichlet metric is basically the
computation of the likelihood of a database of sample cases (see above). It
is clear that the likelihood of a database must be the same for two Bayesian
networks that represent the same probability distribution, simply because
the probability of the cases is read from this distribution. Since there is a
1-to-1 relation of the possible choices of probability parameters, it is also
clear the integration over all possible choices cannot lead to a difference
in the assessment. Finally, since the prior probabilities of all graphs are
assumed to be the same, the two graphs must receive the same score.

The K2 metric is not likelihood equivalent, as can be seen from the
fact that the values Vi, j : Ni’j = 1 cannot be interpreted as derived from
a database of sample cases, simply because the total number N’ depends
on the numbers of values nc and n4 of the two attributes. However, this
insight directly provides us with an idea how a likelihood equivalent variant
of the Bayesian-Dirichlet metric can be constructed, which nevertheless uses
an uninformative, i.e., uniform, prior distribution. We only have to choose
Vi, j: Nj; = nf—nc [Buntine 1991, Heckerman et al. 1995], where N’ is a pa-
rameter called the equivalent sample size, thus indicating that it represents
the size of an imagined database. Intuitively, this parameter determines the
strength of the uniform distribution assumption relative to the database to
learn from. The result is the so-called BDeu metric (for Bayesian-Dirichlet,
likelihood equivalent, and uniform).

Unfortunately, the BDeu metric is strongly biased towards many-valued
attributes. This can be made plausible as follows: The larger the NZ-’j are,
the weaker is the influence of the database, simply because the distribution
is “equalized” by the uniform prior distribution, and thus the more strongly
dependent the attributes must be in order to achieve a high score. However,
the more values there are for the attributes A and C, the smaller the N/,
are and thus the more strongly dependent they appear to be.

In the following I discuss an extension of the Bayesian-Dirichlet metric,
which T suggested in [Borgelt and Kruse 1999b]. In order to arrive at this
extension, it is useful to start by showing that the Shannon information
gain can also be derived with a Bayesian approach. The idea is as follows:
In the derivation of the K2 metric it is assumed that the density functions
on the spaces of the conditional probabilities are uniform. However, after
we have selected a graph as the basis of a model, we no longer integrate
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over all conditional probabilities. Rather we fix the structure and compute
estimates of these probabilities using, for example, maximum likelihood
estimation. Thus the idea suggests itself to reverse these steps. That is,
we could estimate first for each graph the best assignments of conditional
probabilities and then select the best graph based on these, then fixed,
assignments. Formally, this can be done by choosing the density functions
in such a way that the (maximum likelihood) estimated probabilities have
probability 1 and all others have probability 0. Thus we get

FO1j- s Onc;) H5 is = Pilj) H‘S(%’Nj.)
=1 -J

where 0 is Dirac’s d-function (or, more precisely, d-distribution, since it is
not a classical function), which is defined to have the following properties:

. _ +oo +oo
o(x) = {;‘”’ ii 2 8: / o(z)dz = 1, / o(z—y)p(x) dz = ¢(y).

— 00 — 00

Inserting this density function into the function for P(é, D), we get as an
evaluation measure [Borgelt and Kruse 1999b]:

na nc nc
II/W/<H¢y><Ha%—mm>wmuwmj
=17 . i=1 i=1

- (1)

Jj=1

goo(Ca A)

(The name g, for this measure is explained below.) Obviously, it is

ilog M = nzAnzc: ;log p--—nZCN» log, p;
N__ 2 goo(C) N et 2 Zl] P . 2 M.

na nc nc
= > p; Y pijlogapi; — Y pilogyps
=1 = i=1

= H(C)-H(C|A) = I5""(C,4)
where g (C) is the assessment of a parentless attribute C, which is obtained
formally by letting n4 = 1. That is, Shannon information gain can be seen
as a Bayes factor obtained from the evaluation measure goo.
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This derivation of the Shannon information gain may be doubted, be-
cause in it the database is, in a way, used twice, namely once directly and
once indirectly through the estimation of the parameters of the conditional
probability distribution. Formally this approach is not strictly correct, since
the density function over the parameter space should be a prior distribu-
tion whereas the estimate I used clearly is a posterior distribution (since
it is computed from the database). However, the fact that Shannon infor-
mation gain results—a well-founded evaluation measure—is very suggestive
evidence that this approach is worth to be examined.

The above derivation of the Shannon information gain assumed Dirac
pulses at the maximum likelihood estimates of the conditional probabilities.
However, we may also consider using the likelihood function directly, i.e.,

nc

01 Oni) =310 where :M
f( IYE ) ncj) ﬁ Z];[1 ij ﬁ H?:Clr(Nij‘f‘l)
With this consideration the idea suggests itself to derive a family of eval-
uation measures: First we normalize the likelihood function, so that the
maximum of this function becomes 1. This is easily achieved by dividing it
by the maximum likelihood estimate raised to the power N;;. Then we in-
troduce an exponent «, by which we can control the “width” of the density
function around the maximum likelihood estimate. Hence, if the exponent
is 0, we get a constant function, if it is 1, we get the likelihood function,
and if it approaches infinity, the density approaches Dirac pulses at the
maximum likelihood estimate. Thus we arrive at [Borgelt and Kruse 1999b)]

e - () )
i=1 i=1

nc nc
701N1" OtNi'
v (HPW ]> (Heij J)
i=1 i=1
nc
N;;
- ITe
=1

where v and +' are normalization factors to be chosen in such a way that
the integral over 6,;,...,0,.; is 1 (since f, is a density function). Using
the solution of Dirichlet’s integral (see above) we find that

Y = I'(aN; +nc)
H:L:cl F(CYNZ'J’ + 1) '
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Inserting the above parameterized density into the function for the probabil-
ity P(G, D) and evaluating the resulting formula using Dirichlet’s integral
yields the family of evaluation measures

H I'(aN,; +nc) .ﬁf((a—kl)Nij—kl)
T( a+1N +ne) I'(aN;; +1)

From the explanations given in the course of the derivation of this family
of measures, it is clear that we have three interesting special cases:

a=0: K2 metric
a=1: “likelihood metric”
a — oo:  expected entropy N, H(C | A)

Note that, of course, we may also consider generalizing this family of eval-
uation measures in the same way as the K2 metric was generalized to the
Bayesian Dirichlet metric. This yields

[(aN;+ N%) ¢ T((a+ )Ny + Nj;)

nA
1;[ (a+1)N; +N') };[1 I(aNi; + N;)

Note also that both families of evaluation measures may be attacked on the
grounds that, at least formally, the factor o can also be interpreted as the
assumption that we observed the database (o 4 1) times, which would be
ridiculous from a strictly statistical point of view. However, in my derivation
of these families of measures I emphasized that the factor « results from a
choice of the prior distribution and it has to be admitted that the choice of
the prior distribution is, to some degree, arbitrary.

Of course, there are strong arguments in favor of a uniform prior dis-
tribution, for instance, the insufficient reason principle (cf. section 2.4.3).
However, when learning Bayesian networks from data choosing a uniform
prior distribution introduces a (strong) bias towards simpler network struc-
tures. This bias results from the fact that the size of the space of conditional
probabilities is larger for more complex structures and thus, in a way, there
are more “bad” choices of conditional probabilities (i.e., choices that make
the database unlikely). Consequently, a more complex graph may be judged
to be worse than a simpler graph, although there is a choice of probability
parameters for which the database is much more likely than with any choice
of parameters for the simpler graph. (Another explanation, which is based
on the close formal relation of the K2 metric and a minimum description
length measure, is given in the next section.)
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It has to be admitted that such a bias can be desirable in order to avoid
overfitting the data. However, even then it is usually convenient if one can
control the strength of this bias. With the above families of evaluation
measures such control can be exerted via the parameter o: The greater the
value of this parameter, the weaker the bias towards simpler structures.

Reduction of Description Length

With Shannon information gain I already discussed a measure that can be
interpreted as the reduction of the (per symbol) coding length of a sequence
of symbols. In addition to these direct coding costs for the values, the
minimum description length principle [Rissanen 1983, Rissanen 1987] takes
into account the costs for the transmission of the coding scheme.

Intuitively, the basic idea is the following: A sender S wants to transmit
a message to a receiver R. Since transmission is costly, it is tried to encode
the message in as few bits as possible. It is assumed that the receiver R
knows about the symbols that may appear in the message, but does not
know anything about their probabilities. Therefore the sender S cannot use
directly, for instance, a Huffman code for the transmission, because without
the probability information the receiver R will not be able to decode it.
Hence the sender must either use a simpler (and longer) code, for which this
information is not required, or he must transmit first the coding scheme or
the probabilities it is based on. If the message to be sent is long enough,
transmitting the coding scheme can pay, since the total number of bits that
have to be transmitted may be lower as with a standard coding that does
not take into account the probability information.

For learning Bayesian networks the situation is imagined as follows: The
aim is to transmit the database of sample cases. Both the sender S and the
receiver R know the number of attributes, their domains, and the number
of cases in the database'!, but at the beginning only the sender knows the
values the attributes are instantiated with in the sample cases. These values
are transmitted attribute by attribute, i.e., in the first step the value of the
first attribute is transmitted for all sample cases, then the value of the sec-
ond attribute, and so on. Thus the transmission may exploit dependences
between the next attribute to be transmitted and already transmitted at-
tributes to code the values more efficiently.

HNote that a strict application of the minimum description length principle would
assume that these numbers are unknown to the receiver. However, since they have to
be transmitted in any case, they do not have an influence on the ranking and thus are
usually neglected or assumed to be known.
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This description already shows that it is especially suited for Bayesian
networks. The attributes are simply transmitted in a topological order'?
and the dependence of an attribute on its parents is used for a more efficient
coding. Of course, if we do so, we must indicate which attributes are the
parents of the next attribute to be transmitted and we must transmit the
conditional probabilities. With this information the transmitted sequence of
bits can be decoded. Note that, in this respect, the costs for the transmission
of the coding scheme can also be seen as a penalty for making the model
more complex. The more parents there are, the more additional information
has to be transmitted. If the reduction of the costs for the transmission of
the values is less than the increase in the costs for the transmission of the
parents and the conditional probabilities, the simpler model, i.e., the one
with fewer parent attributes, is preferred. These considerations suggest that
it is useful to compute the reduction of the message/description length that
can be achieved by using a(nother) parent attribute.

Depending on the way the attribute values are coded, at least two mea-
sures can be distinguished. For the first measure it is assumed that the
values are coded based on their relative frequencies, for the second that
they are coded based on their absolute frequencies. As usual, I state both
measures w.r.t. a single parent attribute.

W.r.t. a relative frequency coding the reduction of the description length
is computed as follows [Kononenko 1995]

(rel) B (N +nc—1)!
Liier(C) = logy N1 —1)! + N. He,
na
(rel) _ (N +ne —
LE(C,A) = logy k+ ;10& W + ZN Heja,
rel rel (rel)
red (C A) = Ll(jrio)r(c) post(c A)
Ll(fr?gr(C) is the length of a description based on coding the values of the

attribute C' for all sample cases without the aid of another attribute. The
first term of this length describes the costs for transmitting the value fre-
quencies, which are needed for the construction of the code. It is derived as
follows: Suppose there is a code book that lists all possible divisions of the
N, sample cases on n¢ values, one division per page, so that we only have

12The notion of a topological order was defined in definition 4.11 on page 100. Note that
a strict application of the minimum description length principle requires a transmission
of the topological order. However, since the order of the attributes must be agreed upon
in any case, the costs for its transmission are usually neglected.



7.2. EVALUATION MEASURES 227

to transmit the number of the page the obtaining division is printed on. We
learn from combinatorics that this code book must have % pages.
Consequently, if we assume that all divisions are equally likely, the Hartley
information of the pages, i.e., the binary logarithm of the number of pages,
is the number of bits to transmit. The costs of transmitting the actual
data, i.e., the values of the attribute C, are described by the second term.
It is computed with the help of Shannon entropy, which states the average
number of bits per value (cf. the section on Shannon information gain).

The length of a description with the help of an attribute A is computed
in a directly analogous way. The samples cases are divided into n 4 subsets
w.r.t. the value of the attribute A. For each subset the description length
is determined in the same way as above and the results are summed. To
this the term log, k is added, which describes the costs for identifying the
attribute A or, if there may be several parents, the set of parent attributes.
k is the number of possible choices of parent attributes, which are assumed
to be equally likely. The interpretation of the term log, k is as above:
We imagine a code book that lists all possible choices of parent attributes,
one per page, and transmit the number of the page the actual selection
is printed on. Note, however, that this term is often neglected based on
the following argument: It is clear that we have to indicate the parent
attribute(s) if parents are used, but we also have to indicate if no parent
attribute is used, because otherwise the message cannot be decoded. Hence
we have to add this term also to the description length Ll()ﬁgr(C), with k
comprising the choice of an empty set of parents.

Finally, the reduction of the description length that results from using
the attribute A to code the values instead of coding them directly is com-
puted as the difference of the above two description lengths. Note that this
difference is simply Shannon information gain times N plus the difference
in the costs of transmitting the value frequencies.

If the coding is based on the absolute frequency of the values the reduc-
tion of the description length is computed as follows [Kononenko 1995)

s N__Jrncfl)! N |
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The first term of the description length L is the same as for a coding

prior
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based on relative frequencies. It describes the costs for transmitting the
frequency distribution of the values of the attribute C. In this measure,
however, the second term is not based on Shannon entropy, but is derived
with a similar consideration as the first. That is, we imagine a code book
that lists all possible assignments of the values of the attribute C' that are
compatible with the transmitted frequency distribution of these values. It is
clear that each such assignment can be obtained as follows: First IV;. cases
are selected and the value ¢; is assigned to them, then from the remaining
cases No are selected and the value ¢y is assigned to them, and so on.
Consequently, we learn from combinatorics that the code book must have

! . .
# pages. As above we assume that all possible assignments are
. n .

equally likely. Thus we get the Hartley information of the pages, i.e., the
binary logarithm of the number of pages, as the number of bits needed to
transmit the values of the attribute C.

The length of a description with the help of an attribute A is computed in
a directly analogous way. As above, the sample cases are divided w.r.t. the
value of the attribute A and the description length for each of the subsets is
computed and summed. log, k describes the costs for identifying the parent
attribute(s), although, as above, this term is often neglected.

Finally, the reduction of the description length is computed, as above,
as the difference of the two description lengths. Note that this difference is
closely related to a Bayes factor for the K2 metric. To be more precise:

K5(C, A)
2 Ky(0)

The above explanations should have made it clear that the first term of
a description length, which describes the costs for the transmission of the
value frequencies and thus the coding scheme, can be seen as a penalty for
making the model more complex. Clearly, this penalty introduces a bias
towards simpler network structures. Therefore, in analogy to the extension
of the Bayesian-Dirichlet metric discussed in the preceding section, the idea
suggests itself to introduce a parameter by which we can control the strength
of this bias. This can be achieved by defining, for example,

(rel) . 1 (N +nc — 1)'
@) = T378 N Tme 1)

L), A) = log + const.

+ N. Heo

prior,a

and analogously for the other description length. The penalty term is
weighted with the term 17 instead of a simple factor in order to achieve

matching ranges of values for the parameter « and the corresponding param-
eter of the extended Bayesian-Dirichlet metric. For the Bayesian-Dirichlet
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metric the normal behavior results for a = 1 and for & — oo the measure ap-
proaches Shannon information gain. With the above form of the weighting
factor we have the same properties for the description length measures.

Information Criteria

The notion of an information criterion is well-known in the statistical lit-
erature on model choice. It is defined generally as the log-likelihood of the
data given the model to evaluate plus a term that depends on the number
of parameters of the model. Thus this criterion takes into account both the
statistical goodness of fit and the number of parameters that have to be
estimated to achieve this particular degree of fit, by imposing a penalty for
increasing the number of parameters [Everitt 1998]. For learning graphical
models it can be defined as

IC,.(G,©|D) = —2ImP(D|G,0)+ k|6,

where D is the database of sample cases, G is the (directed or undirected)
graph underlying the model, © is the set of probability parameter associated
with this graph, and |©] is the number of parameters. P(D | G,0) is the
likelihood of the database given the graphical model that is described by
G and O (the computation of this probability was discussed for a Bayesian
network in section 7.1.2). It is clear that for Kk = 0 we get a measure that is
equivalent to a maximum likelihood approach to model selection. However,
pure maximum likelihood is usually a bad choice, as it does not take care
of the number of parameters.

Important special cases of the above general form are the so-called
Akaike Information Criterion (AIC) [Akaike 1974] and the Bayesian In-
formation Criterion (BIC) [Schwarz 1978]. The former results for k = 2
and is derived from asymptotic decision theoretic considerations. The lat-
ter has k = In N, where N is the number of sample cases, and is derived
from an asymptotic Bayesian argument [Heckerman 1998].

7.2.5 Possibilistic Evaluation Measures

There are much fewer possibilistic than probabilistic evaluation measures,
mainly because possibility theory is a rather young theory. The first pos-
sibilistic evaluation measures were suggested in [Gebhardt and Kruse 1995,
Gebhardt and Kruse 1996b]. Others followed in [Borgelt et al. 1996, Borgelt
and Kruse 1997a]. All of them are derived either from relational or from
probabilistic evaluation measures.



230 CHAPTER 7. LEARNING GLOBAL STRUCTURE

Specificity Gain

Specificity gain was already introduced in definition 7.8 on page 187. Re-
stated with the abbreviations introduced in section 7.2.2 it reads:

sup(7i;) nc na
Sgain(cv A) = /0 10g2 (Z[Wz’.]a> + 10g2 (Z[’Ej]a)

i=1 j=1

—log, (Z Z[Wz‘j]a) da

i=1 j=1

In section 7.1.3 this measure was justified as a generalization of Hartley
information gain drawing on the a-cut'® view of a possibility distribution.

Another way of justifying this measure is via the notion of the nonspeci-
ficity of a possibility distribution, which was introduced in definition 7.6 on
page 182 and which plays a role in possibility theory that is similar to the
role of Shannon entropy in probability theory. By using nonspecificity in
the same way as we used Hartley entropy and Shannon entropy to derive
the corresponding information gains, we get [Borgelt et al. 1996]:

Sgain(C, A) = nonspec(m¢) + nonspec(ma) — nonspec(mca),

where 7w is the possibility distribution consisting of the degrees of possi-
bility m;, for all values i € {1,...,n¢c} (cf. section 7.1.3). This measure
is identical to the evaluation measure suggested in [Gebhardt and Kruse
1996b], although it is not called specificity gain in that paper.

In analogy to Hartley information gain and Shannon information gain
there are several ways in which this measure may be normalized in order to
eliminate or at least lessen a possible bias towards many-valued attributes.
This leads to the specificity gain ratio
S(C, A) = Seain(A) _ nonspec(m¢) + nonspec(m4) — nonspec(mwea)

nonspec(m4) nonspec(m4)

and two symmetric specificity gain ratios, namely

- A
sic,a) = SenlCA) and
& nonspec(rca)

Sgain(ca A)
nonspec(r4) + nonspec(mwc)

S@)c, A)

sgr

13The notion of an a-cut was introduced in definition 7.5 on page 181.
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A conditional version of the specificity gain may also be defined by drawing
on the conditional version of Hartley information gain (cf. section 7.2.3).

This yields
/ o g, T
Cgam E E [1\3]

Possibilistic Mutual Information

In section 7.1.3 Shannon information gain was introduced under the name
of mutual (Shannon) information as a measure that compares the actual
joint distribution and an assumed independent distribution by computing
their pointwise quotient. This idea can be transferred by defining

nc nA

dmi(cv A = Z Z ﬂ-” 10g2 mln{m , T ]}

=1 j=1

as a direct analog of mutual (Shannon) information [Borgelt and Kruse
1997a]. (The index “mi” stands for “mutual information”.)

Possibilistic x? measure

The x? measure, as it was studied in section 7.2.4, also compares the actual
joint distribution and an assumed independent distribution. However, it
does so by computing the pointwise squared difference. It is clear that this
idea may as well be transferred, so that we get [Borgelt and Kruse 1997a]

d nzczi (min{m; , 7} — mj)?
== min{m; , 7 ;}

Alternatively, one may compute the weighted sum of the squared differences
of the individual degrees of possibility, i.e., one may compute

nc na
dair (C, A) = szj(min{%aﬁj} — i)

i=1 j=1

As the corresponding alternative to the x? measure in the probabilistic
setting, this measure appears to be more natural.
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Weighted Sum of Degrees of Possibility

As a global possibilistic evaluation measure I discussed in section 7.1.3 the
weighted sum of degrees of possibility. For a given graph G and a given
database D = (R, wg) it is defined as [Borgelt and Kruse 1997b]

Q(G) = wrl(t) - ma(t)

teR

where 7 is the possibility distribution represented by the graph G and its
associated distribution functions. Since this measure was already studied
in section 7.1.3 T only mention it here for completeness.

Note that the weighted sum of possibility degrees may be penalized—
in analogy to the information criteria in the possibilistic case (cf. sec-
tion 7.2.4)—by adding a term x|©|, where O is the number of parameters
and k is a constant. However, x should be chosen by a factor of about 1000
smaller than in the probabilistic case.

7.3 Search Methods

Being provided by the preceding section with a variety of measures to eval-
uate a given graphical model, I turn to search methods in this section.
As indicated above, a search method determines which graphs are consid-
ered in order to find a good model. In section 7.3.1 I study an exhaustive
search of all graphs, mainly to show that it is infeasible. Later I turn to
heuristic approaches like random guided search (section 7.3.2) and greedy
search (section 7.3.4). In addition, I consider the special case of a search
based on conditional independence tests (section 7.3.3).

7.3.1 Exhaustive Graph Search

The simplest search method is, of course, an exhaustive search of the space
of possible graphs. That is, all possible candidate graphs are inspected in
turn and evaluated. The graph with the best assessment is selected as the
search result. As an illustration recall the examples of the preceding section,
in which all eight possible candidate graphs were evaluated.

Clearly, this approach is guaranteed to find the “best” graphical model—
at least w.r.t. the evaluation measure used. However, in applications it is
infeasible, since the number of candidate graphs is huge unless the number
of attributes used to describe the domain under consideration is very small.
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n 213 |4 ) 6 7 8 10

23) [2]8 |64 |1024 |32768 |2.10-10° | 2.68-108 |3.52- 103
F(n) | 3|25 | 54329281 | 3.78 - 10° | 2.46 - 10° | 7.84 - 10! | 4.18 - 10'8

Table 7.3: Some examples for the number of undirected graphs (upper row)
and the number of directed acyclic graphs (lower row) over n attributes.

Therefore the main purpose of this section is not to discuss this search
method as a reasonable alternative, but to bring out clearly that heuristic
search methods are indispensable.

To see that the number of candidate graphs is huge, consider first the
number of undirected graphs over n attributes. In an undirected graph any
two attributes may either be connected by an edge or not (two possibili-
ties) and from n attributes ( ) different pairs of attributes can be selected.
Therefore the number of undirected graphs over n attributes is 2 2). As
an illustration recall that for the3 three-dimensional examples studied in the
preceding section there were 2(2) — 23 —3 possible undirected graphs (cf.
figures 7.1, 7.5, and 7.8 on pages 166, 176, and 184, respectively). Some ex-
amples for other values of n are shown in table 7.3 (upper row). Obviously,
for more than 6 or 7 attributes an exhaustive search is impossible.

Consider next the number of directed acyclic graphs over n attributes.
This number is much more difficult to determine than the number of undi-
rected graphs, because the requirement for acyclicity is a somewhat incon-
venient constraint. However, a lower and an upper bound can easily be
found: To determine an upper bound, we may simply drop the requirement
for acyclicity and consider arbitrary directed graphs. In such a graph any
two attributes A and B may be unconnected, or connected by an edge from
A to B, or connected by an edge from B to A (three possibilities) and, as
above, from n attributes (") pairs of attributes can be selected. Therefore
the number of arbitrary directed graphs over n attributes is 3 2). To de-
termine a lower bound, suppose that a topological order'* of the attributes
has been fixed and consider the directed acyclic graphs that are compatible
with this order. In such a graph any two attributes A and B are either un-
connected or connected by a directed edge from the node having the lower
rank in the topological order to the node having the higher rank (two pos-

4The notion of a topological order is defined in definition 4.11 on page 100.
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sibilities). Again there are (}) pairs of attributes and hence there are 2(5)

directed acyclic graphs over n attributes compatible with a given topologi-
cal order. We conclude that the number of all directed acyclic graphs must
be between 2(2) and 3(3). An exact recursive formula for the number of
directed acyclic graphs with n nodes has been found by [Robinson 1977]:

Fn) =Y (D)2 f(n ).

i=1

Some examples of the value of this function are shown in table 7.3 (lower
row). Obviously, the situation is even worse than for undirected graphs,
since the number of candidate graphs grows more rapidly, and thus an
exhaustive search is clearly impossible for more than 5 or 6 attributes.

Of course, the mere fact that the space of candidate graphs is too large
to be searched exhaustively does not imply that there is no feasible method
to find the optimal result. For instance, the number of spanning trees over
n attributes is n" =2 [Bodendiek and Lang 1995] and thus it is clearly impos-
sible to search them exhaustively in order to find an optimum weight span-
ning tree w.r.t. given edge weights. Nevertheless, the well-known Kruskal
algorithm [Kruskal 1956] is guaranteed to construct an optimum weight
spanning tree and it is clearly efficient. (There is also an even more efficient
algorithm for this task [Prim 1957].)

However, no such efficient algorithm has been found yet for learning
graphical models from data. Even worse, some special problems that occur
in connection with learning graphical models are known to be NP-hard.
For example, it is known from database theory that deciding whether a
given relation is decomposable'® w.r.t. a given family of attribute sets is
NP-hard [Dechter and Pearl 1992]e. Likewise, it is known to be NP-hard
to find the minimal decomposition'® of a given relation and it has been
conjectured that it is NP-hard to determine whether a given relation can
be decomposed even if the size of the attribute sets is restricted to some
maximum number & [Dechter and Pearl 1992]. Finally, the specific task of
learning a Bayesian network, i.e., a probabilistic graphical model based on a
directed acyclic conditional independence graph, has been shown to be NP-
hard if the Bayesian-Dirichlet metric (cf. section 7.2.4) is used to evaluate
the networks [Chickering et al. 1994, Chickering 1995]. As a consequence,
it seems to be inevitable to accept suboptimal results.

15The notion of a relation being decomposable is defined in definition 3.4 on page 64.
16The notion of a minimal decomposition is defined in definition 3.5 on page 65.
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7.3.2 Guided Random Graph Search

If an exhaustive search is infeasible or very costly, a standard solution is
to use some heuristic search method, for example, a guided random search.
The two best known examples of this class of search methods are simu-
lated annealing and genetic or evolutionary algorithms. 1 call these ap-
proaches “guided random search methods”, because both involve an element
of chance, but are also guided by an evaluation measure.

Simulated Annealing

The idea of simulated annealing [Metropolis et al. 1953, Kirkpatrick et
al. 1983] is to start with a randomly generated candidate solution, which
is evaluated. Then this candidate solution is modified randomly and the
resulting new candidate solution is evaluated. If the new candidate solution
is better than the original one, it is accepted and replaces the original one.
If it worse, it is accepted only with a certain probability that depends on
how much worse the new candidate solution is. In addition, this probability
is lowered in the course of time, so that eventually only those new candi-
date solutions are accepted that are better than the current. Often the best
solution found so far is recorded in parallel.

The reason for accepting a new candidate solution even though it is worse
than the current is that without doing so the approach would be very similar
to a gradient ascent (or descent). The only difference is that the direction
of the gradient of the solution quality is not computed, but that the upward
(or downward) direction is searched for by trial and error. However, it is
well known that a gradient ascent (or descent) can easily get stuck in a
local optimum. By accepting worse candidate solutions at the beginning
of the process it is tried to overcome this undesired behavior. Intuitively,
accepting worse candidate solutions makes it possible to cross the “barriers”
that separate local optima from the global one, i.e., regions of the search
space where the quality of the candidate solutions is worse. Later, however,
when the probability for accepting worse candidate solutions is lowered, the
quality function is optimized locally.

The name “simulated annealing” for this approach stems from the fact
that it is similar to the physical minimization of the energy function (to be
more precise: the atom lattice energy) when a heated piece of metal is cooled
down very slowly. This process is usually called “annealing” and is used to
soften a metal, relieve internal stresses and instabilities, and thus make it
easier to work or machine. Physically, the thermal activity of the atoms
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prevents them from settling in a configuration that may be only a local
minimum of the energy function. They “jump out” of this configuration.
Of course, the “deeper” the (local) energy minimum, the harder it is for the
atoms to “jump out” of the configuration. Hence, by this process they are
likely to settle in a configuration of very low energy, the optimum of which is,
in the case of a metal, a monocrystalline structure. It is clear, though, that
it cannot be guaranteed that the global minimum of the energy function
is reached. Especially if the piece of metal is not heated long enough, the
atoms are likely to settle in a configuration that is only a local minimum (a
polycrystalline structure in the case of a metal). Hence it is important to
lower the temperature very slowly, so that there is a high probability that
local minima, once reached, are left again.

This energy minimization process can easily be visualized by imagining a
ball rolling around on a curved landscape [Nauck et al. 1997]. The function
to be minimized is the potential energy of the ball. At the beginning the
ball is endowed with a certain kinetic energy which enables it to “climb” the
slopes of the landscape. But due to friction this kinetic energy is diminished
in the course of time and finally the ball will come to rest in a valley (a
minimum of the function to be optimized). Since it takes a higher kinetic
energy to roll out of a deep valley than out of a shallow one, the final resting
point is likely to be in a rather deep valley and maybe in the deepest one
around (the global minimum).

The thermal energy of the atoms in the annealing process or the kinetic
energy of the ball in the illustration is, obviously, modeled by the decreas-
ing probability for accepting a worse candidate solution. Often an explicit
temperature parameter is introduced, from which the probability (param-
eterized by how much worse the new candidate solution is) is computed.
Since the probability distribution of the velocities of atoms is often an ex-
ponential distribution (cf., for example, the Maxwell distribution, which
describes the velocity distributig@n for an ideal gas [Greiner et al. 1987]),
a function like P(accept) = ce™ T is frequently used to compute the prob-
ability for accepting a worse solution, where d@ is the quality difference of
the current and the new candidate solution, T is the temperature parameter
and c is a normalization constant.

Genetic or Evolutionary Algorithms

The idea of of genetic or evolutionary algorithms [Nilsson 1998, Michalewicz
1996, Koza 1992], is to employ an analog of biological evolution [Darwin
1859, Dawkins 1976, Dawkins 1987] to optimize a given function (here: the
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quality of a graphical model w.r.t. the given data). In this approach the
candidate solutions are coded into chromosomes with individual genes rep-
resenting the components of a candidate solution. For example, for learning
undirected graphical models a chromosome may be a simple bit-string in
which each bit is a gene representing one edge. If the bit is set, the edge is
present in the candidate solution described by the chromosome, otherwise
it is absent. Thus each bit-string describes an undirected graph.

A genetic or evolutionary algorithm starts by generating a random initial
population of individuals, each with its own chromosome. These individu-
als—or, to be more precise, the candidate solutions represented by their
chromosomes!”—are evaluated by a fitness function, which is the function
to be optimized (or derived from it).

From the initial population a new population is generated by two means:
The first is a simple selection process. A certain number of individuals is
selected at random, with the probability that a given individual gets se-
lected depending on its fitness. A simple method to achieve such a selection
behavior is tournament selection: A certain number of individuals is picked
at random from the population and the one with the highest fitness among
them (the “winner of the tournament”) is selected. It is clear that with
this selection method individuals with a high fitness have a better chance
to be passed into the new population than those with a low fitness and thus
only the fittest individuals of a population “survive”, illustrating the (some-
what simplistic) characterization of biological evolution as the survival of
the fittest. Of course, the individuals are also randomly modified from time
to time (as in simulated annealing), thus imitating mutation, which in living
beings occurs due to errors in the chromosome copying process.

The second process that is involved in generating the new population
imitates sexual reproduction. Two “parent” individuals are chosen from the
population, again with a probability depending on their fitness (for exam-
ple, using tournament selection). Then their chromosomes are crossed over
in order to obtain two new individuals that differ from both “parents”.'®
A very simple method to do so is to fix a breakage point on the chromosomes
and then to exchange one of the parts.

17As in biology one may distinguish between the genotype of a living being, which is
its genetic constitution, and its phenotype, which denotes its physical appearance or, in
the context of genetic algorithms, the represented candidate solution.

18The term crossing-over was chosen in analogy to the biological process with the
same name in which genetic material is exchanged between (homologous) chromosomes
by breakage and reunion. This process happens during meiosis (reduction division), i.e,
the division of (homologous) chromosome pairs so that each gamete (a sex cell, e.g., an
egg) receives one chromosome.
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The idea underlying the crossing-over of chromosomes is that each of the
“parent” chromosomes may already describe a good partial solution, which
accounts for their high fitness (recall that the “parents” are selected with a
probability depending on their fitness, so individuals with a high fitness are
more likely to become “parents”). By crossing-over their chromosomes there
is a good chance that these partial solutions are combined and that con-
sequently an “offspring” chromosome is better than both of the “parents”.
This plausible argument is made formally precise by the schema theorem
[Michalewicz 1996]. It explains why evolution is much faster with sexual
reproduction than without it (i.e., with mutation being the only mechanism
by which genetically new individuals can emerge).

Of course, the new population is then taken as a starting point for gen-
erating the next and so on, until a certain number of generations has been
created or the fitness of the best member of the population has not increased
in the last few generations. The result of a genetic algorithm is the fittest in-
dividual of the final generation or the fittest individual that emerged during
the generations (if it is kept track of).

There are several variants of genetic or evolutionary algorithms, de-
pending on whether only “offspring” is allowed into the next population or
whether “parents” are passed, too, whether the population is processed as
a whole or split into subgroups with “mating” occurring only within sub-
groups and only rare “migrations” of individuals from one subpopulation to
another etc. [Michalewicz 1996].

Application to Learning Graphical Models

As an illustration of how guided random search can be used to learn graphi-
cal models from data, I consider in the remainder of this section a simulated
annealing approach to learn undirected graphs with hypertree structure'®
[Borgelt and Gebhardt 1997]. That is, I consider a method that tries to
find a family of sets of attributes having the running intersection property,
so that the corresponding undirected graph, i.e., the undirected graph, the
maximal cliques of which are induced by these attribute sets, is optimal
w.r.t. a given evaluation measure.

Trying to find directly the maximal cliques of an undirected graph in-
stead of working with individual (directed or undirected) edges has several
advantages: In the first place, compared to an approach based on directed
acyclic conditional independence graphs the larger search space is avoided

9The notion of a hypertree structure was defined in definition 4.19 on page 114.
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(cf. section 7.3.1). Secondly, compared to an approach based on arbitrary
undirected conditional independence graphs we need not determine the max-
imal cliques of graphs—which is necessary for evaluating them, since for this
we have to compute the factor potentials on the maximal cliques (cf. sec-
tions 3.3.3, 4.2.2, and 5.2) or an equivalent thereof—, but have them readily
available. In addition, for an undirected graph with hypertree structure it
is much simpler to compute (an equivalent of) the factor potentials for the
maximal cliques (see below). Furthermore, since not all undirected graphs
have hypertree structure, the search space is smaller. Finally, and this may
be the most important advantage in some applications, this approach allows
us to control directly the complexity of the learned graphical model and,
especially, the complexity of reasoning with this model, namely by limiting
the size of the maximal cliques.

That the complexity of reasoning can be controlled in this way is obvious
if join tree propagation (cf. section 4.2.2) is used to update the represented
distribution w.r.t. given evidence, but holds equally well for other propaga-
tion methods. To see that exerting such control is more difficult with other
learning approaches recall that the preparations for join tree propagation
involve a triangulation step (cf. algorithm 4.1 on page 135), in which edges
may be added to the graph. How many edges have to be added in this step
depends in a complex way on the structure of the graph, which in practice
makes it impossible to foresee and thus to control the size of the maximal
cliques of the triangulated graph.

The main task when developing a simulated annealing approach to learn
undirected graphs with hypertree structure is, obviously, to find an efficient
method to randomly generate and modify such graphs. In the following
I consider two alternatives and discuss their respective merits and draw-
backs. Both approaches exploit the fact that in order to ensure that a
graph has hypertree structure we only have to make sure that the family of
attribute sets underlying its maximal cliques has the running intersection
property??, which guarantees acyclicity, and that there is a path between
any pair of nodes, which guarantees connectedness (although in applications
it is often useful and convenient to relax the latter condition).

The first approach relies directly on the defining condition of the running
intersection property for a family M of sets, namely that there is an ordering
M, ..., M,, of the sets in M, so that

Vie{2,...om}:Tkefl,. .. i—1}: Mm( U Mj)ng.

1<j<i

20The running intersection property was defined in definition 4.19 on page 114.
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W.r.t. graphs with hypertree structure such an ordering of the node sets
underlying the maximal cliques is often called a construction sequence (cf.
the proof of theorem 4.5 in section A.5 in the appendix).

The idea of the first approach is to select the node sets in exactly this
order: We start with a random set M7 of nodes. In step i, i > 2, a set My,
1 < k < i, is selected at random and the set M;, which is to be added in this
step, is formed by randomly selecting nodes from M}, U (U — U1§j<i Mj)
making sure that at least one node from the set My and at least one node
not in (J, j<i M; is selected. This process is repeated until all nodes are
contained in at least one set M;, 1 < j <. It is clear that the probabilities
of the different set sizes and the probability with which a node in M}, or a
node in (J;;; M; is selected are parameters of this method. Convenient
choices are uniform distributions on sizes as well as on nodes.

In order to randomly modify a given undirected graph with hypertree
structure or, equivalently, the family M of node sets underlying its maxi-
mal cliques, this approach exploits the so-called Graham reduction, which
is a simple method to test whether a family M of sets has the running
intersection property [Kruse et al. 1994]:

Algorithm 7.1 (Graham reduction)

Input: A finite family M of subsets of a finite set U of objects.
Output: Whether M has the running intersection property.

The family M of sets of objects is reduced by iteratively applying one of the
following two operations:

1. Remowve an object that is contained in only one set M € M.

2. Remove a set My € M that is a subset of another set My € M.

The process stops if neither operation is applicable. If all objects appearing

in the sets of the original family M could be removed, the original family M
has the running intersection property, otherwise it does not have it.

Note that this algorithm is non-deterministic, since situations may arise in
which both operations are applicable or in which one of them is applicable to
more than one object or more than one set, respectively. Note also that the
first operation need not be implemented explicitly if one maintains a counter
for each object, which records the number of sets in the current family M
the object is contained in. The subset test is then programmed in such
a way that it takes into account only those objects for which the counter
is greater than 1. Finally, note that this algorithm yields a construction
sequence: The reverse of the order in which the sets M € M were removed
from M obviously provides us with such a sequence.
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How Graham reduction works can easily be visualized by considering a
join tree (cf. page 136) of the graph corresponding to the family M, for
example, the join tree for the Danish Jersey Cattle example (cf. figure 4.14
on page 135). The node sets are removed by starting with those represented
by the leaves of the join tree and then working inwards.

This illustration makes it clear that Graham reduction can also be seen
as a hypertree pruning method and this provides us directly with an idea of
how to exploit it for randomly modifying graphs with hypertree structure:
We simply execute a few steps of the Graham reduction, randomly selecting
the set to be removed if more than one can be removed at the same time,
until only a certain percentage of the sets remain or only a certain percentage
of the nodes is still covered. The reduced set M is then extended again in
the same manner in which it was generated in the first place.

Unfortunately, although this approach is simple and clearly efficient, it
has a serious drawback: Suppose that by accident the initial graph is a
simple chain. Then in each step only the two sets corresponding to the
edges at the ends of (the remainder of) the chain can be removed. Hence,
if only a limited number of sets is removed, there is no or only a very small
chance that the edges in the middle of the chain are removed. Obviously,
this argument is not restricted to chain-like graphs: In general, the “inner
cliques” are much less likely to be removed, since certain “outer cliques”
have to be removed before an “inner clique” can be removed. Therefore
the modification of candidate solutions with this method is severely biased,
which renders it unsuited for most applications. Consequently, we have to
look for less biased methods, although it was clearly necessary to consider
this approach first, since it is the one that directly suggests itself.

The second approach which I am going to discuss is the method used in
[Borgelt and Gebhardt 1997], although it was not described in detail in that
paper. It is based on the insight that a family of node sets has the running
intersection property if it is constructed by successively adding node sets M;
to an initially empty family according to the following conditions:

1. M; must contain at least one pair of nodes that are not connected in the
graph represented by {My,..., M;_1}.

2. For each maximal subset S of nodes of M; that are connected to each
other in the graph represented by {Mj,...,M;_1} there must be a
set My, 1 <k <1, so that S C M.

It is clear that the first condition ensures that all nodes are covered after a
certain number of steps. It also provides us with a stopping criterion. The
running intersection property is ensured by the second condition alone.
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Theorem 7.1 If a family M of subsets of objects of a given set U is con-
structed observing the two conditions stated above, then this family M has
the running intersection property.

Proof: The proof is carried out by a simple induction on the sets in M.
It can be found in section A.9 in the appendix. O

With this method, the family M is constructed by forming subfamilies of
node sets, each of which represents a connected component of the graph rep-
resented by the current family M, i.e., a subgraph, the nodes of which are
connected to each other, but not to nodes in other subfamilies. Obviously,
the main advantage is that with this approach we can connect subfamilies
of node sets, whereas with the first approach we can only extend one family.
This provides us with considerable freedom w.r.t. a random modification of
the graph represented by a given family of node sets. At first sight, it may
even look as if we could select any subset of a given family of node sets and
then fill it, respecting the two conditions stated above, with randomly gen-
erated sets to cover all nodes. However, an entirely unrestricted selection is
not possible, because, unfortunately, if a family of node sets has the running
intersection property, a subset of it need not have it. To see this, consider
the family M = {{Al, AQ, A3}7 {A27 A4, A5}, {Ag, A5, AG}, {Ag, A3, A5}},
which has the running intersection property, as can easily be verified by
applying Graham reduction. Nevertheless, if the last set is removed, the
property is lost. Therefore, since the running intersection property of the
subfamilies is a prerequisite of the proof of theorem 7.1, we have to be
careful when choosing subsets of a given family of node sets.

Fortunately, there is a very simple selection method, which ensures that
all resulting subfamilies have the running intersection property. It consists
in shuffling the sets of the given family M into a random order and trying
to add them in this order to an initially empty family, respecting the two
conditions of the method, until a certain percentage of the sets of the original
family has been added or a certain percentage of the nodes is covered.
Clearly, the above theorem ensures that the subfamilies selected in this way
have the running intersection property. The resulting family of node sets is
then filled, again respecting the two conditions, with randomly generated
node sets to cover all nodes, which yields a randomly modified graph.

It is clear that this method to modify randomly a given graph with hy-
pertree structure is much less biased than the method of the first approach.
It should be noted, though, that it is not completely unbiased due to the
fact that the conditions a new set has to satisfy are, in a way, too strong.
Situations can arise, in which a set is rejected, although adding it would not
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destroy the running intersection property of a subfamily of node sets. As an
example consider the family {{A4;, As, A4}, {A2, A4, A5}} and the new set
{A3, Ay, As, Ag}. Since the nodes Aj, Ay, and Ay are already connected in
the graph represented by the family, but are not contained in a single set of
the family, the new set is rejected. However, as can easily be verified, if the
family were enlarged by this set, it would still have the running intersection
property.?! It is evident, though, that this bias is negligible.

Having constructed a random graph with hypertree structure, either
from scratch or by modifying a given graph, we must evaluate it. If the
chosen evaluation measure (cf. section 7.2) is defined on maximal cliques,
or if the graphical model to be learned is an undirected possibilistic network
that is to be evaluated by summing the weighted degrees of possibility for
the tuples in the database to learn from (cf. section 7.1.3), we only have to
determine the marginal distributions on the maximal cliques. From these
the network quality can easily be computed.

If, however, the chosen evaluation measure is defined on conditional dis-
tributions, we have to transform the graph into a directed acyclic graph first,
so that an appropriate set of conditional distributions can be determined.
If we have a probabilistic graphical model that is to be evaluated by com-
puting the log-likelihood of the database to learn from (cf. section 7.1.2),
it is convenient to carry out this transformation, because computing the
log-likelihood of the dataset is much easier w.r.t. a Bayesian network.

A simple method to turn an undirected graph with hypertree structure
into a directed acyclic graph is the following: First we obtain a construction
sequence for the family of node sets underlying its maximal cliques. This can
be achieved, for instance, by applying Graham reduction (cf. algorithm 7.1
on page 240). Then we process the node sets in this order. For each set
we divide the nodes contained in it into two subsets: Those nodes that are
already processed, because they are contained in a node set preceding the
current one in the construction sequence, and those that are unprocessed.
We traverse the unprocessed nodes and assign to each of them as parents all
already processed nodes of the current node set. Of course, after a node has
been processed in this way, it is transferred to the set of processed nodes
and must also be assigned as a parent to the next unprocessed node.

Finally, for a simulated annealing search, we must consider the proba-
bility function for accepting a solution that is worse than the current one.
The problem here is that we usually do not know in advance the maximal

21 A simple way to see this is to note that this family can be constructed if the sets are
generated in a different order, e.g., if the set {As, A4, As, Ag} is added first.
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quality difference of two graphical models and hence we cannot compute ‘gge
normalization constant in the exponential distribution P(accept) = ce™ T .
To cope with this problem one may use an adaptive approach, which es-
timates the maximal quality difference from the quality difference of the
best and the worst graphical model inspected so far. A simple choice is the
unbiased estimator for a uniform distribution [Larsen and Marx 1986], i.e.,

n+1
n

AQmax =

‘Qbest - Qworst |a

where n is the number of graphical models evaluated so far, although the
uniform distribution assumption is, of course, debatable. However, it is not
very likely that the exact estimation function has a strong influence.

With these considerations we eventually have all components needed
for a simulated annealing approach to learn a graphical model from data.
It should be noted that, of course, the methods to randomly generate and
modify an undirected graph with hypertree structure, which I studied in
this section, can easily be adapted so that they can be used in a genetic or
evolutionary algorithm. Therefore I do not discuss this alternative explicitly.

7.3.3 Conditional Independence Search

In section 7.1 I considered the approach to learn a graphical model from data
which is based on conditional independence test w.r.t. an exhaustive search
of the possible graphs. Hence the considerations of section 7.3.1, which
showed that the search space is huge unless the number of attributes is very
small, render this approach impossible in this most direct form. Unfortu-
nately, in contrast to the approaches based on a direct test for decompos-
ability or on the strengths or marginal dependences, it is much more difficult
to use conditional independence tests in a heuristic search. The reason is
that testing whether the conditional independence statements represented
by a given graph hold yields only a binary result: Either the statements
hold (at least w.r.t. to some evaluation measure and a given error bound)
or they do not. However, for a heuristic search we need a gradual measure
of how much better or worse one graph is compared to another.

Of course, one may try to construct such a measure, for example, by
summing the assessments (computed with an evaluation measure) of all con-
ditional independence statements represented by the graph. However, it is
hard to see how such a measure can be normalized appropriately so that two
graphs with a different structure can be compared with it. In addition, we
face the problem that the number of conditional independence statements
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represented by a given graph can be very large. An extreme example is a
simple undirected chain: The two attributes at the ends of the chain must
be conditionally independent given any nonempty subset of the attributes
between them (and these are, of course, not all conditional independence
statements that have to be considered in this case). Although it may be
possible to reduce the number of conditional independence statements that
have to be considered by exploiting the equivalence of the different Markov
properties of graphs (cf. section 4.1.5) or by simply deciding to consider
only pairwise conditional independences, it is clear that for a graph over a
reasonable number of attributes there are still too many conditional inde-
pendence statements that have to be checked. Therefore such an approach
appears to be infeasible and, as far as I know, has not been tried yet.

As a consequence, conditional independence tests are usually employed
in an entirely different manner to search for a suitable conditional inde-
pendence graph. The rationale underlying the most well-known approach
[Spirtes et al. 1993] is that if we knew that for the domain under consid-
eration there is a perfect map??, i.e., a graph that represents exactly those
conditional independence statements that hold in the joint distribution on
the domain, we could infer from a conditional independence A1l B | S,
where A and B are attributes and S is a (possibly empty) set of attributes,
that there cannot be an edge between A and B. The reason is that in a
perfect map this conditional independence statement must be represented,
but would not be, obviously, if there were an edge between A and B. Hence,
provided that there is a perfect map of the conditional independence state-
ments that hold in a given distribution, we can find this perfect map by the
following algorithm [Spirtes et al. 1993]:

Algorithm 7.2 (find a perfect map with conditional independence tests)

Input: A distribution § over a set U of attributes.

Output: A perfect map G = (U, E) for the distribution.

1. For each pair of attributes A and B, search for a set Sap C U—{A, B},
so that A lls B | Sap holds, i.e., so that A and B are conditionally in-
dependent given Sap. If there is no such set Sap, connect the attributes
by an undirected edge.

If a directed acyclic perfect map G = (U, E) is to be found, the following

two steps have to be carried out in order to direct the edges:

2. For each pair of nonadjacent attributes A and B with a common neigh-
bor C ¢ Sap, direct the edges towards C, i.e., A— C «— B.

22The notion of a perfect map was defined in definition 4.14 on page 104.
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3. Recursively direct all undirected edges according to the rules:

o [f for two adjacent attributes A and B there is a strictly directed path
from A to B not including A — B, then direct the edge towards B.

e [f there are three attributes A, B, and C with A and B not adjacent,
A — C, and C — B, then direct the edge C — B.

o If neither rule is applicable, arbitrarily direct an undirected edge.

Obviously, the first step of this algorithm implements the idea stated above:
Only those attributes are connected by an edge for which there is no set of
attributes that renders them conditionally independent.

The reasons underlying the edge directing operations are as follows: If
a set Sap of attributes renders two attributes A and B conditionally in-
dependent, it must block all paths from A to B in the graph (otherwise
this conditional independence statement would not be represented by the
graph). Hence it must also block a path that runs via a common neigh-
bor C of A and B. However, if C'is not in S4p, the only way in which this
path can be blocked is by the fact that it has converging edges at C. This
explains the second step of the algorithm.

The first rule of the third step simply exploits the fact that the resulting
graph must be acyclic. If there already is a directed path from A to B not
including the edge connecting A and B, directing the edge from B towards
A would introduce a directed cycle. Hence it must be directed the other
way. The second rule of the third step exploits the fact that C' must be in
the set Sap, because otherwise step 2 of the algorithm would have directed
the edge C — B towards C. However, if C' is in S4p, the path from A to B
via C' can only be blocked by S4p, if it does not have converging edges at C'.
Consequently, the edge C' — B cannot be directed towards C, but must be
directed towards B. Finally, the by third rule of the third step deadlocks are
avoided. For example, if the perfect map is a simple chain, neither step 2
nor the first two rules of step 3 will direct any edges. Hence there must be
a default rule to ensure that all edges will eventually be directed.

Note that there can be at most one undirected perfect map for a given
distribution. In contrast to this, there may be several directed acyclic per-
fect maps of a distribution. To see this, consider again a simple chain.
Its edges may be directed away from an arbitrarily chosen attribute. All
of these configurations represent the same set of conditional independence
statements. Which of these alternatives is the result of the above algorithm
depends, obviously, on the edge or edges chosen by the default rule and the
direction they are endowed with.
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Although this algorithm appears to be simple and convenient, there are
some problems connected with it, which I am going to discuss, together with
attempts at their solution, in the remainder of this section. The first prob-
lem is that in order to make sure that there is no set S4p that renders two
attributes A and B conditionally independent, it is, in principle, necessary
to check all subsets of U — {4, B}, of which there are

U2

s= Y ('Uf 2).

i=1

Even worse, some of these sets contain a large number of attributes (unless
the number of attributes in U is small), so that the conditional independence
tests to be carried out are of high order, where the order of a conditional
independence test is simply the number of attributes in the conditioning
set. The problem with a high order conditional independence test is that
we have to execute it w.r.t. a database of sample cases by evaluating the
joint distribution of the two attributes for each distinct instantiation of the
conditioning attributes. However, unless the amount of available data is
huge, the number of tuples with a given instantiation of a large number of
conditioning attributes will be very small (if there are such tuples at all)
and consequently the conditional independence test will not be reliable. In
general: The higher the order of the test, the less reliable the result.

Usually this problem is dealt with by assuming the existence of a sparse
perfect map, i.e., a perfect map with only a limited number of edges, so that
any pair of attributes can be separated by an attribute set of limited size.
With this assumption, we only have to test for conditional independence up
the order that is fixed by the chosen size limit. If for two attributes A and
B all conditional independence tests with an order up to this upper bound
failed, we infer—from the assumption that the graph is sparse—that there
is no set Syp that renders them conditionally independent.

The sparsest graph, in which nevertheless each pair of attributes is con-
nected, is, of course, a tree or its directed counterpart, a polytree. Thus it
is not surprising that there is a special version of the above algorithm that
is restricted to polytrees [Huete and de Campos 1993, de Campos 1996]. In
this case the conditional independence tests, obviously, can be restricted to
orders 0 and 1, because for any pair of attributes there is only one path
connecting them, which can be blocked with at most one attribute. An
overview of other specialized version that consider somewhat less restricted
classes of graphs, but which are all, in one way or the other, based on the
same principle, is given in [de Campos et al. 2000].
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Figure 7.13: Directed acyclic graph
s

e @ constructed by algorithm 7.2 for
i the probability distribution shown
@ in figure 4.4 on page 106.

Note that the assumption of a sparse graph is admissible, because it can
only lead to additional edges and thus the result of the algorithm must be
at least an independence map (although it may be more complex than the
type of graph assumed, e.g., more complex than a polytree).

The second problem connected with algorithm 7.2 is that it is based on
the assumption that there is a perfect map of the distribution. As already
discussed in section 4.1.4, there are distributions for which there is no perfect
map, at least no perfect map of a given type. Hence the question suggests
itself, what will be the result of this algorithm, if the assumption that there
is a perfect map does not hold, especially, whether it yields at least an
independence map in this case (which would be satisfactory).

Unfortunately, if the perfect map assumption does not hold, the graph
induced by algorithm 7.2 can be severely distorted: Consider first the in-
duction of an undirected graph from the distribution shown in figure 4.3
on page 106. Obviously, the result is the graph shown in the same figure—
except that the edges are not directed. However, this makes a considerable
difference. Whereas the directed graph represents the statements A 1L B | (}
and A Y B | C, the undirected one represents the statements A 4 B | ()
and A1l B | C. Hence, in this case the algorithm yields a result that is
neither a dependence map nor an independence map.

A similar problem occurs w.r.t. directed acyclic graphs: Consider the in-
duction of a directed acyclic graph from the distribution shown in figure 4.4
on page 106. Algorithm 7.2 yields the undirected perfect map shown in this
figure after its first step. However, since the set of conditional independence
statements that hold in this distribution cannot be represented perfectly by
a directed acyclic graph (cf. section 4.1.4), it is not surprising that an at-
tempt at directing the edges of this graph while preserving the represented
conditional independence statements must fail. Indeed, since step 2 does
not direct any edges, the default rule of the third step directs an arbitrary
edge, say, A — B. Then, by the other two rules of the third step, all other
edges are directed and thus we finally obtain the graph shown in figure 7.13.
Since it represents the statements A Ll C' | B and A )L C | {B, D}, whereas
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Figure 7.14: A database that suggests inconsistent independences.

in the distribution itis A 4 C' | Band A 1L C' | { B, D}, this graph is neither
a dependence map nor an independence map.

In order to ensure that the resulting graph, whether directed or undi-
rected, is at least a conditional independence graph, edges have to be rein-
serted. Fortunately, for directed graphs, it seems to be sufficient to consider
nodes with converging edges, i.e., nodes towards which (at least) two edges
are directed, and to add an edge (of appropriate directionality) between
the nodes these edges start from. However, I do not have a proof for this
conjecture. Yet if it holds, it also indicates a way to amend the failure of
the algorithm in the case of undirected graphs. All we have to do is to
check whether a common neighbor C' of two nonadjacent attributes A and
B is in the set Sap. If it is not, a directed graph would have converging
edges at C' and thus we have to add an edge between A and B (compare
the construction of a moral graph that was discussed in section 4.2.2).

A problem that is closely connected to the one just discussed is that even
if the distribution underlying a database of sample cases has a perfect map,
the set of conditional independence statements that is determined with a
chosen test criterion (i.e., an evaluation measure and an error bound) from
the database may not have one. Even worse, this set of conditional inde-
pendence statements may be inconsistent. The reason is that a conditional
independence test cannot be expected to be fully reliable due to possible
random fluctuations in the data and thus may yield wrong results (that is,
wrong w.r.t. what holds in the underlying distribution).

As an example consider the database shown in figure 7.14 (each table
entry indicates the number of occurrences of the respective value combina-
tion). From this database we can compute?

Lot(A,B) =~ 0278,  Inw(A,C) = Inw(B,C) =~ 0.029,
Lnut(A,B | C) ~ 0.256,  Imu(A,C | B) = Inu(B,C | A) ~ 0.007,

23The mutual information Imut of two attributes was defined in definition 7.4 on
page 177 and its conditional version was introduced on page 178.
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if we compute the probabilities by maximum likelihood estimation. Clearly,
there are no exact (conditional) independences and thus algorithm 7.2 yields
a complete graph. However, if we allow for some deviation from an exact
conditional independence in order to cope with random fluctuations, we
may decide to consider two attributes as (conditionally) independent if their
(conditional) mutual information is less than 0.01 bits. If we do so, we have
AL C | Band B1 C | A. Consequently, algorithm 7.2 will remove the
edge (A,C) as well as the edge (B, (), i.e., the edges indicated by dotted
lines in figure 7.14. Unfortunately, the resulting graph not only represents
the above two conditional independences, but also A 1L C' | ) and B 1L C | 0,
neither of which hold, at least according to the chosen criterion.

Note that the algorithm fails, because the set of conditional indepen-
dence statements is inconsistent: The distribution underlying the database
shown in figure 7.14 must be strictly positive, since all value combinations
occur. A strictly positive probability distribution satisfies the graphoid ax-
ioms (cf. theorem 4.1 on page 95), which comprise the intersection axiom
(cf. definition 4.1 on page 94). With the intersection axiom {A, B} 1. C |
can be inferred from AL C | B and B1 C | A, and from this A1 C | §
and B 1l C | § follow with the decomposition axiom. Therefore it is impos-
sible that the distribution underlying the database satisfies both conditional
independence statements found, but not AL C' | and B 1L C | (.

An approach to cope with the problem of inconsistent sets of condi-
tional independence statements has been suggested by [Steck and Tresp
1999]. It is based on the idea that the situations in which algorithm 7.2
removes too many edges can be detected by associating each edge that may
be removed with one or more paths in the graph, at least one of which
must remain intact if the edge is actually to be removed (this is called the
causal path condition—although I would prefer dependence path condition,
cf. chapter 9). From these associations pairs of edges can be determined,
which alternatively may be removed, but one of which must be kept.

As an example reconsider the database of figure 7.14. The result of the
augmented algorithm would be the graph shown in the same figure, but with
the dotted edges marked as alternatives, either of which may be removed,
but not both: If the edge (A, C) is removed, the path A — B — C must
remain intact to ensure A Y C | §). Likewise, if the edge (B, C) is removed,
the path B — A — C must remain intact to ensure B L C | ().

I close this section by pointing out that a variant of the directed version
of algorithm 7.2 has been suggested for finding causal relations between a
set of attributes [Pearl and Verma 1991a, Pearl and Verma 1991b]. This
algorithm and the assumptions underlying it are discussed in chapter 9.
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7.3.4 Greedy Search

Especially if a graphical model is to be learned by measuring the strengths of
marginal dependences, it is not only possible to use a random guided search
as discussed in section 7.3.2. We may consider also the usually more efficient
method of a greedy search. With a greedy search a graphical model is
constructed from components, each of which is selected locally, i.e., relatively
independent of other components and their interaction (although usually
certain constraints have to be taken into account), so that a given (local)
evaluation measure is optimized. Although it is clear that, in general, such
an approach cannot be guaranteed to find the best solution, it is often
reasonable to expect that it will find at least a good approximation.

The best-known greedy approach—and at the same time the oldest—is
optimum weight spanning tree construction and was suggested by [Chow
and Liu 1968]. All possible (undirected) edges over the set U of attributes
used to describe the domain under consideration are evaluated with an eval-
uation measure ([Chow and Liu 1968] used mutual information®*). Then an
optimum weight spanning tree is constructed with either the (well-known)
Kruskal algorithm [Kruskal 1956] or the (somewhat less well-known) Prim
algorithm [Prim 1957] (or any other greedy algorithm for this task).

An interesting aspect of this approach is that if the probability distri-
bution for which a graphical model is desired has a perfect map?® that is a
tree, optimum weight spanning tree construction is guaranteed to find the
perfect map, provided the evaluation measure used has a certain property.

Theorem 7.2 Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes A and C are conditionally
independent given B. Let G be a singly connected undirected perfect map
of a probability distribution p over a set U of attributes. Then constructing
a mazimum weight spanning tree for the attributes in U with m (computed
from p) providing the edge weights uniquely identifies G.

Proof: The proof is based on the fact that with the property of the eval-
uation measure presupposed in the theorem, any edge between two at-
tributes C' and A that is not in the tree must have a weight less than
the weight of all edges on the path connecting C' and A in the tree. The
details can be found in section A.13 in the appendix. O

24Mutual information was defined in definition 7.4 on page 177.
25The notion of a perfect map was defined in definition 4.14 on page 104.
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From lemma 7.1 and lemma 7.3 we know that at least mutual information
and the y? measure have the property presupposed in the theorem.

It is clear that the above theorem holds also for directed trees, since
any undirected conditional independence graph that is a tree can be turned
into an equivalent directed tree by choosing an arbitrary root node and
(recursively) directing the edges away from this node. However, with an
additional requirement, it can also be extended to polytrees.

Theorem 7.3 Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes A and C are conditionally
independent given B and

VA,C: m(C,A) > 0

with equality obtaining only if the attributes A and C are (marginally) in-
dependent. Let Gbea singly connected directed perfect map of a probability
distribution p over a set U of attributes. Then constructing a mazimum
weight spanning tree for the attributes in U with m (computed from p)
providing the edge weights uniquely identifies the skeleton of é, i.e., the
undirected graph that results if all edge directions are discarded.

Proof: The proof is based on the same idea as the proof of the preceding
theorem. The details can be found in section A.14 in the appendix. O

Note that the above theorem is an extension of a theorem shown in [Rebane
and Pearl 1987, Pearl 1988], where it was proven only for mutual information
providing the edge weights. However, from lemma 7.3 we know that the
X2 measure may also be used.

Note also that the edges of the skeleton found with the above approach
may be directed by applying steps 2 and 3 of algorithm 7.2 [Rebane and
Pearl 1987]. It should be noted, though, that a directed perfect map need
not be unique, as was discussed in connection with the notion of the like-
lihood equivalence of an evaluation measure (cf. page 220 in section 7.2.4)
and thus the directions of some edges may be arbitrary.

The above theorems only hold if there is a tree-structured perfect map
of the distribution for which a graphical model is desired. It has to be
admitted, though, that tree-structured perfect maps are not very frequent.
Nevertheless the construction of an optimum weight spanning tree can be
very useful. There are at least two reasons for this. The first is that an
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optimum weight spanning tree can serve as the starting point for another al-
gorithm that is capable of constructing more complex graphs. For instance,
a simulated annealing approach (cf. section 7.3.2) may start its search with
an optimum weight spanning tree. Another example is discussed below.

The second reason is that, since propagation in trees and polytrees is so
very simple and efficient, we may be content with a good tree-structured ap-
proximation of the given distribution in order to be able to exploit this sim-
plicity and efficiency. By a tree-structured approzimation I mean a graphical
model that is based on a (directed®®) tree and which represents a distribu-
tion that is, in some sense, close to the original distribution. It is plausible
that an optimum weight spanning tree may be a good tree-structured ap-
proximation. Indeed, we have the following theorem:

Theorem 7.4 [Chow and Liu 1968]

Let p be a strictly positive probability distribution over a set U of attributes.
Then a best tree-structured approximation of p w.r.t. the Kullback-Leibler
information divergence®” is obtained by constructing a mazimum weight
spanning undirected tree of U with mutual (Shannon) information®® pro-
viding the edge weights, then directing the edges away from an arbitrarily
chosen root node, and finally computing the (conditional) probability distri-
butions associated with the edges of the tree from the given distribution p.

Proof: The proof exploits mainly the properties of the Kullback-Leibler
information divergence and is somewhat technical. It can be found in sec-
tion A.15 in the appendix. O

Because of this theorem a tree-structured graphical model that is con-
structed as described in this theorem (and which is often called a Chow-Liu
tree) is frequently used as some kind of baseline to assess the quality of
more complex graphs. For the extension of an optimum weight spanning
tree skeleton to a polytree some limiting results for the possible improve-
ment of fit have been obtained by [Dasgupta 1999].

Note that, unfortunately, neither of the above theorems can be trans-
ferred to possibilistic networks, as can be seen from the simple relational
example discussed in section 7.1.3 (cf. figure 7.4 on page 173). Nevertheless,
the construction of a maximum weight spanning tree is a valuable heuristic
method for learning possibilistic networks.

260ne may confine oneself to directed trees, because, as already mentioned above, any
undirected tree can be turned into an equivalent directed tree.

27Kullback-Leibler information divergence was defined in definition 7.3 on page 174.

28Mutual (Shannon) information was defined in definition 7.4 on page 177.
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@— Figure 7.15: The dotted edges cannot both

be the result of “marrying” parents in a

©_é directed graph.

As already mentioned above, an optimum weight spanning tree may
also serve as the starting point for another algorithm. In the following
I suggest such an algorithm, which can be seen as a modification of an
algorithm mentioned above, namely the one by [Rebane and Pearl 1987]
for constructing a polytree. The basic idea of this algorithm is as follows:
First an (undirected) maximum weight spanning tree is constructed. Then
this tree is enhanced by edges where a conditional independence statement
implied by the tree does not hold (cf. also section 7.1.2).

The main advantage of such an approach is that by introducing restric-
tions w.r.t. to which edges may be added, we can easily control the com-
plexity of the resulting graph—a consideration that is usually important
for applications (cf. also section 7.3.2). For example, we may allow adding
edges only between nodes that have a common neighbor in the maximum
weight spanning tree. With this restriction the algorithm is very closely
related to the algorithm by [Rebane and Pearl 1987]: Directing two edges
so that they converge at a node is equivalent to adding an edge between the
source nodes of these edges to the corresponding moral graph?’. However,
my approach is slightly more general as can be seen from figure 7.15. The
two dotted edges cannot both be the result of “marrying” parents.

An interesting further restriction of the edges that may be added is the
following requirement: If all edges of the optimum weight spanning tree are
removed, the remaining graph must be acyclic. This condition is interesting,
because it guarantees that the resulting graph has hypertree structure and
that its maximal cliques comprise at most three nodes.

Theorem 7.5 If an undirected tree is extended by adding edges only be-
tween nodes with a common neighbor in the tree and if the added edges do
not form a cycle, then the resulting graph has hypertree structure and its
mazximal cliques contain at most three nodes.

Proof: The proof, which exploits a simple observation about cliques with
more than three nodes and the fact that a triangulated graph has hypertree
structure, can be found in section A.16 in the appendix. U

29The notion of a moral graph was introduced on page 134.
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It should be noted this approach cannot be guaranteed to find the best
possible graph with the stated properties. This can be seen clearly from the
counterexample studied in section 7.1.2 (cf. figure 7.7 on page 180). Note
also that it is difficult to generalize this approach to graphs with larger
maximal cliques, since there seem to be no simple conditions by which it
can be ensured that the resulting graph has hypertree structure and that
the maximal cliques have a size at most n, n > 3.

Another extension of optimum weight spanning tree construction is the
so-called K2 algorithm [Cooper and Herskovits 1992], which was already
mentioned in section 7.2.4. It is an algorithm for learning directed acyclic
graphs by greedily selecting parent attributes. The basic idea is as fol-
lows: In order to narrow the search space and to ensure the acyclicity of
the resulting graph a topological order®’ of the attributes is fixed. Fixing
a topological order restricts the permissible graphs, since the parents of
an attribute can only be selected from the attributes preceding it in the
topological order. The topological order can either be stated by a domain
expert or derived automatically with the help of conditional independence
tests [Singh and Valtorta 1993] (cf. also section 7.3.3).

As already indicated, the parent attributes are selected greedily: At the
beginning the value of an evaluation measure is computed for a parentless
child attribute. Then in turn each of the parent candidates (the attributes
preceding the child in the topological order) is temporarily added and the
evaluation measure is recomputed. The parent candidate that yields the
highest value of the evaluation measure is selected as a first parent and
permanently added. In the third step each remaining parent candidate is
added temporarily as a second parent and again the evaluation measure is
recomputed. As before, the parent candidate that yields the highest value
is permanently added to the hyperedge. The process stops if either no
more parent candidates are available, a given maximal number of parents
is reached, or none of the parent candidates, if added, yields a value of the
evaluation measure exceeding the best value of the preceding step.

It is clear that this algorithm is equivalent to the construction of an
optimum weight spanning tree if only one parent is selected per attribute—
provided, of course, a suitable topological order has been fixed. If more than
one parent may be selected, polytrees or general directed acyclic graphs may
be learned. From the above theorems and their proofs it is clear that if there
is a perfect map of the given distribution that is a directed tree or a polytree,
then the K2 algorithm will yield a perfect map, provided a topological order

30The notion of a topological order was introduced in definition 4.11 on page 100.
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is selected first.

Figure 7.16: Greedy parent selection can lead to suboptimal results.

compatible with a perfect map is fixed and an evaluation measure satisfying
the presuppositions of the above theorems is used.

For more general graphs, however, the greedy character of the algorithm
can lead to a selection of wrong parent attributes. An example is shown
in figure 7.16. Independent of the topological order used, a wrong parent
attribute is selected, namely either C' as a parent for D or D as a parent
for C, although these two attributes are conditionally independent given
A and B. Note that from the distributions shown in figure 7.16 and the
symmetries of the example it is immediately clear that this behavior is
independent of the evaluation measure used.

In order to cope with this drawback one may consider adding a step in
which parent attributes are removed, again in a greedy fashion. With this
approach the failure of the K2 algorithm in the above example is amended.
If, for instance, A, B, and C have been selected as parents for the at-
tribute D, this second step would remove the attribute C and thus the
correct graph would be found. However, it should be noted that in general
wrong selections are still possible.

Another drawback of the K2 algorithm is the requirement of a topological
order of the attributes, although this drawback is mitigated, as already
mentioned, by methods that automatically construct such an order [Singh
and Valtorta 1993]. An alternative is the following generalized version: All
possible directed edges (each of which represents the selection of a parent
attribute) are evaluated and the one receiving the highest score is selected.
In each step all candidate edges are eliminated that would lead to a directed
cycle and only the remaining ones are evaluated. The process stops if no
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edge that may be added leads to an improvement of the evaluation measure.
However, such an unrestricted search suffers from the drawback that in
a directed acyclic independence graph an attribute is, obviously, strongly
dependent not only on its parents, but also on its children. In such a case
the properties of the evaluation measure—for instance, whether it yields a
higher value for an edge from an attribute having many values towards an
attribute having only few than for an edge having the opposite direction—
determine the direction of the edge, which is not always desirable.

7.4 Experimental Results

In order to illustrate the capabilities of (some of) the evaluation measures
and search methods discussed in the preceding sections I report in the follow-
ing some experimental results I obtained with a prototype implementation
called INES (Induction of NEtwork Structures), which I developed [Borgelt
and Kruse 1997a, Borgelt and Kruse 1997b]. The list of results is not com-
plete, since I have not yet implemented all search methods discussed in
section 7.3. In addition, I selected a subset of the large variety of evaluation
measures discussed in section 7.2. As a basis for the experiments I chose the
Danish Jersey cattle blood type determination example [Rasmussen 1992],
which was discussed in section 4.2.2.

7.4.1 Learning Probabilistic Networks

The probabilistic learning methods were tested on ten pairs of databases
with 1000 tuples each. These databases were generated by Monte Carlo
simulation from the human expert designed Bayesian network for the Danish
Jersey cattle blood type determination example (cf. figure 4.13 on page 132).
The first database of each pair was used to induce a graphical model, the
second to test this model. The results were then averaged over all ten
pairs. As a baseline for comparisons I used the original graph the databases
were generated from and a graph without any edges, i.e., with independent
attributes. All networks are assessed by computing the log-likelihood of the
data (natural logarithm; cf., for example, section 7.1.2). In order to avoid
problems with impossible tuples, the probabilities were estimated with a
Laplace correction®! of 1.

The results are shown in table 7.4. In addition to the network quality this
table shows the total number of edges (parents/conditions) and the number

31The notion of Laplace correction was introduced on page 143 in section 5.2.
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Baseline
network | edges | params. train test
indep. 0 59 | —19921.2 | —20087.2
orig. 22 219 | —11391.0 | —11506.1

Optimum Weight Spanning Tree Construction

measure edges | params. train test

[Spemnen) |90.0 | 285.9 | ~12122.6 | —12339.6

ISR 1200 | 169.5 | —12149.2 | ~12202.5

X2 20.0 | 282.9 | —12122.6 | —12336.2

Greedy Parent Selection w.r.t. a Topological Order

measure edges | add. | miss. | params. train test
(Spamnon) | 350 | 17.1 | 4.1 | 1342.2 | —11220.3 | —11817.6
rEhemmem) 940 | 67| 47| 2086 | —11614.8 | —11736.5
ISR 1320 | 113 | 13| 316.6 | —11387.8 | —11574.9
Gini 350 | 17.1 | 41| 1341.6 | —11233.1 | —11813.4
X2 350 | 17.3 | 43| 1300.8 | —11234.9 | —11805.2
K2 233 | 14| 01| 2299 | -11385.4 | —11511.5
BDeu 390 | 241 | 7.0 | 1412.0 | —11387.3 | —11978.0
AN 225 | 06| 01| 2199 | —11389.5 | —11508.2
Simulated Annealing

penalty | edges | params. train test

1o 28.3 | 438.1 | —13280.2 | —13594.9

yes 279 | 397.6 | —13255.7 | —13521.8

Table 7.4: Results of probabilistic network learning.
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of (probability) parameters as a measure of the complexity of the network.
For the K2 algorithm [Cooper and Herskovits 1992], i.e., the greedy selection
of parent attributes w.r.t. a topological order, the learned network is also
compared to the original one by counting the number of additional and
missing edges. This is possible here, because any edge selected must have
the same direction as in the original network. Analogous numbers are not
shown for the optimum weight spanning trees or the results of simulated
annealing, because here the edges may have different directions and thus a
comparison is more difficult.

The results obtained for optimum weight spanning tree construction
show that this very simple method already achieves a very good fit of the
data, which is not surprising, since the original graph is rather sparse. These
results also show the bias of Shannon information gain I Si}fr‘non) and the
X2 measure towards many valued attributes. Although the number of edges
is (necessarily) identical for all trees, the number of parameters for these two
measures is considerably higher than for the less biased symmetric Shannon
information gain ratio Is(gsfllannon). This behavior leads to some overfitting,
as can be seen from the fact that both the Shannon information gain and
the x? measure lead to a better fit of the training data, whereas for the test
data the relation is reversed.

For greedy parent selection, for which the maximum number of condi-
tions was set to 2, ngl), i.e., the reduction of the description length based
on relative frequency coding, and the K2 metric, which is equivalent to
Lf:gs), i.e., the reduction of the description length based on absolute fre-
quency coding (cf. section 7.2.4), lead to almost perfect results. Both recover
almost exactly the original structure, as can be seen from the very small
numbers of additional and missing edges. Other measures, especially the

Bayesian-Dirichlet likelihood equivalent uniform metric (BDeu), the Shan-

. . . St oL
non information gain I g(ai;annon) the x? measure and the Gini index suffer

considerably from overfitting effects: The better fit of the training data is
more than outweighed by the worse fit of the test data. Shannon informa-
. . . r(Shannon) « ) :
tion gain ratio Igr seems to select the “wrong” parents, since not even
the fit of the training data is good. A notable alternative is the symmetric
Shannon information gain ratio Ig:ﬁamnon). Although it tends to select too
many conditions, this does not lead to strong overfitting.

At first sight, the simulated annealing results (clique size restricted to
three attributes; for the penalized version the Akaike Information Criterion
was used to evaluate networks instead of the maximum likelihood criterion,

cf. section 7.2.4) are somewhat disappointing, since they are worse than
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the results of the simple optimum weight spanning tree construction. How-
ever, one has to take into account that they were obtained with a “pure”
simulated annealing approach, i.e., by starting from a randomly generated
initial network, and not from, e.g., a maximum weight spanning tree. If
such a starting point is chosen, better results are obtained. As indicated in
section 7.3.2 an important advantage of random guided search approaches
like simulated annealing is that they can be used to tune a solution that
has been generated with another algorithm. Therefore these results may be
somewhat misleading w.r.t. the true powers of simulated annealing.

7.4.2 Learning Possibilistic Networks

For evaluating the learning methods for possibilistic networks I used a real-
world database for the Danish Jersey cattle blood type determination exam-
ple with 500 sample cases. This database contains a considerable number of
missing values and thus is well suited for a possibilistic approach. As a base-
line for comparisons I chose, as in the probabilistic case, a graph without
any edges and the human expert designed network. However, the results
obtained with the latter are not very expressive, since it captures a different
kind of dependence, as it is based on a different uncertainty calculus.

All possibilistic networks were assessed by computing the weighted sum
of the degrees of possibility for the tuples in the database, which should
be as small as possible (cf. section 7.1.3). However, since the database
contains several tuples with missing values, a precise degree of possibility
cannot always be computed. To cope with this problem, I computed for
a tuple with missing values the minimum, the maximum, and the average
degree of possibility of all precise tuples compatible with it. The results are
then summed separately for all tuples in the database.

I did not divide the dataset into training and test data. The main reason
is that it is not clear how to evaluate a possibilistic network w.r.t. test data,
since, obviously, the measure used to evaluate it w.r.t. the training data
cannot be used to evaluate it w.r.t. the test data: If the marginal possibility
distributions do not fit the test data, the weighted sum of the degrees of
possibility for the test data tuples will be small, although in this case this
clearly indicates that the network is bad. This is also the reason why I did
not use artificially generated datasets. Such datasets are of little use if the
learning results cannot be evaluated on test data.

The results of possibilistic network learning are shown in table 7.5.
Clearly, as already mentioned above, the original network is not well suited
as a baseline for comparisons. As in the probabilistic case, the optimum
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Baseline
network | edges | params. min. avg. max.
indep. 0 80 | 10.064 | 10.160 | 11.390
orig. 22 308 | 9.888 | 9.917 | 11.318

Optimum Weight Spanning Tree Construction

measure | edges | params. | min. avg. max.
Sgain 20 438 | 8.878 | 8.990 | 10.714
Sser1 20 442 | 8.716 | 8.916 | 10.680
dyo2 20 472 | 8.662 | 8.820 | 10.334
i 20 404 | 8.466 | 8.598 | 10.386

Greedy Parent Selection w.r.t. a Topological Order

measure | edges | params. | min. | avg. max.
Sgain 31 1630 | 8.524 | 8.621 | 10.292
Ser 18 196 | 9.390 | 9.553 | 11.100
Seer1 28 496 | 8.946 | 9.057 | 10.740
dyp2 35 1486 | 8.154 | 8.329 | 10.200
i 33 774 | 8.206 | 8.344 | 10.416
Simulated Annealing
penalty | edges | params. | min. | avg. max.
no 22.6 787.2 | 8.013 | 8.291 | 9.981
yes 20.6 419.1 | 8.211 | 8.488 | 10.133

Table 7.5: Results of possibilistic network learning.
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weight spanning tree construction yields very good results. The possibilis-
tic analog of mutual information d.,; seems to provide the best results in this
case, since it achieves the best fit with the smallest number of parameters.
For greedy parent selection the situation is similar. The specificity gain
Sgain and  d,2, the possibilistic analog of the x2-measure, lead to graphi-
cal models that are too complex as can be seen from the high number of
parameters. Despite this high number of parameters the model generated
with specificity gain not even fits the data well. The specificity gain ratio
seems to be too reluctant to select parents, and thus leads to a model that
is simple, but does not fit the data well. In all, as for the optimum weight
spanning tree construction, d,; provides the best results.

In contrast to the somewhat disappointing results of simulated anneal-
ing in the probabilistic case, this approach seems to work very well in the
possibilistic case (clique size again restricted to three attributes; for the pe-
nalized version x = 0.001 was chosen, cf. section 7.2.5). Actually, it yields
the best results of all approaches, although it was also “pure”, i.e., the
search started from a randomly generated initial network. There are two
possible interpretations of this result. In the first place, there may be much
more “good” solutions in the possibilistic case, so that it is simpler to find
one of them, even with a guided random search. Alternatively, one may
conjecture that the possibilistic evaluation measures are bad and do not
lead to a construction of appropriate networks. I guess that the former is
the case. However, this problem needs further investigation.



Chapter 8

Learning Local Structure

In contrast to the global structure of a graphical model, which is the struc-
ture of the conditional independence graph underlying it, the term local
structure refers to regularities in the (conditional) probability or possibility
distributions associated with this graph. In this chapter I consider a deci-
sion graph representation of the local structure of directed graphical models
and how to learn such local structure from data. The decision graph repre-
sentation shows that the induction of a decision tree from data can be seen
as a special case of learning a Bayesian network with local structure.

8.1 Local Network Structure

As already indicated, the term local structure refers to regularities in the
(conditional) distributions associated with the conditional independence
graph underlying a graphical model. Particularly for Bayesian networks
several approaches to exploit such regularities have been studied in order
to capture additional (i.e., context specific) independences and, as a con-
sequence, to (potentially) enhance evidence propagation. Among these are
similarity networks [Heckerman 1991] and the related multinets [Geiger and
Heckerman 1991], the use of asymmetric representations for decision making
[Smith et al. 1993], probabilistic Horn rules [Poole 1993], and also decision
trees [Boutilier et al. 1996] and decision graphs [Chickering et al. 1997]. In
this chapter I focus on the decision tree/decision graph approach and review
it in the following for Bayesian networks. In doing so I confine myself, as
usual, to attributes that have a finite set of possible values.
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parents child Figure 8.1: A section of a
A B |C=c (C=c Bayesian network and the
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As a simple example, consider the section of a Bayesian network shown
on the left in figure 8.1 (and assume that in this network the attribute C has
no other parents than the attributes A and B). The probabilities that have
to be stored with attribute C' in this case are P(C' =¢; | A = a;, B = by,) for
all values ¢;, aj, and by. A very simple way to encode these conditional prob-
abilities is a table in which for each possible instantiation of the condition-
ing attributes A and B there is a line stating the corresponding conditional
probability distribution on the values of the attribute C'. If we assume that
dom(A) = {a1,az2,a3}, dom(B) = {b1,b2}, and dom(C) = {c1,c2}, this
table may look like the one shown in figure 8.1.

However, the same conditional probabilities can also be stored in a tree
in which the leaves hold the conditional probability distributions and each
level of inner nodes corresponds to a conditioning attribute (cf. figure 8.2).
The branches of this tree are labeled with the values of the conditioning
attributes and thus each path from the root to a leaf corresponds to a
possible instantiation of the conditioning attributes. Obviously such a tree
is equivalent to a decision tree [Breiman et al. 1984, Quinlan 1993] for the
attribute C' with the following restrictions: All leaves have to lie on the
same level and in each level of the tree the same attribute has to be tested
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parents child
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Figure 8.3: A conditional probability table with some regularities and a
partial decision tree for the child attribute C that captures them.

on all paths. If these restrictions hold, I call the tree a full decision tree,
because it contains a complete set of test nodes.

Consider now a situation in which there are some regularities in the
conditional probability table, namely those indicated in the table on the
left of figure 8.3. From this table it is clear that the value of the attribute B
matters only if attribute A has the value as, i.e., C is independent of B
given A = a1 or A = a3. This is usually called context specific independence.
Hence the tests of attribute B can be removed from the branches for the
values a1 and ag, as illustrated with the tree on the right in figure 8.3. This
tree I call a partial decision tree, because it has a reduced set of nodes.

Unfortunately, however, a decision tree is not powerful enough to cap-
ture all possible regularities. Although a lot can be achieved by accepting
changes of the order in which the attributes are tested and by allowing bi-
nary splits and multiple tests of the same attribute (in this case, for example,
the regularities in the table on the left of figure 8.4 can be represented by the
decision tree shown on the right in the same figure), the regularities shown
in the table on the left of figure 8.5 cannot be represented by a decision tree.

The problem is that in a decision tree a test of an attribute splits the
lines of a conditional probability table into disjoint subsets that cannot be
brought together again. In the table shown on the left in figure 8.5 a test
of attribute B separates lines 1 and 2 and a test of attribute A separates
lines 4 and 5. Hence either test prevents us from exploiting one of the two
cases in which distributions coincide. Fortunately, this drawback can easily
be overcome by allowing a node of the tree to have more than one parent,
i.e., by using decision graphs [Chickering et al. 1997]. Thus the regularities
can easily be captured, as can be seen on the right in figure 8.5.
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Figure 8.4: A conditional probability table with a second kind of regularities
and a decision tree with two tests of attribute A that captures them.
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Figure 8.5: A conditional probability table with a third kind of regularities
and a decision graph that captures them.

8.2 Learning Local Structure

To learn a decision tree/decision graph representation from data, a simple
top-down method may be used as for standard decision tree induction: First
the split attribute at the root node is chosen based on an evaluation measure.
Then the sample cases to learn from are split w.r.t. the value they have for
this attribute and the algorithm is applied recursively to each subset. For
learning decision graphs, we must also be able to merge nodes. Thus we
arrive at the following set of operations [Chickering et al. 1997]:

e full split: Split a leaf node w.r.t. to the values of an attribute.

e binary split: Split a leaf node so that one child corresponds to one
value of an attribute and the other child to all other values.

e merge: Merge two distinct leaf nodes.
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As for decision tree induction the operation to execute is chosen greedily
[Chickering et al. 1997]: All possible operations of the types listed above
are temporarily applied (wherever possible) to an (initially empty) decision
graph and the results are evaluated. The operation that yields the greatest
improvement of the evaluation measure is carried out permanently. This
greedy search is carried out until no operation leads to an improvement.

It is obvious that without the merge operation this algorithm is equiv-
alent to the well-known top-down induction algorithm for decision trees
[Breiman et al. 1984, Quinlan 1993]. Hence decision tree induction can be
seen as a special case of Bayesian network learning, namely as learning the
local structure of a Bayesian network, in which there is only one attribute—
the class attribute—that can have parent attributes. This view provides
us with another justification for using the attribute selection measures of
decision tree induction also as evaluation measures for learning Bayesian
networks (cf. section 7.2.4).

It should be noted that the greedy algorithm described above can be seen
as a generalization of the K2 algorithm, which was discussed in section 7.3.4.
The only difference is that the K2 algorithm is restricted to one operation,
namely to split in parallel all leaf nodes w.r.t. to the values of an attribute,
which, in addition, must be the same for all leaves. Hence the K2 algorithm
always yields a full decision tree as the local structure. In this respect it
is important that the topological order presupposed by the K2 algorithm
enables us to construct each decision graph independently of any other,
since the topological order already ensures the acyclicity. If we use the
generalized version of the K2 algorithm (cf. section 7.3.4), the operations
have to be applied in parallel to all decision graphs that are constructed in
order to ensure that the global structure of the resulting Bayesian network,
i.e., the conditional independence graph, is acyclic. All operations that may
lead to a cycle have to be eliminated.

My own approach to learning local network structure, which I suggested
in [Borgelt and Kruse 1998d], is a slight modification of the above algorithm.
It is based on the view explained in the preceding paragraph, namely that
the above algorithm can be seen as a generalization of the K2 algorithm.
This view suggests the idea to exploit the additional degree of freedom of
decision graphs compared to decision trees, namely that a node in a decision
graph can have more than one parent, not only to capture a larger set of
regularities, but also to improve the learning process. The basic idea is as
follows: With decision graphs, we can always work with the complete set of
inner nodes of a full decision tree and let only leaves have more than one
parent. Even if we do not care about the order of the conditioning attributes
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a1 as Figure 8.6: A decision graph
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in the decision graph and if we require that any attribute may be tested
only once on each path, such a structure can capture all regularities in the
examples examined in the preceding section. For instance, the regularities
of the table shown on the left in figure 8.4 are captured by the decision
graph shown in figure 8.6. Note that the test of attribute B in the leftmost
node is without effect, since both branches lead to the same leaf node.

It is easy to see that such an approach can capture any regularities that
may be present in conditional probability tables: Basically, it consists in
merging the leaves of a full decision tree and this is the same as merging lines
of a conditional probability table. The decision graph structure only makes
it simpler to keep track of the different instantiations of the conditioning
attributes, for which the same probability distribution on the values of the
conditioned attribute has to be adopted.

Consequently T use only two operations [Borgelt and Kruse 1998d]:

e split: Add a new level to a decision graph, i.e., split all leaves according
to the values of a new parent attribute.
e merge: Merge two distinct leaf nodes.

These operations are executed in turn. First a level is added to a decision
graph and then leaves are merged. When a new level is added, one may
either split the merged leaves of the previous step or start over from a full
decision tree. To find a good set of mergers of leaf nodes, a greedy approach
suggests itself. That is, in each step all mergers of two leaves are evaluated
and then that merger is carried out that yields the greatest improvement
of the evaluation measure. Merging leaves stops, when no merger improves
the value of the evaluation measure. If a mechanism for re-splitting leaf
nodes is provided, simulated annealing may also be used.

At first sight this algorithm may appear to be worse than the algorithm
by [Chickering et al. 1997], which was reviewed above, because the opera-
tion that splits all leaves seems to be more costly than the split operations
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for single leaves. However, it is clear that the algorithm by [Chickering et
al. 1997] has to check all splits of leaf nodes in order to find the best split and
thus actually carries out the same operation. Note also that my algorithm
needs to access the database of sample cases only as often as an algorithm
for learning a Bayesian network without local structure, for instance, the
K2 algorithm: The conditional frequency distributions have to be recom-
puted only after a split operation has been executed. The next step, i.e.,
the step in which leaves are merged, can be carried out without accessing
the database, since all necessary information is already available in the leaf
nodes. In contrast to this, the algorithm by [Chickering et al. 1997] has to
access the database whenever two leaf nodes are merged in order to evaluate
the possible splits of the resulting node.

It should be noted that for merging leaves we can exploit the fact that
most evaluation measures (cf. section 7.2.4) are computed from terms that
can be computed leaf by leaf. Hence, if two leaves are merged, the deci-
sion graph need not be re-evaluated completely, but the score change can
be computed locally from the distributions in the merged leaves and the
distribution in the resulting leaf.

A drawback of this algorithm, but also of the algorithm by [Chickering et
al. 1997] reviewed above, is that it can lead to a complicated structure that
may hide a simple structure of context-specific independences. Therefore
some post-processing to simplify the structure by changing the order of the
attributes and by introducing multiple tests along a path is advisable.

8.3 Experimental Results

I incorporated my algorithm for learning the local structure of a Bayesian
network into the INES program (Induction of NEtwork Structures) [Borgelt
and Kruse 1997a, Borgelt and Kruse 1997b], which was used to obtain the
experimental results reported in section 7.4. As a test case I chose again the
Danish Jersey Cattle blood group determination example [Rasmussen 1992]
(cf. section 4.2.2), so that the results of this section can easily be compared
to those reported in section 7.4. The set of databases used is identical and
the networks were evaluated by the same means.

The results, which were obtained with greedy parent selection w.r.t. a
topological order, are shown in table 8.1. The meaning of the columns is the
same as in section 7.4. It is worth noting that the Shannon information gain
ratio Ighannon) fails completely and that the K2 metric and the reduction
of description length measures again perform best.
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measure edges | add. | miss. | params. train test
[ohemen) | 350 | 17.1 | 41| 1169.1 | —11229.3 | —11817.6

gEhemmen) | 919 | 153 | 154 | 284.4 | —16392.0 | —16671.1
p(Shannon) | gy 2 45| 1.8 741.3 | —11298.8 | —11692.1

sgrl

Gini 35.0 | 17.1 | 41| 11723 | —11233.1 | —11813.4
X2 35.0 | 17.3 | 43| 1143.8 | —11234.9 | —11805.2
K2 27.0 | 63| 13| 6121 | —11318.3 | —11639.9
BDeu 39.0 | 241 | 7.1 | 12510 | —11387.3 | —11978.0
Ly 251 | 42| 11| 4487 | —11354.4 | —11571.8

Table 8.1: Results of learning Bayesian networks with local structure.

It can also be seen that some measures tend to select more conditions
(parents), thus leading to overfitting. At first sight it is surprising that
allowing local structure to be learned can make the global structure more
complex, although the number of parameters can be reduced (and actually
is for some measures). But a second thought (and a closer inspection of the
learned networks) reveals that this could have been foreseen. In a frequency
distribution determined from a database of sample cases random fluctua-
tions are to be expected. Usually these do not lead to additional conditions
(except for measures like Shannon information gain or the y2-measure),
since the “costs” of an additional level with several (approximately) equiva-
lent leaves prevents the selection of such a condition. But the disadvantage
of (approximately) equivalent leaves is removed by the possibility to merge
these leaves, and thus those fluctuations that show a higher deviation from
the true (independent) probability distribution are filtered out and become
significant to the measure.

This effect is less pronounced for a larger dataset, but does not vanish
completely. I guess that this is a general problem any learning algorithm
for local structure has to cope with. Therefore it may be advisable not to
combine learning global and local network structure, but to learn the global
structure first, relying on the score for a full decision tree, and to simplify
this structure afterwards by learning the local structure.



Chapter 9

Inductive Causation

If A causes B, an occurrence of A should be accompanied or (closely) fol-
lowed by an occurrence of B. That causation implies conjunction or cor-
relation is the basis of all reasoning about causation in statistics. But is
this enough to infer causal relations from statistical data, and, if not, are
there additional assumptions that provide reasonable grounds for such an
inference? These are the questions I am going to discuss in this chapter,
which is based on [Borgelt and Kruse 1999a].

In section 9.1 I consider the connection of correlation and causation for
two variables. Since this connection turns out to be unreliable, I extend my
considerations in section 9.2 to the connection of causal and probabilistic
structures, especially Bayesian networks. Section 9.3 is concerned with two
presuppositions of inductive causation, namely the stability assumption and
the treatment of latent variables. In section 9.4 I describe the inductive
causation algorithm [Pearl and Verma 1991a], and criticize the assumptions
underlying it in section 9.5. Finally, in section 9.6, I evaluate my discussion.

9.1 Correlation and Causation

Correlation is perhaps the most frequently used concept in applied statistics.
Its standard measure is the correlation coefficient, which assesses what can
be called the intensity of linear relationship between two measures [Everitt
1998]. Correlation is closely related to probabilistic dependence, although
the two concepts are not identical, because zero correlation does not imply
independence. However, since this difference is of no importance for my

271
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discussion, I use the term “correlation” in the vernacular sense, i.e., as a
synonym for (probabilistic) dependence.

Note that neither in the narrower statistical nor in the wider vernacular
sense correlation is connected directly to causal relation. We usually do not
know why a correlation exists or does not exist, only that it is present or
not. Nevertheless such erroneous interpretation is tempting [Gould 1981]:

Much of the fascination of statistics lies embedded in a gut feeling—and
never trust a gut feeling—that abstract measures summarizing large ta-
bles of data must express something more real and fundamental than
the data itself. (Much professional training in statistics involves a con-
scious effort to counteract this gut feeling.) The technique of correlation
has been particularly subject to such misuse because it seems to provide
a path for inferences about causality. [...] [But t]he inference of cause
must come from somewhere else, not from the simple fact of correlation—
though an unexpected correlation may lead us to search for causes so long
as we remember that we may not find them. [...] The invalid assumption
that correlation implies cause is probably among the two or three most
serious and common errors of human reasoning.

It is easily demonstrated that indeed the vast majority of all correlations
are, without doubt, noncausal. Consider, for example, the distance between
the continents America and Europe over the past twenty years. Due to con-
tinental drift this distance increases a few centimeters every year. Consider
also the average price of Swiss cheese in the United States over the same
period.! The correlation coefficient of these two measures is close to 1,
i.e., even in the narrow statistical sense they are strongly correlated. But
obviously there is no causal relation whatsoever between them.

Of course, we could have used also a lot of other measures that increased
over the past years, for example, the distance of Halley’s comet (since its
last visit in 1986) or the reader’s age. The same can be achieved with mea-
sures that decreased over the past years. Therefore, causality may neither
be inferred from correlation with certainty (since there are counterexam-
ples), nor even inferred with a high probability (since causal correlations
themselves are fairly rare).

According to these arguments it seems to be a futile effort to try to
infer causation from observed statistical dependences. Indeed, there is no
way to causation from a single correlation (i.e., a dependence between two
variables). But this does not exclude immediately the possibility to infer

T do not know much about the average price of Swiss cheese in the United States
over the past twenty years, but I assume that it has risen. If it has not, substitute the
price of any other consumer good that has.
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from a set of (conditional) dependences and independences between several
variables something about the underlying causal influences. There could
be connections between the causal and the probabilistic structure, which
enable us to discover the former at least partly.

9.2 Causal and Probabilistic Structure

Our intuition of causation is perhaps best captured by a binary predicate
“X (directly) causes Y” or “X has a (direct) causal influence on Y”, where
X is the cause and Y the effect. This predicate is usually seen as antisym-
metric, i.e., if “X (directly) causes Y” holds, then “Y (directly) causes X”
does not hold. Thus there is an inherent direction in causal influence, which
seems to be a characteristic property of causation. For the most part it is
due to our intuition that a cause precedes its effect in time.

Another formal interpretation, which was advocated by Russell [Vollmer
1981], is that an effect is a function of its cause. But I reject this interpre-
tation for several reasons. The first is that it brings in an assumption
through the back door, which I want to make explicit (cf. section 9.5).
Secondly, a function is not necessarily antisymmetric and thus cannot al-
ways represent the direction of causation. Thirdly, if one variable is a func-
tion of another, then there need not be a causal connection (cf. section 9.1).
Hence functional dependence and causal influence should not be identified.

Because of the inherent direction, we can use a directed graph to repre-
sent causal influences, which I call the causal structure. In principle directed
cycles, i.e., circular causal influences, are possible. (Such cycles are often
exploited for control mechanisms, for example Watt’s conical pendulum gov-
ernor of the steam engine.) Nevertheless I do not consider circular causal
structures here, but assume that the causal influences form a directed acyclic
graph in order to make them comparable to a probabilistic structure.

I need not say much about the notion of the probabilistic structure of a
domain here, because it is simply the conditional independence graph un-
derlying a graphical model. Since I defined the causal structure of a domain
as a directed acyclic graph, the theory of Bayesian networks, which are also
based on directed acyclic graphs, suggests itself as an appropriate frame-
work for a discussion of the connection between the causal and a probabilis-
tic structure of a domain. Indeed, Bayesian networks are not only studied
on purely statistical grounds as I did in the earlier chapters of this thesis,
but they are often also used to describe a causal structure. Sometimes this
is emphasized by calling them probabilistic causal networks. The reason for
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this is that, since Bayesian networks are based on directed graphs, the idea
suggests itself to direct their edges in such a way that they represent causal
influences. Actually human domain experts, who want to built a Bayesian
network model, often start from a causal model of the underlying domain
and simply enhance it by conditional probability distributions.

Of course, it is perfectly acceptable to call a Bayesian network a causal
network as long as the term causal is only meant to indicate that a hu-
man expert, who “manually” constructed the network, did so by starting
from a causal model of the domain under consideration. In this case the
knowledge of the human expert about the causal relations in the modeled
domain ensures that the Bayesian network represents not only statistical
(in)dependences, but also causal influences.

If, however, the conditional independence graph of a Bayesian network
is learned automatically from data, calling it a causal network seems to be
questionable. What could it be that ensures in an automatically generated
network that directed edges show the directions of causal influences (from
cause to effect)? Obviously we need to establish a relation between causal
dependence and statistical dependence, since it is only statistical depen-
dence we can test for automatically. The most direct approach is, of course,
to identify the two structures, i.e., to use the causal structure as a condi-
tional independence graph of a given domain (see above). If the causal and
a probabilistic structure of a domain are identified in this way, we should
be able to read from the causal structure, using the d-separation criterion?,
certain conditional independences that hold in the domain. This suggests
the idea to invert the procedure, i.e., to identify the causal structure or at
least a part of it by conditional independence tests.

9.3 Stability and Latent Variables

A fundamental problem of an approach that tries to discover the causal
structure with conditional independence tests is that the d-separation crite-
rion does not say anything about the dependence or independence of two sets
X and Y of attributes given a third set Z, if X and Y are not d-separated
by Z. This is sufficient, if a Bayesian network is constructed for a given
domain, since for applications it is not essential to find and represent all
independences (cf. chapter 4). However, we need more to identify a causal
structure, because we must be able to infer something about the causal
structure from a conditional independence statement, which we cannot do

2The notion of d-separation was defined in definition 4.13 on page 101.
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Figure 9.1: Possible causal connections of three attributes.

if we do not know whether this statement is represented by d-separation in
the causal structure or not.

In order to cope with this problem it is assumed that in a (sampled)
probability distribution p of the domain under consideration there exist ex-
actly those (conditional) independences that can be read from the causal
structure using d-separation. This assumption is called stability [Pearl and
Verma 1991a] and can be formalized as (X 1LY | Z) & (Z d-separates
X and Y in the causal structure). Obviously, the stability assumption is
equivalent to the assumption that the causal structure of the domain is a
perfect map® of the (conditional) independence statements that hold in the
domain. Note that the stability assumption asserts that there is “no corre-
lation without causation” (also known as Reichenbach’s dictum), because it
assumes a direct causal influence between any two variables that are depen-
dent given any set of other variables. In addition, any correlation between
two variables is explained by a (direct or indirect) causal connection.

An important property of d-separation together with the stability as-
sumption is that they distinguish a common effect of two causes on the one
hand from the mediating variable in a causal chain and the common cause
of two effects on the other. In the structures shown on the left and in the
middle of figure 9.1 A and C' are independent given B, but dependent if B
is not given. In contrast to this, in the structure on the right of figure 9.1 A
and B are independent unconditionally, but dependent if B is given. It is
this (alleged) fundamental asymmetry of the basic causal structures, which
was studied first in [Reichenbach 1956]*, that makes statistical inferences
about causal relations possible.

However, even with the d-separation criterion and the stability assump-
tion there are usually several causal structures that are compatible with the
observed (conditional) dependences and independences. The main reason

3The notion of a perfect map was introduced in definition 4.14 on page 104.
4However, [Reichenbach 1956] did not consider this asymmetry as a means to discover
causal structure, but as a means to define the direction of time.
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is that d-separation and stability cannot distinguish between causal chains
and common causes. But in certain situations all compatible causal struc-
tures have a common substructure. The aim of inductive causation is to
find these invariant substructures.

Furthermore, if we want to find causal relations in real world problems,
we have to take care of latent, i.e., hidden, wvariables. To handle latent
variables, the notion of a latent structure and of a projection of a latent
structure are introduced [Pearl and Verma 1991a]. The idea is to restrict the
number and influence of latent variables while preserving all dependences
and independences. A latent structure is simply a causal structure in which
some variables are unobservable. A projection is defined as follows:

Definition 9.1 A latent structure L1 is a projection of another latent
structure Lo, if and only if

1. FEwvery unobservable variable in Ly is a parentless common cause of ex-
actly two nonadjacent observable variables.

2. For every stable distribution ps which can be generated by Lo, there exists
a stable distribution py generated by L1 such that

VX, Y € 0,5 CO\{X,Y}:
(X LWLY | S holds in p2|lo) = (X LY | S holds in p1]o),

where O is the set of observable variables and p|o denotes the marginal
probability distribution on these variables.

(A stable distribution satisfies the stability assumption, i.e., exhibits only
those independences identifiable by the d-separation criterion.)

It can be shown that for every latent structure there is at least one projection
[Pear] and Verma 1991a]. Note that a projection must exhibit only the
same (in)dependence structure (w.r.t. d-separation), but need not be able
to generate the same distribution.® In essence, the notion of a projection is
only a technical trick to be able to represent dependences that are due to
latent variables by bidirected edges (which are an intuitive representation
of a hidden common cause of exactly two variables).

50therwise a counterexample could easily be found: Consider seven binary variables
A, B,C, D, E, F, and G, i.e.,, dom(A) = dom(B) = ... = dom(G) = {0,1}. Let A be
hiddenand E=A-B, F=A-C,and G = A-D. A projection of this structure contains
three latent variables connecting E and F, E and G, and F and G, respectively. It is
easy to prove that such a structure cannot generate the distribution resulting from the
functional dependences given above.
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9.4 The Inductive Causation Algorithm

With the ingredients listed above, we finally arrive at the following algorithm
[Pearl and Verma 1991a], which is very closely related to algorithm 7.2 on
page 245 (the first two steps are actually identical, the third is similar).

Algorithm 9.1 (Inductive Causation Algorithm)
Input: A sampled distribution p over a set U of attributes.
Output: A marked hybrid acyclic graph core(p).

1. For each pair of attributes A and B, search for a set Sap C U —{A, B},
so that A1, B | Sap holds, i.e., so that A and B are conditionally in-
dependent given Sap. If there is no such set Sap, connect the attributes
by an undirected edge.

2. For each pair of nonadjacent attributes A and B with a common neigh-
bor C (i.e., C is adjacent to A as well as to B), check whether C € Syp.
If it is not, direct the edges towards C, i.e., A— C «— B.

3. Form core(p) by recursively directing edges according to the following
two rules:

e If for two adjacent attributes A and B there is a strictly directed path
from A to B not including the edge connecting A and B, then direct
the edge towards B.

o [f there are three attributes A, B, and C with A and B not adjacent,
either A — C or A« C, and C — B, then direct the edge C — B.

4. For each triplet of attributes A, B, and C: If A and B are not adjacent,
C — B, and either A — C or A — C, then mark the edge C — B.

Step 1 determines the attribute pairs between which there must exist a
direct causal influence or a hidden common cause, because an indirect in-
fluence should enable us to find a set S4p that renders the two attributes
independent. In step 2 the asymmetry inherent in the d-separation criterion
is exploited to direct edges towards a common effect. Part 1 of step 3 en-
sures that the resulting structure is acyclic. Part 2 uses the fact that B — C
is impossible, since otherwise step 2 would have already directed the edge
in this way. Finally, step 4 marks those unidirected links that cannot be
replaced by a hidden common cause. The reason is that if the attributes B
and C named in this step were connected by a hidden common cause, A and
B would not be independent given C', which they must, because otherwise
step 2 would have directed both edges towards C.
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The output graph core(p) has four kinds of edges:

1. marked unidirected edges representing genuine causal influences
(which must be direct causal influences in a projection),

2. unmarked unidirected edges representing potential causal influences
(which may be direct causal influences or brought about by a hidden
common cause),

3. bidirected edges representing spurious associations
(which are due to a hidden common cause in a projection), and

4. undirected edges representing unclassifiable relations.

9.5 Critique of the Underlying Assumptions

In this section I discuss the assumptions underlying d-separation and stabil-
ity by considering some special cases with only few variables. The simplest
case are causal chains, like the one shown on the left in figure 9.1. If a
variable has a direct causal influence on another, they should be dependent
at least unconditionally, i.e., A 4 B | § and B U C | (. Tt is also obvious,
that A 1L C' | B. A direct cause, if fixed, should shield the effect from any
change in an indirect cause, since a change in the indirect cause can influ-
ence the effect only by changing the direct cause. But to decide whether B
and C are dependent given A or not, we need to know the causal influences
in more detail. For instance, if B = f(A) and C = g(B), then B 1L C | A.
But if the value of A does not completely determine the value of B, then B
and C will usually be dependent. Although the former is not uncommon,
the stability assumption excludes it.

The next cases are diverging or converging causal influences, like those
shown in the middle and on the right in figure 9.1. The main problems
with these structures are whether B 1l C' | A (middle) and AL B | C
(right) hold or not. The assumptions by which d-separation and the stability
assumption handle these problems are:

Common Cause Assumption (Causal Markov Assumption)

Given all of their (direct or indirect) common causes, two effects are inde-
pendent, i.e., in the structure in the middle of figure 9.1 the attributes B
and C are independent given A. If B and C are still dependent given A,
it is postulated that either B has a causal influence on C or vice versa or
there is another (hidden) common cause of B and C' (apart from A). That
is, the causal structure is considered to be incomplete.
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®/ \® Figure 9.2: Interaction of common cause

\ and common effect assumption.

@/

Common Effect Assumption

Given one of their (direct or indirect) common effects, two causes are de-
pendent, i.e., in the structure on the right of figure 9.1 the attributes A
and B are dependent given C'. For applications of Bayesian networks this
assumption is not very important, since little is lost if it is assumed that A
and B are dependent given C' though they are not—only the storage savings
resulting from a possible decomposition cannot be exploited. However, for
inferring causal relations this assumption is very important.

Note that the common cause assumption necessarily holds, if causation is
interpreted as functional dependence. Then it only says that fixing all the
arguments that (directly or indirectly) enter both functions associated with
the two effects renders the effects independent. But this is obvious, since any
variation still possible has to be due to independent arguments that enter
only one function. This is the main reason why I rejected the interpretation
of causation as functional dependence. It is not at all obvious that causation
should satisfy the common cause assumption.

A situation with diverging causal influences also poses another problem:
Are B and C independent unconditionally? In most situation they are not,
but if, for example, dom(A) = {0,1,2,3}, dom(B) = dom(C) = {0,1} and
B = Amod 2, C = Adiv2, then they will be. The stability assumption
rules out this not very unlikely possibility.

The two assumptions also interact and this can lead to a priority prob-
lem. For example in figure 9.2: Given A as well as D, are B and C inde-
pendent? The common cause assumption affirms this, the common effect
assumption denies it. Since the stability assumption requires B and C to
be dependent, it contains the assumption that in case of a tie the common
effect assumption has the upper hand. Note that from strict functional
dependence B 1L C' | {A, D} follows.

In the following I examine some of the assumptions identified above in
more detail, especially the common cause and the common effect assump-
tion, which are at the heart of the alleged asymmetry of causal relations.
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Figure 9.3: Left: Y-shaped tube arrangement into which a ball is dropped.
Since it can reappear only at L or at R, but not at both, the correspond-
ing variables are dependent. Right: Billiard with round obstacles exhibits
sensitive dependence on the initial conditions.

Common Cause Assumption (Causal Markov Assumption)

Consider a Y-shaped arrangement of tubes like the one shown on the left
in figure 9.3. If a ball is dropped into this arrangement, it will reappear
shortly afterwards at one of the two outlets. If we neglect the time it takes
the ball to travel through the tubes, we can define three binary variables T,
L, and R indicating whether there is a ball at the top T', at the left outlet L
or at the right outlet R. Obviously, whether there is a ball at T" or not has
a causal influence on L and on R. But L and R are dependent given T,
because the ball can reappear only at one outlet.

At first sight the common cause assumption seems to fail in this situa-
tion. However, we can always assume that there is a hidden common cause,
for instance, an imperfectness of the ball or the tubes, which influences its
course. If we knew the state of this cause, the outlet at which the ball
will reappear could be determined and hence the common cause assump-
tion would hold. Obviously, if there is a dependence between two effects,
we can always say that there must be another hidden common cause. We
just did not find it, because we did not look hard enough. Since this is a
statement of existence, it cannot be disproven. Although using statements
that cannot be falsified is bad scientific methodology [Popper 1934], I have
even better grounds on which to reject such an explanation.

The idea that, in principle, we could discover the causes that deter-
mine the course of the ball is deeply rooted in the mechanistic paradigm
of physics, which is perhaps best symbolized by Laplace’s demon.® But

6Laplace wrote [Kline 1980]: “We may regard the present state of the universe as the
effect of its past and the cause of its future. An intellect which at any given moment knew
all the forces that animate nature and the mutual positions of the beings that compose
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quantum theory suggests that such a view is wrong [Feynman et al. 1965,
von Neumann 1996]: It may very well be that even if we look hard enough,
we will not find a hidden common cause to explain the dependence.

To elaborate a little: Among the fundamental statements of quantum
mechanics are Heisenberg’s uncertainty relations. One of these states that
Ax - Ap, > % That is, we cannot measure both the location x and the
momentum p,, of a particle with arbitrary precision in such a way that we
can predict its exact trajectory. There is a finite upper bound due to the
unavoidable interaction with the observed particle. However, in our example
we may need to predict the exact trajectory of the ball in order to determine
the outlet with certainty.

The objection may be raised that % is too small to have any observable
influence. To refute this, we could add to our example an “uncertainty
amplifier” based on the ideas studied in chaos theory, i.e., a system that
exhibits a sensitive dependence on the initial conditions. A simple example
is billiard with round obstacles [Ruelle 1993], as shown on the right in fig-
ure 9.3. The two trajectories of the billiard ball b, which at the beginning
differ only by about ﬁ degree, differ by about 100 degrees after only four
collisions. (This is a precisely computed example, not a sketch.) Therefore,
if we add a wider tube containing spheres or semi-spheres in front of the
inlet T', it is plausible that even a tiny change of the position or the momen-
tum of the ball at the new inlet may change the outlet at which the ball will
reappear. Therefore quantum mechanical uncertainty cannot be neglected.

Another objection is that there could be “hidden parameters”, which,
if discovered, would remove the statistical nature of quantum mechanics.
However, as [von Neumann 1996] showed’, this is tantamount to claiming
that quantum mechanics is false—a claim for which we do not have any
convincing evidence.

it, if this intellect were vast enough to submit the data to analysis, could condense into
a single formula the movement of the greatest bodies of the universe and that of the
lightest atom: for such an intellect nothing would be uncertain; and the future just like
the past would be present before its eyes.”

“von Neumann wrote: “[...] the established results of quantum mechanics can never
be re-derived with their [the hidden parameters’] help. In fact, we have even ascertained
that it is impossible that the same physical quantities exist with the same function
connections [...], if other variables (i.e., “hidden parameters”) should exist in addition to
the wave functions. Nor would it help if there existed other, as yet undiscovered physical
quantities, [...], because the relations assumed by quantum mechanics [...] would have to
fail already for the known quantities [...] It is therefore not, as often assumed, a question
of a re-interpretation of quantum mechanics, — the present system of quantum mechanics
would have to be objectively false, in order that another description of the elementary
processes than the statistical one be possible.”
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sentence Table 9.1: Death sentencing and
murderer | death other | 3 race in Florida 1973-1979. The hy-
black 59 2448 | 2507 pothesis that the two attributes are

. independent can be rejected only

white 72 2185 | 2257 with an error probability greater

> 131 4633 | 4764 than 7.8% (according to a x? test).
victim | murderer | death other Table 9.2: Death sentencing and
in Florida 1973-1 full ta-
black black 11 9209 | race in Florida 19731979, full ta
hit 0 11 ble. For white victims the hypoth-
_ white esis that the two other attributes
white bla.ck 48 239 are independent can be rejected
white 2 2074 with an error probability less than
0.01% (according to a x? test).
@ @ @ Figure 9.4: Core inferred by the inductive
causation algorithm for the above data.

Common Effect Assumption

According to [Salmon 1984], it seems to be difficult to come up with an
example in which the common effect assumption does not hold. Part of the
problem seems to be that most macroscopic phenomena are described by
continuous real-valued functions, but there is no continuous n-ary function,
n > 2, which is injective (and would be a simple, though not the only
possible counterexample).

However, there are real world examples that come close, for instance,
statistical data concerning death sentencing and race in Florida 1973-1979
(according to [Krippendorf 1986] as cited in [Whittaker 1990]). From ta-
ble 9.1 it is plausible to assume that murderer and sentence are independent.
Splitting the data w.r.t. victim shows that they are strongly dependent given
this variable (see table 9.2). Hence the inductive causation algorithm yields
the causal structure shown in figure 9.4. But this is not acceptable: A
direct causal influence of sentence on wvictim is obviously impossible (since
the sentence follows the murder in time), while a common cause is hardly
imaginable. The most natural explanation of the data, namely that victim
has a causal influence on sentence, is explicitly ruled out by the algorithm.
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Figure 9.5: The Fredkin gate [Fredkin and Toffoli 1982].

This example shows that an argument mentioned in [Pearl and Verma
1991a] in favor of the stability assumption is not convincing. It refers to
[Spirtes et al. 1989], where it is shown that, if the parameters of a distri-
bution are chosen at random from any reasonable distribution, then any
unstable distribution has measure zero. But the problem is that this is not
the correct set of distributions to look at. When trying to infer causal influ-
ence, we have to take into account all distributions that could be mistaken
for an unstable distribution. Indeed, the true probability distribution in our
example may very well be stable, i.e., murderer and sentence may actually
be marginally dependent. But the distribution in the sample is so close to
an independent distribution that it may very well be confused with one.

In addition, the special parameter assignments leading to unstable dis-
tributions may have high probability. For example, it would be reasonable
to assume that two variables are governed by the same probability distribu-
tion, if they were the results of structurally equivalent processes. Yet such
an assumption can lead to an unstable distribution, especially in a situa-
tion, in which common cause and common effect assumption interact. For
instance, for a Fredkin gate [Fredkin and Toffoli 1982] (a universal gate for
computations in conservative logic, see figure 9.5), the two outputs C' and
D are independent if the two inputs A and B assume the value 1 with the
same probability. In this case, as one can easily verify, the causal direction
assigned to the connection A—C' depends on whether the variables A, B,
and C or the variables A, C, and D are observed.

9.6 Evaluation
The discussion of the assumptions underlying the inductive causation algo-

rithm showed that at least some of them can be reasonably doubted. In
addition, the inductive causation algorithm cannot deal adequately with
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accidental correlations. But we saw in section 9.1 that we sometimes reject
a causal explanation in spite of the statistical data supporting such a claim.
In my opinion it is very important for an adequate theory of causation to
explain such a rejection.® In summary, when planning to apply this algo-
rithm, one should carefully check whether the assumptions can be accepted
and whether the underlying interpretation of causality is adequate for the
problem at hand.

A related question is: Given a causal relation between two variables, we
are usually much more confident in an inference from the state of one of
them to the state of the other than we would be if our reasoning was based
only on a number of similar cases we observed in the past. But the inductive
causation algorithm infers causation from a set of past observations, namely
a sampled probability distribution. If the result is not substantiated by
other means, in particular, by a model of the underlying mechanism, can
we be any more confident in our reasoning than we would be if we based it
directly on the observed correlations? It seems to be obvious that we can
not. Hence the question arises whether the inductive causation algorithm
is more than a heuristic method to point out possible causal connections,
which then have to be further investigated. Of course, this does not discredit
the inductive causation algorithm, since good heuristics are a very valuable
thing to have. However, it warns against high expectations and emphasizes
that this algorithm should not be seen as the wultima ratio for inferences
about causality.

8 An approach to causation that does not suffer from this deficiency was suggested by
K. Lorenz and later developed e.g. in [Vollmer 1981]. It models causal connections as a
transfer of energy. [Lemmer 1996] suggests a closely related model.



Chapter 10

Concluding Remarks

In this chapter I conclude my discussion of graphical models by pointing
out their practical value with an application and by studying some open
problems. In section 10.1 I describe briefly an application of learning prob-
abilistic networks from data for fault analysis in automobiles, which was part
of a cooperation between the Otto-von-Guericke University of Magdeburg
and the DaimlerChrysler corporation [Borgelt et al. 1998b]. In section 10.2 1
discuss some open problems connected to possibility theory and possibilistic
networks that may provide directions for my future research.

10.1 Application at DaimlerChrysler

Even high quality products like Mercedes-Benz vehicles sometimes show an
undesired behavior. As a major concern of the DaimlerChrysler corpora-
tion is to further improve the quality of their products, a lot of effort is
dedicated to finding the causes of these faults in order to be able to pre-
vent similar faults from occurring in the future. In order to support these
efforts DaimlerChryler maintains a quality information database to control
the quality of produced vehicles. In this database for every produced vehicle
it is recorded its configuration (product line, motor type, special equipment
etc.) and any faults detected during production or maintenance.

In a cooperation with the Data Mining group of the DaimlerCrysler Re-
search and Technology Center Ulm it was decided to try an approach based
on learning Bayesian networks from data in order to detect dependences
between faults and vehicle properties. As a consequence I wrote the INES

285
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el. sliding | | air con- cruise tire anti slip
roof ditioning control type control
battery compressor brake
fault fault fault

Figure 10.1: A section of a fictitious two-layered network for the depen-
dences of faults (bottom) on vehicle properties (top).

(fictitious) frequency of air conditioning
battery faults with without
electrical with 9 % 3%
sliding roof — without 3% 2 %

Figure 10.2: A fictitious dependence of battery faults on the presence or
absence of an electrical sliding roof and an air conditioning system.

program (Induction of NEtwork Structures), a prototype implementation of
several learning algorithms for probabilistic and possibilistic networks. This
program was already mentioned in sections 7.4 and 8.3, where it was used
to produce the reported experimental results.

The idea used in the application of INES to the vehicle database is very
simple. Since we are interested in causes of faults, a two-layered network
is learned, in which the top layer contains attributes describing the vehicle
configuration and the bottom layer contains attributes describing possible
vehicle faults. This is illustrated in figures 10.1 and 10.2. (Since real depen-
dences and numbers are, of course, highly confidential, these figures show
fictitious examples. Any resemblance to actual dependences and numbers
is purely coincidental.) Figure 10.1 shows a possible learned two-layered
network, figure 10.2 the frequency distribution associated with the first of
its subnets. Since in this example the fault rate for cars with an air con-
ditioning system and an electrical sliding roof is considerably higher than
that of cars without one or both of these items, we can conjecture that the
increased consumption of electrical energy due to installed air conditioning
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and electrical sliding roof is a cause of increased battery faults. Of course,
such a conjecture has to be substantiated by a technical analysis.

Although specific results are confidential, I can remark here that when
applied to a truck database INES easily found a dependence pointing to a
possible cause of a fault, which was already known to the domain experts,
but had taken them considerable effort to discover “manually”. Other de-
pendences found were welcomed by the domain experts as valuable starting
points for further technical investigations. Hence we can conclude that
learning probabilistic networks is a very useful method to support the de-
tection of product weaknesses.

It should be noted that this application also provided some important
impulses for my research. For example, the extension of the K2 metric to
a family of evaluation measures by introducing a parameter «, which was
described in section 7.2.4, was in part triggered by practical problems, which
turned up in the cooperation with DaimlerChrysler. In tests of the learning
algorithm against expert knowledge sometimes dependences of faults on the
vehicle equipment, which were known to the domain experts, could not be
discovered if the K2 metric was used. If Shannon information gain was used
instead, the desired dependences could be detected.

A closer inspection revealed that the dependences that were difficult to
discover were rather weak. This made it plausible why they were not de-
tected with the K2 metric: As discussed in section 7.2.4 the K2 metric is
biased towards simpler models. Thus another parent attribute is selected
only, if the improvement of fit outweighs the penalty for a more complex
model. However, for this to be the case the dependence has to be fairly
strong. Therefore, due to the penalty, the mentioned measures are some-
times not sensitive enough (at least for the application described above).

On the other hand, Shannon information gain has its drawbacks, too.
As discussed in section 7.2.4 this measure is biased towards many-valued
attributes and thus, if the parent attributes are combined into one pseudo-
attribute (as described in section 7.2.1), Shannon information gain tends to
“overfit” the data, because it is over-sensitive to random fluctuations in the
data, and thus indicates pseudo-dependences.

Consequently, the desire awoke to have a parameter to control the sen-
sitivity of the evaluation measure w.r.t. dependences between attributes.
Since by adjusting the value of the parameter « of the extended K2 metric
(but also the reduction of description length measures), a smooth transition
from this (less sensitive) measure to the (more sensitive) Shannon informa-
tion gain can be achieved, it is such a parameter. It allows us to control the
sensitivity of the evaluation measure in a very simple way.
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Imprecise Database: T ap a2 as P a; ay a3

= B= 12 | 24 | 36 4 | 7 |1
(A =a, 2 bs | 6 | 60 | 6o bs | 60 | %0 | G0
(4= a, B=b) 12 | 24 3 | 7
( = G,3, B=7 ) b2 - 60 | 60 bQ — 80 | 80
(A B = bs) b | 24| _ |12 bl 24| _ | 4
(Ae {az,ag} B € {by,b3}) 1|60 60 1|60 60

Figure 10.3: Possibility versus probability computed using the insufficient
reason principle. In this example they lead to different decisions.

10.2 Open Problems

Of course, there is a variety of open problems in connection with inference
networks and learning them from data. Most of them arise from the com-
plexity of, for instance, exact propagation and structural learning. In this
section, however, I focus on some problems that are specific to possibility
theory and possibilistic networks.

Possibility theory (in the interpretation considered here, cf. section 2.4)
is intended to provide means to deal with imprecision, seen as set-valued
data, under uncertainty. However, possibility theory is not the only ap-
proach to handle imprecision in such cases. If we accept the context model
as a starting point, the toughest competitor of a possibilistic approach is
an application of the insufficient reason principle to the sets of alternatives
assigned to the contexts (cf. section 2.4.3). Often this approach is even seen
as superior to a possibilistic approach. To see why, consider the simple im-
precise database with five tuples shown in figure 3.17. It is defined over the
the two attributes A and B, with respective domains dom(A4) = {a1, as, a3}
and dom(B) = {b1,ba,b3}. The third to fifth tuple of this database are
imprecise and each of them represents several precise tuples. (The question
marks in the third and the fourth tuple represent a missing value, which is
interpreted as an indicator that all values of the domain are possible.)

If we compute from this database the degrees of possibility according
to the context model (cf. section 5.3, assuming that all tuples bear the
same weight), we get the possibility distribution Shown in the middle of
figure 10.3. For example, a degree of possibility of = @ is assigned to the
tuple (as, ba), because this precise tuple is contalned in two of the five tuples
(the third and the fifth). Alternatively, we may use the insufficient reason
principle to assign a probability mass of % to each precise tuple contained in
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an imprecise tuple, where k is the number of precise tuples contained in the
considered imprecise tuple. For example, a probability mass of % is assigned
to each of the four tuples (a2, ba), (a2, bs), (as,bs2), and (as, bs) contained in
the fifth tuple of the database. Thus we arrive at the probability distribution
labeled with a P on the right of figure 10.3. For example, to the tuple (a3, b2)
the probability 1 -1 + 1.1 = I is assigned, because it is one of the three
possible precise tuples of the third tuple in the database and one of the
four possible precise tuples of the fifth tuple in the database. For simplicity,
I call this probability distribution the IRP probability distribution, where
IRP stands for “insufficient reason principle”.

Suppose now that the database and the distributions computed from it
represented the (prior) knowledge about some domain and that you had to
decide on a tuple—without being able to gather further information about
the current state of the domain. You could base your decision on the pos-
sibility distribution, which suggests the tuple (as,bs), or on the IRP prob-
ability distribution, which suggests the tuple (a1,b;). I believe that in this
example most people would agree that the tuple (a1, 1) is a much better
choice, because in the database there is evidence of two cases, in which the
tuple (a1,b1) definitely was the correct description of the prevailing state.
In contrast to this, the tuple (as,bs) is supported by three cases, but in all
of them it was only possible among others. Although in this situation it
is logically possible that the tuple (a3, bs) was the correct one in all three
cases, we usually consider this to be unlikely and therefore decide against
this possibility. As a consequence in this situation the insufficient reason
principle approach seems to be superior to the possibilistic one.

On the other hand, consider the database shown in figure 10.3 with the
first tuple replaced by (a1, bs). This only changes the values in the two lower
left squares in both the possibility distribution and IRP probability distribu-
tion tables from % or 0, respectively, to %. Still the possibility distribution
suggests to decide on the tuple (as, b3), whereas the IRP probability distri-
bution still expresses a preference (though reduced) for the tuple (aj,by).
However, with this modification it is less clear that the decision based on
the IRP probability distribution is actually better than the one based on
the IRP probability distribution. The reason seems to be that the upper
bound estimate for the probability of the tuple (as,bs) (which is identical
to its degree of possibility) is so much higher than the IRP probability esti-
mate. Maybe intuitively we take this into account by (too optimistically?)
“correcting” the relative values of the probability estimates, so that the
tuple (as,bs) is preferred to the tuple (aq,b1), for which the upper bound
estimate coincides with the IRP probability estimate.
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It is clear that one can easily make the situation more extreme by con-
sidering a larger number of imprecise tuples overlapping on a specific point
of the joint domain. To make the IRP probability distribution prefer a point
for which there was only one example, we only have to make the overlapping
tuples sufficiently imprecise (this can easily be achieved by adding values to
the domains of the attributes A and B, or, more naturally, by considering
additional attributes). I guess that there is a point at which one rejects the
decision suggested by the IRP probability distribution.

I am not sure, though, whether this is an argument in favor of possibility
theory (in the interpretation considered here). In the first place, there
are several situations, in which the decision based on the IRP probability
estimates is clearly better (see above). Secondly, even if it could be shown
that on average people would prefer the decision resulting from possibility
theory in cases as the one discussed, this would not prove that this decision is
reasonable. Several examples are known, in which the involved probabilities
are precisely defined and hence the insufficient reason principle need not be
called upon, and nevertheless people on average decide in such a way as
does not maximize their utility. Hence, this may only point out a(nother)
deficiency in common sense reasoning.

Another open problem that is connected to the above considerations
results from the fact that possibility distributions (in the interpretation
considered here) essentially model negative information. The reason is that
in each context it is not important, which values are possible (this we know
from the domain definitions of the attributes), but which values are impos-
sible, i.e., can be excluded. As a consequence, an unprojected possibility
distribution is some kind of upper bound for the probability (cf. section 2.4).
It would be worthwhile to consider whether this negative information can
be complemented by positive information, which could take the form of a
necessity distribution. Of course, this idea is not new. Research on possi-
bility theory has already come up with a definition of a necessity measure.
However, it is usually defined as N(E) = 1 — II(E) and this definition de-
pends heavily on the underlying possibility distribution being normalized—a
prerequisite I rejected in chapter 2.

In contrast to this, I prefer to rely on the context model, which directly
suggests an idea for a necessity distribution: Assign to each elementary
event the sum of the weights of all contexts in which this is the only possible
event, i.e., in which it necessary. The natural extension operation to sets of
elementary discernable events and thus the natural projection operation for
necessity distributions would be the minimum, their interpretation a lower
bound for the probability.
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However, if the database is sufficiently imprecise—it suffices, if there are
no precise tuples in it—, then the necessity distribution as defined above
will simply be zero everywhere and thus entirely useless. What is missing
is a consistent way to take into account the amount of imprecision that is
present in the contexts, which could easily be measured as the number of
precise tuples that are possible in a given context. The simplest way to
do so is, of course, the insufficient reason principle, which distributes the
probability mass of the context equally on the tuples possible in it, thus
providing a direct account of the “extent” of the imprecision.

Relying exclusively on the insufficient reason principle, though, suffers
from the drawback that any information about the possible variance in the
probability of a precise tuple is lost. To mitigate this drawback it may
be worthwhile to study a hybrid model that employs three types of distri-
butions: possibility, necessity, and IRP probability distributions. In this
model the IRP probability distributions would model the “best” expecta-
tion, while the possibility and necessity distributions provide information on
the probability bounds, which in certain situations may change the decision
made (compare the example I provided above). Maybe these considerations
point out some paths for future research, especially, since one can draw on
already existing work on upper and lower probabilities (e.g. [Walley 1991]).
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Appendix A

Proofs of Theorems

In this appendix the proofs of all theorems of this thesis can be found.
For reading convenience each section restates the theorem proven in it.

A.1 Proof of Theorem 4.1

Theorem 4.1 Conditional probabilistic independence as well as conditional
possibilistic independence satisfy the semi-graphoid azioms.' If the consid-
ered joint probability distribution is strictly positive, conditional probabilistic
independence satisfies the graphoid axioms.

Proof: Since the proof of the semi-graphoid axioms is very similar for the
two calculi, I only provide a proof for the possibilistic case. A proof for the
probabilistic case can be derived from it very easily.?

That conditional possibilistic independence satisfies the semi-graphoid
axioms can easily be demonstrated by drawing on the axioms of defini-
tion 2.5 on page 41, the notion of a conditional degree of possibility as
defined in definition 2.9 on page 49 and the notion of conditional possibilis-
tic independence as defined in definition 3.15 on page 88 (extended to sets
of attributes). In the following W, X, Y, and Z are four disjoint sets of
attributes. Expressions like W =w, X =z, Y =y, and Z = z are used as

1The semi-graphoid and the graphoid axioms are defined in definition 4.1 on page 94.

2] chose the possibilistic case, because a spelled out proof for the probabilistic case is
likely to be found in introductory books on probabilistic graphical models, for example,
in [Castillo et al. 1997]. On the other hand, [Pearl 1988] and [Lauritzen 1996] do not
provide a proof, but leave it as an exercise for the reader.

293
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abbreviations for A 4 oy, Ai = a; etc. Although this is somewhat sloppy, it
simplifies the notation considerably.

1. symmetry:
X1pY |Z
= Va,y,2,II(Z=2)>0:
IX=zY=y|Z=2)
=min{ll(X =z |Z=2),I(Y =y | Z=2)}
= Va,y,z,R(Z=2)>0:
NY=yX=x|Z=2)
=min{ll(Y =y |Z=2),I(X=x|Z=2)}
= YUnX|Z

2. decomposition:
WUXUyY | Z
= VYw,z,y,2,I(Z=2)>0:
OW=wX=zY=y|Z=xz)
=min{lI(W=w,X=z|Z=2),I(Y =y |Z=2)}
= Yw,z,y,2:
nOW=wX=2xY=y,Z =2)
=min{lI(W=w,X =2,Z =2),I(Y =y,Z =2)}
= Yw,z,y,2:
(X =zY=y2Z=z2)
=V, W=wX=2Y=y72=2)
:mng(W:w,X:as,Yzy,Zzz)
= mgxmin{H(W =w,X=u2,7=2),I(Y =y, Z =2)}
= min{mng(W =w,X=u22Z=2),I(Y =y, Z=2)}
=min{II(\/ , W =w,X =2,7Z =2),II(Y =y, Z = 2)}
=min{ll(X =2,Z=2),RY =y,Z =2)}
= Va,y,2,II(Z=2)>0:
I(X=z,Y=y|Z=%)
=min{ll(X =z |Z=2),I(Y =y | Z=2)}
= XUnY|Z
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3. weak union:

WUXUyY|Z
= Yw,x,y,z,I(Z=2)>0:
OW=w,X=x,Y=yl|Z=2z2)
=min{ll(W=w,X=2|Z=2),I(Y=y|Z=2)}
= Yw,z,y,2:

OW=w,X=2Y=y,Z=2z2)
=min{ll(W=w,X=2,Z=2),II(Y =y, Z =2)}
=min{ll(W =w, X =2,7Z = z),

IV, W=wY=y,7Z=2z2)}
=min{ll(W =w, X =z,7Z = z),
ni)a/XH(W:w’,Y =y, Z=2)}

>min{lI(W=w,X =2,Z=2),I(W=wY =y, Z =2)}
>I(W=w,X=2Y=y,7Z=2)
= Yw,z,y,2:
OW=wX=2Y=y,Z=2z2)
=min{ll(W=w,X =2,Z=2),I(W=wY =y, Z =2)}
= VYw,z,y,2,1(Z=2,W=w)>0:
nW=w,X=z,Y=y|Z=z2)
=min{ll(X =z | Z=2UW =w),
NY=y|Z=zUW=w)}
= XUpY|ZUw

4. contraction:

(WlnX|2) A (WY |ZUX)

= Yw,x,y,2,11(Z=2)>0:
OW=wX=x|2Z=xz)
=min{ll(W=w|Z=2),I(X=z|Z=2)}

AN Yw,z,y, 2z, I(X =2,Z=2)>0:
OW=wY=y|X=27=2)
=min{llW=w|X=2,Z=2),1(Y=y|X=2,Z=2)}
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= Yw,z,y,2:
oWwW=wX=ux,7Z=z)
=min{ll(W =w,Z =2),I[(X =x,7Z = 2)}
AN Yw,z,y,z:
oW =wY =y,X=2,7Z =2)
=min{lI(W=w,X =2,Z=2),I(Y =y, X =2,Z = z)}
= Yw,z,y,2:
OW=wY=y,X=2,7Z=2)
=min{ll(W =w,Z =2),II(X =x,Z = 2),
(Y =y, X =u2,Z=2)}
=min{ll(W =w,Z =2),II(Y =y, X =2,Z = 2)}
= Yw,z,y,2,11(Z=2)>0:
OW=wX=zY=y|Z=2z)
=min{ll(W=w|Z=2),I(X=2Y=y|Z=2)}
= WlpXUuY|Z

Note that these derivations require II(Z = z) > 0 whenever Z = z is
the condition of a conditional possibility (although such a requirement is
missing in definition 2.9 on page 49), in order to strengthen the analogy
to the probabilistic case. Note also that this requirement is dropped in
the transition to unconditional degrees of possibility, since the relations for
unconditional degrees of possibility trivially also hold for P(Z = z) = 0
(as in the probabilistic case).

The intersection axiom can be demonstrated to hold for strictly posi-
tive probability distributions by drawing on the basic axioms of probability
theory and the definition of a conditional probability and conditional prob-
abilistic independence as follows:

(WlpY|ZUX) A (XLUpY|ZUW)
= Yw,z,y,2:
PW=wY=y|Z=2X=x1x)
=PW=w|Z=2X=12)-PY=y|Z=2X=n1)
AN Yw,z,y,z:
PX=yY=y|Z=2W=uw)
=PX=z|Z=2W=w)-PY=y|Z=2W=w)
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= Yw,z,y,z:
PW=wX=yY=y,Z=2)
=PW=w,X=2,Z=2)-PY=y|Z=2X=2)
A Yw,z,y,z:
PW=w,X=yY=y,7Z=2)
=PW=w,X=2,Z=2)-PY=y|Z=2W=w)
= Yw,z,y,2:
PY=y|Z=2,X=2)=PY =y|Z=2W=uw).
This equation can only hold for all possible assignments z and w, if
Yw, ,y,z :
PY=y|Z=2zX=2) =PY =y|Z=%) and
PY=y|Z=2,W=w)=PY =y|Z=n2).
Note that this argument can fail if the joint probability distribution is not
strictly positive. For example, it may be P(X = z,Z = z) = 0 and thus

P(Y =y | Z = z, X = x) may not be defined, although P(Y =y | Z = z) is.
Substituting this result back into the first two equations we get

Yw, x,y, 2 :
PW=wY=y|Z=2zX=u1x)
=PW=w|Z=2X=2)-PY=y|Z=2)
AN Yw,z,y,z:
PX=yY=y|Z=2z,W=uw)
=PX=z|Z=2zW=w)-PY=y|Z=2)
= Yw,z,y,2:
PW=wX=yY=y72=2z2)
=PY=y|Z=z2)-PW=wX=2,7Z=z2)
= Yw,z,y,2:
PW=wX=yY=y|Z=2)
=PY=y|Z=2)-PW=wX=2z|Z=2)
= WuXlUpY|Z
Note that no requirements P(Z = z) > 0, P(Y = y,Z = z) > 0 etc. are

needed, because the probability distribution is presupposed to be strictly
positive and therefore these requirements necessarily hold. O
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A.2 Proof of Theorem 4.2

Theorem 4.2 If a joint distribution § over a set of attributes U satisfies the
graphoid axioms w.r.t. a given notion of conditional independence, then the
pairwise, the local, and the global Markov property of an undirected graph
G = (U,E) are equivalent.®

Proof: From the observations made in the paragraph following the defi-
nition of the Markov properties for undirected graphs (definition 4.16 on
page 107) we know that the global Markov property implies the local and
that, if the weak union axiom holds, the local Markov property implies the
pairwise. So all that is left to show is that, given the graphoid axioms, the
pairwise Markov property implies the global.

The idea of the proof is very simple, as already pointed out on page 108.
Consider three arbitrary disjoint subsets X, Y, and Z of nodes such that
(X | Z|Y)q. We have to show that X Ll sY | Z follows from the pairwise
conditional independence statements that correspond to non-adjacent at-
tributes. To do so we start from an arbitrary statement A 1l s B | U—{A, B}
with A € X and B € Y, and then shifting nodes from the separating set
to the separated sets, thus extending A to (a superset of) X and B to (a
superset of) Y and shrinking U — {A, B} to Z. The shifting is done by
applying the intersection axiom, drawing on other pairwise conditional in-
dependence statements. Finally, any excess attributes in the separated sets
are cut away with the help of the decomposition axiom.

Formally, the proof is carried out by backward or descending induction
[Pear]l 1988, Lauritzen 1996] over the number n of nodes in the separating
set Z. If n = |U| — 2 then X and Y both contain exactly one node and
thus the conditional independence w.r.t. ¢ follows directly from the pairwise
Markov property (induction anchor).

So assume that |Z| = n < |V|—2 and that separation implies conditional
independence for all separating sets S with more than n elements (induction
hypothesis). We first assume that U = X UY U Z, implying that at least
one of X and Y has more than one element, say, X. Consider an attribute
Ae X: ZU{A} separates X — {A} from Y and Z U (X — {A}) separates
A from Y. Thus by the induction hypothesis we have

X —{A}LsY | ZU{A} and {A}L;Y | ZU(X — {A}).

Applying the intersection axiom yields X 1l5Y | Z.

3The graphoid axioms are defined in definition 4.1 on page 94 and the Markov prop-
erties of undirected graphs are defined in definition 4.16 on page 107.
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If XUYUZ C U, we choose an attribute A € U — (X UY UZ). We know
that Z U {A} separates X and Y (due to the monotony of u-separation,
cf. page 101, expressed by the strong union axiom, cf. page 102), implying
X UsY | ZU{A} (by the induction hypothesis). Furthermore, either X UZ
separates Y from A or Y U Z separates X from A (due to the transitivity
of u-separation, cf. page 102, together with the strong union axiom, cf.
page 102). The former case yields {A} 1lsY | X U Z (by the induction
hypothesis) and by applying the intersection and the decomposition axiom
we derive X Ll 5Y | Z. The latter case is analogous. O

A.3 Proof of Theorem 4.3

Theorem 4.2 If a three-place relation (- 1Ls- | ) representing the set of
conditional independence statements that hold in a given joint distribution &
over a set U of attributes satisfies the semi-graphoid azioms, then the local
and the global Markov property of a directed acyclic graph G = (U, E) are
equivalent. If it satisfies the graphoid axioms, then the pairwise, the local,
and the global Markov property are equivalent.*

Proof: As already mentioned on page 110, I had to construct the proof of
the first part of this theorem myself, because the proof given, for example,
in [Lauritzen 1996] refers to factorizations of probability distributions and
is thus useless for the above more general version of the theorem. My proof
is, however, inspired by the factorization proof.

From the observations made in the paragraph following the definition
of the Markov properties for directed graphs (definition 4.17 on page 109),
namely that the set of parents of a node obviously d-separates it from all its
other non-descendants, we know that the global Markov property implies
the local. Therefore, for the first part of the theorem, we only have to show
that the local Markov property implies the global.

So let X, Y, and Z be three disjoint subsets of attributes, such that
X and Y are d-separated by Z in the graph G. We have to show that
X UsY | Z follows from the local conditional independence statements
A 115 nondescs(A) — parents(A) | parents(A) that can be derived from the
local Markov property of the graph G.

The proof consists of two phases. In the first phase the graph is sim-
plified by removing nodes that do not have a bearing on the conditional

4The graphoid and the semi-graphoid axioms are defined in definition 4.1 on page 94
and the Markov properties of directed graphs are defined in definition 4.17 on page 109.
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independence statement to be derived. In the second phase the remaining
attributes of the graph are added step by step to a set of three conditional
independence statements. After all nodes have been added the desired con-
ditional independence statement can be derived from one of these statements
by applying the decomposition axiom.

In the first phase a sequence of graphs Gy = G Gl, .. ék is formed.
Each graph G’l+1 is constructed from G; by removing an arbltrary childless
node not in X UY U Z (and, of course, all edges leading to it). The process
stops when no more nodes can be removed. In the following I show by in-
duction on the graph sequence that all local conditional independence state-
ments derivable from the resulting graph Gy, are implied by those derivable
from the original graph G. Clearly, all such statements derivable from Go
are implied by those derivable from C_j, because the two graphs are identi-
cal (induction anchor). So suppose that all local conditional independence
statements derivable from G; are implied by those derivable from G (induc-
tion hypothesis). Let B be the node that is removed from G to construct
éi+1 and let A be an arbitrary node of éi+1. Note first that B cannot be a
parent of A in éi, since then B would not be childless in éi, contradicting
the construction. If B is a descendant of A in éi, then the local conditional
independence statement A 1l s nondescs(A) — parents(A) | parents(A) is
identical in C_jv and in C_fiH and thus must be implied by the statements
derivable from G due to the induction hypothesis. If B is a non-descendant
of Ain G; (but not a parent, see above), it is

A lls nondescs 5 (A) — parents (A) | parentsz (A)
= Al (nondescséHl (A) — parentsg, | (A))U{B} | parentsg, (A)

and therefore the local conditional independence statement
Alls nondescséHl(A) - parentséHl(A) | parentséHl(A)

can be derived by applying the decomposition axiom. Together with the
induction hypothesis we have that it is implied by the local conditional
independence statements derivable from G. This completes the induction.
The set of nodes of the resulting graph Gy, is often called the smallest
ancestral set of X UY U Z. An ancestral set is a set of nodes of a directed
graph that is closed under the ancestor relation, i.e., for each node in the set
all its ancestors are also in the set. A set S of nodes is called the smallest
ancestral set of a set W of nodes, if it is an ancestral set containing W and
there is no true subset of S that is also an ancestral set containing W. (I do
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not prove, though, that the set of nodes of the resulting graph Gy, is indeed
a smallest ancestral set, because this is not relevant for the proof.)

In the second phase of the proof the desired conditional independence
statement is derived from the local conditional independence statements
that can be read from ék This is done by forming four sequences (W;);er,
(Xi)ier, (Ya)ier, and (Z;)ier, I =0, ..., |Ug|}, of disjoint subsets of nodes,
such that certain conditional independence statements hold for all . These
sequences are constructed as follows: The first elements are all empty, i.e.,
Wy =Xo =Yy =2y =0. Let o: U, — {1,...,|Ux|} be a topological
order® of the nodes in G and let Ait1, 7> 0, be the (i + 1)-th node of this
topological order, i.e., 0(A;+1) = i+ 1. In the step from i to (i 4 1) the node
A,+1 is added to exactly one of the sets W;, X;, Y;, and Z; according to

WiU{Ain1}, A ¢ XUYUZA (A | Z| X)g,

Wipn = ANAia | Z1Y)g,
W otherwise,
X; U {Ai+1}, ifAdi1eXV

Xiv1 = (A1 ¢ Z N (A1 | Z | X)g,),
X, otherwise,
Y, U {Ai+1}, if Ai+1 ey v

Yitsp = (Aip1 ¢ Z N (A1 | Z Y )g,),
Y; otherwise,

7 . Z; U {Ai—i-l}a if A¢+1 S Z,

ol = Z; otherwise.

From this construction it is clear that VA € W; UX,UY;UZ; : 0o(A) < i, that
Wi, X, Y, and Z; are disjoint for all 7 (recall that X and Y are d-separated
by Z in G and thus in ék), and that X C Xy, Y C Yy, ), and Zyy,| = Z.

I show now by induction on the four sequences that the
following three conditional independence statements hold
for all &: W, UsX; UY; | Z;, X; WsW,; UY; | Z;, and
Y; Us W, UX; | Z;. While proving this it is helpful to keep v
in mind the picture shown on the right which illustrates the
above set of conditional independence statements.

Since WO = X() = YO = ZO = @, it is trivially WO J_l_(s Xo U YO | ZQ,
Xo 1Ls WoUYy | Zp, and Yy LLs WoU Xy | Zp (induction anchor). So suppose
that for some 4 the statements W; 1Ls X; UY; | Z;, X; LLs W; UY; | Z;, and
Y, UsW;UX; | Z; hold (induction hypothesis).

5The notion of a topological order is defined in definition 4.11 on page 100.
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For the induction step, since VA € W; U X; UY; U Z; : 0o(A4) < i, we can
conclude from the properties of a topological order that parents(A4;41) C
W;UX;UY;UZ; (since all parents of a node must precede it in a topological
order) and W; U X; UY; U Z; C nondescs(4;41) (since no child of a node
and thus no descendant can precede it in a topological order). Therefore,
by applying the decomposition axiom to the local conditional independence
statement involving A;y; that can be read from the graph ék, we have

Aiy1 s (W U X, UY; U Z;) — parents(4;41) | parents(A;+1).  (A.1)

To derive from this statement the three desired conditional independence

statements for (¢ + 1), one has to show two things:

1. If the node A;41 is added to Z;, then the parents of A;;1 must be either
all in W; U Z;, or all in X; U Z; or all in Y; U Z;.

2. If the node A;;1 is added to X;, then all parents of A;;; must be in
X; U Z;. (Analogously, if A;y; is added to W; or Y;.)

However, this is easily achieved:

1. Let A;+1 be added to Z;. Suppose that it has parents in both X; and Y;
and let these parents be Bx and By, respectively. From the construction
of the sequences we know that By € X or ~(Bx | Z | X)g, . Similarly,
we know that By € Y or ~(By | Z | Y)4, . From the facts that the path
Bx — A1 « By has converging edges at A;;1 (since Bx and By are
parents of A;y1) and that A;11 € Z;11 C Z we know that there is an
active path connecting Bx and By. Combining these observations, we
arrive at the conclusion that given Z there must be an active path from
a node in X to a node in Y in the graph ék (and thus in Cj, since the
same path exists in é) contradicting the assumption that X and Y are
d-separated by Z in G. In a similar way we see that A;y; cannot have
parents in both W; and X; or in both W; and Y;, only that here the
contradiction follows from the construction of the sequences alone.

2. Let A;;11 be added to W;, X, or Y;, say, X; (the three cases are analo-
gous). Then A;;; cannot have a parent in W; or Y;, because this parent
together with A;y; forms an active path. Combining this observation,
as in the first case, with statements derivable from the construction of
sequences, we conclude that given Z there is an active path from a node
in W; to a node in X (if the parent is in W;) or from Y to X (if the
parent is in Y;). However, the former contradicts the construction of the
sequences, the latter the assumption that X and Y are d-separated by
Z in G. Tt is clear that the other two cases, i.e., that A;y1 is added to
W; or to Y;, are analogous.
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Suppose now, without restricting generality (the other two cases are anal-
ogous), that parents(A;y1) € X; U Z;. Then we can derive from the condi-
tional independence A.1 by applying the weak union axiom that

Ai+1 J_L(;WiUY;; | Z,LUXZ

Applying the contraction axiom to this statement and X; 1Ls W; UY; | Z;
(which we know from the induction hypothesis), we arrive at

A UX, Us W, UY; | Z;.

From (1.) and (2.) and the assumption that parents(A;;1) C X; U Z; it
follows that A;+1 € X;11 U Z;41, ie., that A;11 is added either to X; or
to Z;. If A;;1 is added to X;, then the above statement is equivalent to

Xit1 Ls Wit UYiq1 | Ziya,
and if it is added to Z;, then it is
Xipn s Wii WY | Zipn = Xy s Wi UY5 | Z; U A,

i.e., the desired statement results from applying the weak union axiom.
The other two statements for (i + 1) are derived as follows: Applying
the weak union axiom to 4,11 UX; Us W, UY; | Z; yields

Ai+1 UX; s W; ‘ Z; JY; and
Ai+1 UX; 1sY; ‘ Z; UW;.

By applying the contraction axiom to these statements and the statement
Y; 1Ls W; | Z;, which can be derived from the statements of the induction
hypothesis by applying the decomposition axiom, we arrive at

Ai+1 uUX;UuY; LsW; | Z; and
Ai—i—l UX; UW,; 1;Y; | Z;.

If A;41 is added to X; these statements are already equivalent to the de-
sired ones. If A;11 is added to Z;, then the desired statements can be
derived, as above, by applying the weak union axiom. This completes the
induction, because, as already mentioned above, the other two cases, i.e.,
parents(A;11) € W; U Z; and parents(A; 1) € Y; U Z;, are analogous.

Since, as indicated above, X C Xy, |, Y C Y|y, | and Z = Z|y, |, we can
finally derive X 1L5Y | Z by (at most) two applications of the decomposi-
tion axiom to the statement Xy, | lLs Wiy, UYu,| | Zjv,|, thus completing
the proof of the first part of the theorem.
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The second part of the theorem is much easier to prove than the first.
Since we already know from the first part of the theorem that the local and
the global Markov property are equivalent (recall that the semi-graphoid
axioms are a subset of the graphoid axioms), it suffices to show that the
pairwise and the local Markov property are equivalent. That the local
Markov property implies the pairwise can be seen from the fact that the
parents of a node are a subset of its non-descendants and thus we get any
pairwise conditional independence statement for a node by applying the
weak union axiom (cf. the observations made in the paragraph following
definition 4.17 on page 109).

To show the other direction, we start from an arbitrary pairwise condi-
tional independence statement A Il 5 B | nondescs(A)—{B}. Then we apply
the intersection axiom, drawing on other pairwise conditional independence
statements involving A, in order to shift attributes out of the separating
set. Eventually only the parents of A remain and thus we have the desired
local conditional independence statement. O

A.4 Proof of Theorem 4.4

Theorem 4.4 Let py be a strictly positive probability distribution on a set U
of (discrete) attributes. An undirected graph G = (U, E) is a conditional
independence graph w.r.t. py, iff pu is factorizable w.r.t. G.

To prove this theorem I need two lemmata. The first of them provides us
with a more general characterization of conditional probabilistic indepen-
dence, while the second is merely a technical feature needed in the proof.

Lemma A.1 Let A, B, and C be three attributes with respective domains
dom(A), dom(B), and dom(C). Furthermore, let p = P|lapc be a proba-
bility distribution on the joint domain of A, B, and C derived from some
probability measure P. Then

Al,C|B < dg,h:Vaedom(A):Vbe dom(B):Vee dom(C):
p(A=a,B=0b,C =c)=g(a,b) h(b,c).

Proof: Although this lemma is often stated and used, it is rarely proven.
Conditional probabilistic independence implies (cf. page 76)
Va € dom(A) : Vb € dom(B), P(B =b) # 0 : Ve € dom(C)
P(A=a,B=bC=c¢)=P(A=a,B=0b)-P(C=c|B=b).
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and thus we can choose, for instance (cf. page 78),

g(a,b) = P(A=a,B=0b) and
B P(C=c|B=b), if P(B=1)+#0,
hib,e) = { 0, otherwise.

To prove the other direction, we sum
P(A=a,B=0b,C=c)=g(a,b)-h(b,c)
over all values ¢ € dom(C'), which yields
P(A=a,B=0b)=g(a,b)- Y  h(bec).
cedom(C)

Since the left hand side does not depend on ¢, the right hand side must not
depend on c either. Therefore we can infer

3fp : Vb € dom(B) : > h(bc) = fulb).
cedom(C)
Analogously, by summing over all values a € dom(A), we get
3f, : Vb € dom(B) : > gla,b) = fy(b).
acdom(A)
Therefore we have
Va € dom(A) : Vb € dom(B): P(A=a,B="5b)=g(a,b)- fr(b) and
Vb € dom(B) : Ve € dom(C): P(B=10,C=c)= fy(b) - h(b,c).

Summing either the first of these equations over all values a € dom(A) or
the second over all values ¢ € dom(C) yields, in analogy to the above,

Vb e dom(B): P(B="0b)= f4(b)- fn(b).
Combining these results we finally arrive at
Va € dom(A) : Vb € dom(B) : Ve € dom(C) :
P(A=a,B=b)-P(B=0b,C=c)
= 9(a,b) - fo(b) - h(b,c) - fa(c)
= P(A=a,B=b,C=c) - P(B=b),

which shows that A L p C'| B. It is clear that the lemma and its proof carry
over directly to sets of attributes. O
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Lemma A.2 (Mobius inversion) Let £ and ¢ be functions defined on the set
of all subsets of a finite set V. whose range of values is an Abelian group.
Then the following two statements are equivalent:

(1) VXCV: &X)= Y oY

Y:YCX

(2) VWWCV: ()= > (-1)"7¢2).

Z:ZCY

Proof: (Basically as given in [Lauritzen 1996], only with modified notation.)
We prove (2) = (1), i.e., we show that the sum of the terms 1 (Y") as defined
in (2) over all subsets of some set X is equal to §(X) :

Y wy Y. > )2

Y:YCX Y:YCX Z:ZCY
- ¥ s<Z>( > <1>'”'>
Z:Z2CY Y:ZCYCX

Z£<Z>< > (—1)'W>
Z:2CY WWCX—-Z

The latter sum is equal to zero unless X —Z = (), i.e., unless Z = X, because
any finite, non-empty set has the same number of subsets of even as of odd
cardinality. The proof (1) = (2) is performed analogously. O

Proof: (of theorem 4.4; the proof follows mainly [Lauritzen 1996].)

The proof consists of two parts. In the first part it is shown that, if the
distribution py is factorizable w.r.t. an undirected graph G, then G satisfies
the global Markov property and thus is a conditional independence graph.
This part of the proof, which uses lemma A.1, is rather simple. In the
second part, which is more complicated, a factorization of py is derived
from py and the pairwise Markov property of an undirected graph G that
is a conditional independence graph w.r.t. pyy. For this second part we need
lemma A.2.

For the first part of the proof let M C 2V be a family of sets of attributes
such that the subgraphs of G induced by the sets M € M are the maximal
cliques of G and let ¢; be the functions of the factorization of py w.r.t. G.
Furthermore, let X, Y, and Z be three arbitrary disjoint subsets of attributes
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such that X and Y are u-separated by Z in G. We have to show that G has
the global Markov property, i.e., that X 1L, Y | Z. Let

X={AcU-Z|(A|Z|Y)g} and Y=U-2Z-X.

Obviously, it is X C X (since X and Y are u-separated by Z), Y C Y, and
(X | Z | Y)¢. From the latter and the definition of X it follows (X | Z | Y)¢
by the transitivity axiom.® (Intuitively: There cannot be an attribute A in
X that is not u-separated from Y, because, by construction, no attribute
in Y is u-separated from Y and thus A could not be u-separated from Y,
contradicting the definition of X 2

Let M be the family of all sets in M that contain an attribute in X.
No set in M ¢ can contain an attribute in Y, because otherwise—since the
sets in M and thus the sets in M ¢ induce cliques—we could infer that there
is an edge connecting an attribute in X and an attribute in Y, contradicting
that X and Y are u-separated by Z. That is, we have

VMeMg: MCXUZ and VMeEM-Mgz: MCYUZ

Therefore, if we split the product of the factorization as follows:

pU( /\ Ai:ai)

AeU
= H ¢M( /\ Ai:az)
MeM AeM
= H ¢M( /\ Ai:ai> H ¢M< /\ Ai:ai> 3
MeMy A€M MeM-My AeM

we can conclude that the first product depends only on the values of the
attributes in X UZ , while the second product depends only on the values of
the attributes in ¥ U Z. With lemma A1, extended to sets of attributes, we
arrive at X 1L, Y | Z, from which we can infer X 11, Y | Z by (at most)
two applications of the decomposition axiom.”

Note that the first part of the proof as it is given above does not ex-
ploit the presupposition that py is strictly positive and thus the implication
proven holds also for more general probability distributions [Lauritzen 1996].

6The transitivity axiom is defined and shown to hold for u-separation on page 102.

"The decomposition axiom is part of the semi-graphoid axioms, defined in defini-
tion 4.1 on page 94, which are satisfied by conditional probabilistic independence accord-
ing to theorem 4.1 on page 95.
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In the second part of the proof non-negative functions ¢,; are con-
structed w.r.t. the maximal cliques M of G. Since it simplifies the proof,
these functions are not constructed directly, but via their logarithms. This is
possible, because, according to the presuppositions of the theorem, the prob-
ability distribution—and thus the factor potentials ¢p;—must be strictly
positive. (Note, by the way, that, in contrast to the first part of the proof,
the second part cannot be strengthened to not strictly positive distributions.
An example of a probability distribution that is not factorizable w.r.t. its
conditional independence graph can be found in [Lauritzen 1996].) The idea
of the proof is to define specific functions for all subsets of attributes and
to show that they are identical to zero, if the subset is not a clique. Finally,
the functions for the cliques are properly combined to determine functions
for the maximal cliques only.

First we choose for each attribute A; € U a fixed but arbitrary value
af € dom(4;) and then we define for all X C U

fX(A{G\X A; = ai) = logP(Ai/e\X A; = ai,AjE/(>_X Aj = a;ﬁ).

*

Since the values a} are fixed, {x depends only on the values of the attributes
in X. Furthermore, we define for all Y C U

Z/JY( /\ Ai:ai>: Z (=) =2l 52( /\ Ai:ai).

AeU Z:ZCY A€y

From this equation it is clear that 1y depends only on the values of the
attributes in Y. Next we apply lemma A.2 (M6bius inversion) to obtain that

logP< /\ Ai:ai> = £U< /\ Ai:ai)

AU AU
= E 1/’X( /\ A = ai)~
X:XCU AeX

(Note that w.r.t. the application of the Mobius inversion the index counts
as the function argument.)

In the next step we have to show that ¥ x = 0 whenever the subgraph
induced by X is not a clique of G. So let X C U be a set of attributes
that does not induce a clique of G. Then there must be two attributes
A, B € X that are not adjacent in G. Since G is a conditional independence
graph, it has the global Markov property, which implies the pairwise Markov
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property (cf. the paragraph following the definition of the Markov properties
for undirected graphs on page 107). Therefore it is A1l ,, B |U —{A, B}.
To exploit this statement we first rewrite the function ¢ x as

T/JX( /\ Ai:ai)

A;eX

= > (—1)X A=Y (£Y —&yugay —&vugsy + £YU{A,B}),
Y:YCX—{A,B}

where £ is an abbreviation of £ (/\AieZ A; = al-) . Consider a term of the
sum, i.e., consider an arbitrary set Y C X —{A,B}. Let Z =U-Y —{A, B}
and let Y =y and Z = z (as in the proof of theorem 4.1 in section A.1) be
abbreviations of /\AieY A; = a; and /\Aiez A; = a;, respectively. (This is
somewhat sloppy, but simplifies the notation considerably.) Then it is

Syuga,By — Syu(ay
_ 1OgP(A:a,B:b7 Y =y, Z =2
P(A=a,B=b"Y =y, Z = z*)
PA=a|Y=y,Z=2")-P(B=Vb, Y =y,Z=2%)
PA=a|Y =y, Z=2*)-P(B=b"Y =y, Z = z¥)
PA=a*|Y =y, Z=2*)-P(B=b, Y =y,Z =2
PA
PA

log

1
CPA=a" Y=y Z=2) P(B=b"Y =y,Z = 2"

=a",B=b, Y=y, Z=2%
P(A=a*,B=b"Y =y,Z = z¥)
= &yusy —§v-

= log

(1) and (3) follow from the conditional independence of A and B given all
other attributes. (2) follows, because the first factors in numerator and
denominator cancel each other and therefore may be replaced by any other
factors that cancel each other. We conclude that all terms in the sum
defining a function ¥ x and thus the function itself must be zero if X is not
a clique of G.

In the final step we have to get rid of the functions for non-maximal
cliques. However, this is easily achieved. Any non-maximal clique is con-
tained in a maximal clique. Therefore we can simply add the function of
the non-maximal clique to the function of the maximal clique and replace
the function of the non-maximal clique by the zero function. In this pro-
cess we have to be careful, though, because a non-maximal clique may be
contained in more than one maximal clique, but the function for it should,
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obviously, be used only once. Therefore, before adding functions, we assign
each clique to exactly one maximal clique in which is it contained and then
we add for each maximal clique the functions of the cliques assigned to it.
The resulting functions are the logarithms of the factor potentials ¢p; of a
factorization of py w.r.t. G. O

A.5 Proof of Theorem 4.5

Theorem 4.5 Let my be a possibility distribution on a set U of (discrete)
attributes and let G = (U, E) be an undirected graph over U. If wy is
decomposable w.r.t. G, then G is a conditional independence graph w.r.t. my.
If G is a conditional independence graph w.r.t. 7y and if it has hypertree
structure, then my is decomposable w.r.t. G.

Proof: The proof of the first part of the theorem is directly analogous to the
proof of the probabilistic case as given in section A.4, because we can exploit
a possibilistic analog of lemma A.1. This analog can be derived, together
with its proof, from the probabilistic version by replacing any product by the
minimum and any sum by the maximum (together with some other trivial
modifications). Note that this part of the theorem does not require the
graph G to have hypertree structure and thus is valid for arbitrary graphs.

The proof of the second part of the theorem follows mainly [Gebhardt
1997], although in my opinion the proof given in [Gebhardt 1997] is in-
complete, since it does not make clear where it is necessary to exploit the
running intersection property, especially where the requirement is needed
that the intersection of a set with the union of all preceding sets must be
contained in a single set. Here I try to amend this deficiency.

The proof is carried out by an induction on a construction sequence
for the graph G = (U, E), in which the cliques of G are added one by
one until the full graph G is reached. This sequence is derived from the
running intersection property of the family M of attribute sets that induce
the maximal cliques of G. Let m = | M| and let My, ..., M,, be the ordering
underlying the definition of the running intersection property. Furthermore,
let G1,...,G, = G be the sequence of graphs defined by

Viil<i<m: G;=(U;UixU;NE), where U;=|JM,
Jj<i

In the induction it is shown that for all ;1 < ¢ < m, the marginal dis-
tributions 7wy, are decomposable w.r.t. G;. Clearly, ny, is decomposable
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w.r.t. G1, because there is only one clique (induction anchor). So suppose
that 7y, is decomposable w.r.t. G; for some i (induction hypothesis), i.e.,

Va; € dom(A;) : ...a, € dom(A4,) :

7TUi( /\ Ak—ak)—mlnﬂM( /\ Ak—ak)

AgeU; AkGJW

In the step from ¢ to (¢ + 1) the clique with attribute set M;;q is added
to G;. If we can show that

M1 —S; 1, Ui — S | S, where S; = M; 1 NU;,

we have proven the theorem, because this conditional independence, trans-
lated to degrees of possibility, reads (note that U; 11 = U; U M;41)

Va,; € dom(A;) : ...a, € dom(A,) :

7TU1-+1( /\ Ak:ak)

Ar€Uit

:min{ﬂMHl( A Ak:ak>,7rU,-( A Ak:ak>}

AkeMi+1 AreU;
and combining this equation with the induction hypothesis yields

Va; € dom(A;):...a, € dom(A4,) :

7rU1.+1< /\ Ak:ak):jInZlJIrllﬂ'M_( /\ Ak:ak).

Ap€Uiq AreM;

To show that the above conditional independence statement holds, we ex-
ploit the global Markov property of GG, that is, we show

(Mipy = Si [ Si | Ui = Si)a,

from which the conditional independence follows. It is clear that the sepa-
ration holds w.r.t. G;+1, because any path from an attribute in M;{; — S;
to an attribute in U; — S; must pass through an attribute in S;, simply be-
cause in G;41 all edges from an attribute in M;;1 — 5; lead to an attribute
in M;;1. Therefore this separation can be invalidated only by a set M;,
j > i+ 1, that still needs to be added to construct G = G,,. So suppose
there is a set Mj, j > i+1, that contains an attribute A € U; —S; and an at-
tribute B € M;11 —5;, thus bypassing the separating set S;. Furthermore, if
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there are several such sets, let M; be the set with the smallest index among
these sets. From the running intersection property we know that there is
a set My, k < j, so that {A, B} C M} (this and the following is what
[Gebhardt 1997] fails to point out). It must be k > i, because A was added
with M;; and was not present in U;. It must also be k < i+ 1, because we
chose Mj to be the set with the smallest index j > ¢ + 1 containing both
A and B. Therefore M = M,;,. However, this contradicts A € U; — 5.
It follows that there cannot be a set M; through which the separating set .S;
can be bypassed. In the same manner we can show that there cannot be a
sequence of sets M;, ,..., M, , and a path Ay, A1,..., As, Asy1, such that
AO e U; — Si, {Ao,Al} - Mjl,...,{AS,B} - Mjs’ As+1 S Mi+1 - S;
bypassing the separating set: With a similar argument as above, assum-
ing again that the sets Mj, ,..., M,  are the ones with the smallest indices
having the desired property, we can show that there must be a set M;,,
namely the one with the largest index, such that either Ay € Mj, _, or
Ag_1 € Mj, ., so that we can shorten the path by one element. Working
recursively, we reduce this case to the case with only one set bypassing the
separating set, which we already showed to be impossible. Therefore the
above separation holds.

Note that the running intersection property is essential for the proof.
Without it, we do not have the conditional independence statements that are
exploited. Consider, for example, a structure like the one shown in figure 4.8
on page 115, which was used to demonstrate that the theorem does not hold
for arbitrary graphs. Since this graph does not have hypertree structure,
there is no construction sequence. Indeed, independent of the edge we start
with, and independent of the edge we add next, we do not have (in the
general case) the necessary conditional independence statement that would
allow us to extend the decomposition formula. O

A.6 Proof of Theorem 4.6

Theorem 4.6 Let py be a probability distribution on a set U of (discrete)
attributes. A directed acyclic graph G = (U, E) is a conditional indepen-
dence graph w.r.t. py, iff py is factorizable w.r.t. G.

Proof: The proof of the theorem consists of two parts. In the first part it
is shown that, if the distribution py is factorizable w.r.t. a directed acyclic
graph, then G satisfies the global Markov property and thus is a conditional
independence graph. In the second part it is shown that the family of
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conditional probabilities of an attribute given its parents in the graph is
a factorization of py. Both parts make use of theorem 4.3 (see page 110),
which states that the global and the local Markov property of a directed
acyclic graph are equivalent if the relation representing the set of conditional
independence statements that hold in p;; satisfies the semi-graphoid axioms
(as conditional probabilistic independence does in general, cf. theorem 4.1
on page 95).

For both parts of the prooflet n = |[U| and 0 : U — {1,...,n} be a topo-
logical order® of the attributes in G. Let the attributes in U be numbered
in such a way that o(A4;) = i. Due to the properties of a topological order
all attributes preceding an attribute in the topological order are among its
non-descendants and all parents of A; precede it in the topological order.
That is, we have

V1<i<n: parents(4;) C{A;|j < i} Cnondescs(4;).

Apply the chain rule of probability (cf. page 80) to the attributes in U w.r.t.
the topological order o. That is, write py as

Vay € dom(A4,) :...Va, € dom(A4,) :
Pu (/\:;1141' = ai) = HP(AZ = a; /\;;llA] = aj).
i=1

For the first part of the proof’ we know that py factorizes w.r.t. é, ie.,
Vay € dom(4y) :...Va, € dom(A,) :

Pu (/\izlAi = ai) = 1:[113(141‘ =a;
Therefore we have

Vay € dom(A4,) : ...Va, € dom(Ay) :

EP(Ai =a; /\;:1147 = aj)
= ﬁ P(AZ- = a;
i=1

Aj€parents(A;)

/\ Aj = aj) .
Aj€eparents(A;)

8The notion of a topological order is defined in definition 4.11 on page 100.

9Unfortunately, the first part of the proof is dealt with somewhat casually in [Lauritzen
1996] (which I follow for the proofs of some of the other theorems), so that I decided to
give a different proof. It is based strongly on the proof of theorem 4.3.
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From this equation one can easily establish that corresponding factors must
be equal by the following procedure: We sum the above equation over all
values of A,,, i.e., the last attribute of the topological order. This attribute
appears only in the last factor and thus all other factors can be moved out
of the sum. Since the last factor is a conditional probability of the values of
A, summing over all values of A4,, yields 1 and therefore the term is simply
canceled by the summation. We arrive at

Va; € dom(A4) :...Va,—1 € dom(A,_1) :
n—1
1:[1 P(Az - )
n—1
- - P(AZ @ /\A jEparents(A; )A] (l])

Comparing this result to the preceding equality, we conclude that

" p(a A
/\j:1 A aj) - ( n = An /\AjEparents(An) i aj>.

In the same manner, working recursively downward the topological order,
we establish the equality for all attributes. Finally we have

P(An =a,

Vi<i<n: AU, {A;]|j<i}— parents(A;) | parents(4,).

From these statements we can infer, working in the same way as in the proof
of theorem 4.3 (cf. section A.3), that G has the global Markov property, since
the set of statements above was all that was needed in that proof.

Another way to prove the first part of the theorem is the following: It is
clear that for each attribute A of the graph a topological order can be con-
structed, so that all its non-descendants precede it in the topological order.
For example, such a topological order can be found with the simple recur-
sive algorithm stated on page 100 by preferring those childless attributes
that are descendants of A. With respect to this specific topological order
the conditional independence statement that can be derived for A by the
method employed above is already identical to the desired local conditional
independence statement. Note, though, that with this approach we may
need a different topological order for each attribute of the graph and that
we finally have to apply theorem 4.3 in order to derive the global Markov
property by which a conditional independence graph is defined.
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For the second part of the proof we know that G has the global and thus
the local Markov property (cf. theorem 4.3). Therefore we have
V1<i<n: A;l,, nondescs(A;)— parents(4;) | parents(A;).

By applying the decomposition axiom!'? and exploiting the properties of a
topological order (see above), we have

Vi<i<n: A U, {A;]|j<i}— parents(A;) | parents(4,).
Translating this to probabilities yields
Vi<i<n:

P(ai=as| A =) = (A= 0| Ay pnyi = )

By combining this statement with the chain rule decomposition shown above
we arrive at the desired factorization. O

A.7 Proof of Theorem 4.7

Theorem 4.7 Let my be a possibility distribution on a set U of (discrete)
attributes. If a directed acyclic graph G = (U, E) is a conditional indepen-
dence graph w.r.t. wy, then wy is decomposable w.r.t. G.

Proof: The proof is analogous to the corresponding part of the probabilis-
tic case. We apply the possibilistic counterpart of the chain rule w.r.t. a
topological order of the attributes and simplify the conditions by exploiting
the conditional independences that can be derived from the local Markov
property of the graph G. There is only one minor difference, because, if con-
ditional possibilistic independence is expressed in conditional possibilities,
we have a relation that differs from the probabilistic case. However, how
to deal with this difference was already explained on page 88 and therefore
I do not repeat it here. It should be noted, though, that this difference is
the main reason, why the converse of the theorem, Le. that a decomposi-
tion w.r.t. G implies the global Markov property of G does not hold, as
demonstrated by the example on page 117. O

10The decomposition axiom is part of the semi-graphoid axioms, defined in defini-
tion 4.1 on page 94, which are satisfied by conditional probabilistic independence accord-
ing to theorem 4.1 on page 95.
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A.8 Proof of Theorem 5.1

Theorem 5.1 Let D = (R, wg) be a database over a set U of attributes and
let X C U. Furthermore, let support(D) = (support(R), Wsupport(r)) and

closure(D) = (closure(R), Weiosure(r)) @5 well as WSHPPOH(D)) and ﬂgglosure(D))

be defined as in definition 5.9 on page 147, in definition 5.13 on page 150,
and in the paragraphs following these definitions, respectively. Then
Vi € T)({precise) . 7_‘_g?losure(D))(t) _ 7_(_g?upport(D))(t)

i.e., computing the mazimum projection of the possibility distribution W[(JD)
induced by D to the attributes in X via the closure of D is equivalent to
computing it via the support of D.

Proof: [Borgelt and Kruse 1998c] The assertion of the theorem is proven in
two steps. In the first, it is shown that, for an arbitrary tuple ¢ € T)((premse)

it is

)

7I_A()glosure(D))(t) > 7TE?UPPOY‘S(D))(t)’

and in the second that it is

7_‘_gglosure(D)) (t) < ﬂ_g?uPPOYt(D)) (t)

Both parts together obviously prove the theorem. So let t € T)((p recise) 1o an

arbitrary precise tuple and let wo = ), . wr(u). Furthermore, let
S ={s €support(R) |tCs|lx} and C ={cé€closure(R)|tLCc|x}
1) Wg;losure(D))(t) > 7T;upport(D))(t) :

We have to distinguish two cases, namely S = () and S # @, the first of
which is obviously trivial.

a) §=0: 7$PrortPD ) = o < gl @) 4y ¢ [0, 1]

b) S # 0: Due to the definitions of ﬂSuPport(D)) and Wyypport(r) it is

s1 rt(D 1
Wg; pport( ))(t) o I?Ga;( Wsupport(R) (5)
1
= w—o r?eaézi wr(u)
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Let 5 € S be (one of) the tuple(s) s € S for which Wsypport(r)(S) is
maximal. Let V = {v € R| § C v}, i.e, let V be the set of tuples
from which the weight of § is computed. Then it is

(support(D)) 1 ~ 1
t = — = — .
Tx ( ) wo wsupport(R) (8) wo vEGV wR(U)

Since V C R, it is v* = [ l,cy v € closure(R), because of the defi-
nition of the closure of a relation (cf. definition 5.12 on page 149).
Since § € S, it is t C §|x (because of the definition of S), and since
Yo eV :§LC v, itis § Cv* (due to the fact that the intersection of
a set of tuples is the least specific tuple that is at least as specific as
all the tuples in the set), hence ¢ C v*|x. It follows that v* € C.

Let W = {w € R | v* C w}, ie., let W be the set of tuples from
which the weight of v* is computed. Since v* = [ 1,y v (due to the
definition of v*), it is Vv € V : v* C v (due to the fact that the
intersection of a set of tuples is at least as specific as all tuples in the
set), and hence V' C W. Putting everything together we arrive at

1

’wio I?eacj’( Welosure(R) (C)

1 *
w_O Welosure(R) (U )

= wio Z wg(w)

wew

1
> —ZU}R(U)
Wo veV
support(D
_ WE( pport( ))(t)

7I_EEIOSure(D))(t)

v

From what we have considered, the first inequality need not be an
equality, since there may be another tuple in closure(R) to which a
higher weight was assigned. The second inequality need not be an
equality, because W may contain more tuples than V.

2) 7T_A()glosure(D))(t) < 7_[_§§1115>l)01ft(D))(t):

Again we have to distinguish two cases, namely C = @) and C # 0, the
first of which is obviously trivial.

a) C =0: 7o)y = o < 7Pt (1) € [0,1].
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b) C # (: Due to the definitions of ﬂglosure(m) and Welosure(R) it 18

(closure(D)) o 1
Tx (t) = ’LU_o I(peac),( wclosure(R) (C)
1
= - max wr(u)
w €
0 ¢ ueER,cCu

Let ¢ € C be (one of) the tuple(s) ¢ € C for which wejosure(r)(c) is
maximal. Let W = {w € R | ¢ C w}, i.e., let W be the set of tuples
from which the weight of ¢ is computed. Then it is

(closure(D)) 1 o 1
™ t) = —Welosure Cc) = — wr(w).
X (t) wg ! (R)(€) o “;EW r(w)

Let Q = {q € T)((predse) ‘ q C 6}, i.e., let @ be the set of tuples

“supporting” ¢é. Since t € T)((premse) and t C ¢|x (due to ¢ € C),
there must be a tuple s* € @, for which ¢ C s*|x. Since s* € Q,
it is s* C & € closure(R) (due to the definition of @), and since
Ve € closure(R) : Ju € R : ¢ C u (due to the definition of the
closure of a relation, cf. definition 5.12 on page 149), it follows that
Ju € R: s* C u and hence we have s* € support(R).

Let V.= {v € R | s* C v}, ie, let V be the set of tuples from
which the weight of s* is computed. Since s* C ¢ (see above), it is
Yw € W :s* Cw and hence W C V. Thus we arrive at

1

= — Inax Wqg S
wo 65 bupport(R)( )

1

w_O Wsupport(R) (S* )

= wio Z wr(v)

veV
1
> — E wgr(w
S wo weW R( )
closure(D
()

7_‘_gsllloport(f’)) (r)

%

The reasons underlying the inequalities are similar to those in 1).

From 1) and 2) it follows that, since ¢ is arbitrary,

Vit € T)((precise) : 7T_g;losure(D))(t) _ ﬂ_giupport(D))(t).

This completes the proof. O
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A.9 Proof of Theorem 7.1

Theorem 7.1 If a family M of subsets of objects of a given set U is con-
structed observing the two conditions stated on page 241, then this family M
has the running intersection property.

Proof: Adding a node set to a given family M either adds isolated nodes,
i.e., nodes not contained in any subfamily, to a subfamily, or connects two
or more subfamilies, or both. Hence one can show that the method referred
to indeed results in a family M having the running intersection property
by a simple inductive argument, which proves that all subfamilies that are
created during the construction have the running intersection property:

A subfamily with a single node set trivially has the running intersection
property (induction anchor). So assume that all subfamilies up to a certain
size, i.e., with a certain number of node sets, have the running intersec-
tion property (induction hypothesis). If a new node set only adds isolated
nodes to a subfamily, then the enlarged family obviously has the running
intersection property, because in this case the second condition on page 241
is equivalent to the last part of the defining condition of a construction se-
quence (cf. definition 4.19 on page 114). Hence the construction sequence of
the subfamily (which must exist due to the induction hypothesis) is simply
extended by one set.

So assume that a new node set connects two or more subfamilies (and
maybe adds some isolated nodes, too). In order to show that there is a
construction sequence for the resulting subfamily of node sets, I show first
that any set of a family of sets having the running intersection property can
be made the first set in a construction sequence for this family: Reconsider
the join tree illustration of Graham reduction (cf. page 240). Obviously, the
reduction can be carried out w.r.t. a join tree even if a given set (i.e., a given
node of the join tree) is chosen in advance to be the last to be removed,
simply because we can work from the leaves of the join tree towards the
corresponding node. Since the reverse of the order in which the node sets
are removed by Graham reduction is a construction sequence, there is a
construction sequence starting with the chosen set, and since the set can be
chosen arbitrarily, any set can be made the first of a construction sequence.

With this established, the remainder of the proof is simple: For each
of the subfamilies that are connected by the new node set, we determine
a construction sequence starting with the set M} mentioned in the second
condition stated on page 241. Then we form the construction sequence of
the resulting enlarged subfamily as follows: The new node set is the first
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set in this sequence. To it we append the construction sequences we deter-
mined for the subfamilies, one after the other. This sequence is a construc-
tion sequence, because the sets My obviously satisfy the defining condition
w.r.t. the first set due to the way in which they where chosen. Within
the appended sequences the condition holds, because these sequences are
construction sequences for the subfamilies. There is no interaction between
these sequences, because the subfamilies are node-disjoint. Hence the new
subfamily has the running intersection property. O

A.10 Proof of Lemma 7.1

Lemma 7.1 Let A, B, and C be three attributes with finite domains and
let their joint probability distribution be strictly positive, i.e., Va € dom(A) :
Vb € dom(B) : Ve € dom(C) : P(A=a,B=0b,C =c¢) > 0. Then it is

(Shannon) (Shannon)

Igain (CaAB) Z Igaln (C B)
with equality obtaining only if the attributes C and A are conditionally
independent given B.

Proof: Let the domains of A, B, and C be dom(4) = {a1,...,an,},
dom(B) = {b1,...,bny}, and dom(C) = {ec1,...,¢n.}, respectively. In
order to make the formulae easier to read, I use the following abbreviations,
which are consistent with the abbreviations introduced in section 7.2.2:

pi.. = P(C = ¢), pij. = P(C = cl,A =a;),

pj = P(A=aq), pik = P(C = ci, B = by),

Pk = P(B = bk), pijk = ( = a], = bk) and
pijk = P(C =¢;,A=a;, B = by),

i.e., the index ¢ always refers to the attribute C, the index j always refers
to the attribute A, and the index k always refers to the attribute B.
Since it makes the proof much simpler, I show that

I(Shannon) (C B) I(Shannon) (C AB)

gain gain

from which the original statement follows trivially. In addition, I drop the
upper index “(Shannon)” in the following, since no confusion with Hartley
information gain or Hartley entropy is to be expected. (For the definition of
Shannon information gain in terms of Shannon entropies cf. section 7.2.4.)
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Igain(oa B) - Igain(c7 AB)
= H(C)+ H(B)— H(CB) — (H(C) + H(AB) — H(CAB))
—H(CB) — H(AB) + H(CAB) + H(B)

nc Np naA np
= Y. pirlogapik+ YD piklogyp ik
=1 k=1 j=1k=1

nc nA Np

_Zzzpwkk’gzl’wk - ZP klogop i

=1 j=1 k=1

ngc naA NpB

_ Z Z prk log, Pi.kD.jk

i=1 j=1 k=1 PijkP..k

nc nA NpB

T 2 ZZZMI Pk

i=1 j=1 k=1 PijkP..k

nc naA nB DikD.
LR (ma )

i=1 j—1 k=1 PijkP. .k

IA

nA Np nc nNA NpB

) ST T )

| i=1 j=1k=1 i=1j=1k=1

Ja—

1 < p?
- L
n2<<k—1p“k> )
—_——

In2

where the inequality follows from the fact that

Inz <zx-—1,
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with equality obtaining only for = 1. (This can most easily be seen from
the graph of Inx.) As a consequence, it is Igain(C, AB) = Igin(C, B) only if

Vi, j k- DikP.jk _ 1

S Vi, gk pijik = DikP.jlk
DijkD. .k

where p;;, = P(C = ¢;,A = a; | B = b) and p; ), and p ), likewise.
That is, Igain(C, AB) = Igain (C, B) only holds if the attributes C' and A are
conditionally independent given attribute B. O

A.11 Proof of Lemma 7.2

Lemma 7.2 Let A, B, and C be attributes with finite domains. Then it is

galn(c AB) 2 IgQaln(CﬂB)'

Proof: I use the same notation and the same abbreviations as in the proof
of lemma 7.1 in section A.10. Since it makes the proof much simpler, I show

C,AB) — C,B) > 0,

gam( galn(

from which the original statement follows trivially. (For the definition of
quadratic information gain in terms of quadratic entropies cf. section 7.2.4.)

(C,AB) — I, (C, B)
= H?*(C)+ H*(AB) — H*(CAB) — (H*(C) + H*(B) — H*(CB))
= H?*(AB) - H?*(CAB) + H*(CB) — H*(B)

gam

naA np ne na np ne ne
- 1_Zzpjk_1+Zzzngk+1_22plk—l+2pk
Jj=1k=1 i=1 j=1k=1 i=1 k=1
nA NB ng nc nNa
= *ZzpykzngkJrZZprk
j=1k=1 i=1 k=11i=1 j=1
no B no na
_Zzpzkzngk-i-z:p kzzp”k
i=1 k=1 i=1 j=1

nc ma np

= Zzzpijk(p..k_pi.k_p.jk +pijk) > 0

i=1j=1k=1
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That the last sum is nonnegative results from the fact that each term of the
sum is nonnegative. This can be seen as follows: From probability theory
it is well known that VE1, Eo, E5 C Q) :

P(EyUE;) = P(E))+ P(Fy)— P(E;NE;)  and
P(E1UFEy;UE3) = P(Fy)+ P(Es)+ P(F)
—P(E1NEy) — P(E1NE3)— P(EyN E3)
+P(E; N EyN Es).

It follows that VE, Ey, B C Q :

P(E3) — P(E1NE3) — P(EsNE3)+ P(E1NEyN Es)
= P(E1UE2UE3)—P(E1UE2) 2 0

Hence, if we identify F; with C' = ¢;, Ey with A = a;, and E3 with B = by,
we have that

Vi, g,k Dk —Dik—Djk+Pijg > 0.

Therefore each term of the sum must be nonnegative, since the other fac-
tor p;jk is clearly nonnegative, as it is a probability.

Since the sum can be zero only if all terms are zero, we obtain that it is
(C,AB) =12,.(C, B) only if

galn gain

Vi, ok pijk =0 V p.k+ Dijk = Pik T Djk-

Suppose there are two different values ¢; and i for which p;j, > 0. In this
case the second equation yields

Vi, Kk Dijk — Disjk = Pir.k — Dis.k-

Clearly, this equation can hold only if there is at most one value j for which
pijk > 0. A symmetric argument shows that there can be at most one
value 4 for which p;;r > 0 if there are two values j for which p;;; > 0.
Therefore the sum can be zero only if at most one of the attributes A and
C has more than one value with a non-vanishing probability. Consequently,
it is, in general, I2,; (C, AB) # I2,;,(C, B) even if the attributes C and A
are conditionally independent given the attribute B. O
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A.12 Proof of Lemma 7.3

Lemma 7.3 Let A, B, and C be three attributes with finite domains and
let their joint probability distribution be strictly positive, i.e., Va € dom(A) :
Vb € dom(B) : Ve € dom(C) : P(A=a,B=0,C =¢) > 0. Then it is

X*(C,AB) = x*(C, B),

with equality obtaining only if the attributes C' and A are conditionally
independent given B.

Proof: I use the same notation and the same abbreviations as in the proof
of lemma 7.1 in section A.10. Since it makes the proof much simpler, I show

%(XQ(C,AB)fXQ(C,B)) > 0,

from which the original statement follows trivially. (For the definition of
the x? measure cf. section 7.2.4.)

1
L (e(c.am) - ¢c.m)
nc naA Np c nB 2
= Sy Pk PePgr) (pige — pi.pgk)* Zzw
i=1 j=1 k=1 Pi.P.jk Pl Di. Dk
i=1 k=1 \j=1 Di..D.jk

_ Pip — 2DikDi. Pk + DI D2

Pi.P..k
nc npg 9
p ik p?
- Z Z ( S — 2y +pi<.p.jk> — ki —pipok
i=1 k=1 \j=1 Di.D.jk Di.P. .k
nc nB na pz'k 2
- Z Z — " —2pik + DDk — +2pik — Pi. Dk
i=1 k=1 \j=1 Di..P.jk Pi.D.k
nc np 1 na
= —— | P Z

&
Il
—
x~
Il
-

j=1
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nc np

na p nA
= Z Dk Z 2k Z Pijik Z Dijak

zlklpzpk P.js

j1=1 j2=1 Jji1=1 j2=1
nc np na na
o p]lkpljzk 2 : 2 :
- E E pzjlk:pzjgk
i=1 k= lplpk ji=1j2=1 J1=1j2=1
nc nNp na na
. Z Z pjlkpsz Pij1kPijakP.j1 kP jok
=1 k= 1 Jj1=172=1 pjlkp]zk
nc np
_ 2 : 2 : (P.j1kDijak — pmkpjzk)

i=1 k=1 plpk p]lktpjzk

Jji=1j2=1
nc mp nma na

-3y Y pjlkéijzk—?ijlk?.ij)Q > 0,

2
=1 k1 j1=1 jo—1 Pi..D..kP.j1kDP.jok

where the semi-last step follows by duplicating the term in parentheses and
then interchanging the indices j; and js in the second instance (which is
possible, because they have the same range). From the result it is imme-
diately clear that x*(C, AB) > x*(C, B): Since each term of the sum is a
square divided by a product of (positive) probabilities, each term and thus
the sum must be non-negative. It also follows that the sum can be zero only
if all of its terms are zero, which requires their numerators to be zero:

Dijak _ Pijik
Jok Pk
<~ Vi,jl,j27k :pi\jzk :pz|]1k7

Vi, 31,92,k 1 D kPijok — PijikP.jak =0 & Vi, J1, 70,k ¢

where p; ;. = P(C = ¢ | A = a;,,B = b) with a € {1,2}. That is,
X2(C, AB) = x?(C, B) only holds if the attributes C' and A are conditionally
independent given attribute B. O

A.13 Proof of Theorem 7.2
Theorem 7.2 Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes A and C are conditionally
independent given B. Let G be a singly connected undirected perfect map
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of a probability distribution p over a set U of attributes. Then constructing
a mazimum weight spanning tree for the attributes in U with m (computed
from p) providing the edge weights uniquely identifies G.

In order to prove this theorem, it is convenient to prove first the following
lemma, by which an important property of the measure m is established.

Lemma A.3 Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes C and A are conditionally inde-
pendent given B. If A, B, and C are three attributes satisfying A 1L C' | B,
but neither A 1L B | C nor C 1. B | A, then it is

m(A,C) < min{m(4, B),m(B,C)}.
Proof: From the fact that A Il C'| B we know that
m(C, AB) = m(C, B) and m(A,CB) =m(A, B).
Since it is AL B |C and C L B | A, we have
m(C, AB) > m(C, A) and m(A,CB) > m(A,C).
Consequently, it is m(C, A) < m(C, B) and m(C, A) < m(A, B). O

Proof: (of theorem 7.2)

Let C and A be two arbitrary attributes in U that are not adjacent in G.
Since G is singly connected there is a unique path connecting C' and A in G.
I show that any edge connecting two consecutive nodes on this path has a
higher weight than the edge (C, A).

Let B be the successor of C' on the path connecting C' and A in G. Then
itis C 1L, A | B, but neither C 1L, B | A nor A1L, B | C. Consequently,
it is m(C, A) < m(C, B) and m(C, A) < m(B,A). If B is the predecessor
of A on the path, we already have that all edges on the path have a higher
weight than the edge (C, A). Otherwise we have that the edge (C, B) has a
higher weight than the edge (C, A). For the remaining path, i.e., the path
that connects B and A, the above argument is applied recursively.

Hence any edge between two consecutive nodes on the path connecting
any two attributes C' and A has a higher weight than the edge (C, A). From
this it is immediately clear, e.g., by considering how the Kruskal algorithm
[Kruskal 1956] works, that constructing the optimum weight spanning tree
with m providing the edge weights uniquely identifies G. O
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A.14 Proof of Theorem 7.3

Theorem 7.3 Let m be a symmetric evaluation measure satisfying
VA,B,C: m(C,AB) > m(C,B)

with equality obtaining only if the attributes A and C are conditionally
independent given B and

VA,C: m(C,A) > 0

with equality obtaining only if the attributes A and C are (marginally) inde-
pendent. Let G bea singly connected directed acyclic graph of a probability
distribution p over a set U of attributes. Then constructing a mazimum
weight spanning tree for the attributes in U with m (computed from p)
providing the edge weights uniquely identifies the skeleton of é, i.e., the
undirected graph than results if all edge directions are discarded.

Proof: Let C' and A be two arbitrary attributes in U that are not adjacent
in G. Since G is singly connected, there is a unique path connecting C'
and A in G. Suppose first that this path does not contain a node with
converging edges (from its predecessor and its successor on the path). In
this case the proof of theorem 7.2 can be transferred, because, according to

the d-separation criterion’!, we have C' 1., A | B, but neither C' 1L, B | A

nor All, B | C (because G is a perfect map). Therefore the value of m
must be less for the edge (C, A) than for any pair of consecutive nodes on
the path connecting C' and A.

Suppose next that the path connecting C' and A in G contains at least
one node with converging edges (from its predecessor and its successor on the
path). According to the d-separation criterion C' and A must be marginally
independent and hence it is m(C, A) = 0. However, no pair (B;, B;) of
consecutive nodes on the path is marginally independent (since Gisa perfect
map) and thus m(B;, B;) > 0.

Hence any edge between two nodes on a path connecting two nonadjacent
nodes in the perfect map G has a higher weight than the edge connecting
them directly. From this it is immediately clear, e.g., by considering how
the Kruskal algorithm [Kruskal 1956] works, that constructing the optimum
weight spanning tree with m providing the edge weights uniquely identifies
the skeleton of G. O

11 d-separation was defined in definition 4.13 on page 101.
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A.15 Proof of Theorem 7.4

Theorem 7.4 [Chow and Liu 1968]

Let p be a strictly positive probability distribution over a set U of attributes.
Then a best tree-structured approximation'? of p w.r.t. the Kullback-Leibler
information divergence'® is obtained by constructing a mazimum weight
spanning undirected tree of U with mutual information'* providing the edge
weights, then directing the edges away from an arbitrarily chosen root node,
and finally computing the (conditional) probability distributions associated
with the edges of the tree from the given distribution p.

In order to prove this theorem, it is convenient to prove first the following
lemma, by which an important property of the Kullback-Leibler information
divergence is established.

Lemma A.4 Let p1 and ps be two strictly positive probability distributions
on the same set £ of events. The Kullback-Leibler information divergence
18 mon-negative and zero only if p1 = pa.

Proof: The proof is carried out by roughly the same means as the proof of
lemma 7.1 in section A.10.

= 1n2]§€;p1 ( §_1>
= é(%m@)—%m@))
- 5(1_1) - 0

where the inequality follows from the fact that Inx < x — 1, with equality
obtaining only for = 1. (This can most easily be seen from the graph of
Inz.) Consequently, it is

1(E) p2(E)
Zpl 10g2 E = - Zpl 10g2 (E) > 0.
Ecé& Ec&

12The notion of a tree-structured approximation was introduced on page 253.
I3Kullback-Leibler information divergence was defined in definition 7.3 on page 174.
MMutual (Shannon) information was defined in definition 7.4 on page 177.
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In addition, it is

Zpl log2 n(E) =0

bes p2(E)
only if VE € & : gggg =1, ie., if VE € € : p1(E) = ps(E). Note that
from this result we also have that the expression ) o p1(E) logy p2(E) is
maximized for a fixed p; by choosing ps = pq O

Proof: (of theorem 7.4)

The proof follows mainly [Pearl 1988]. In a first step it is shown that the
Kullback-Leibler divergence of the distribution p and the distribution p;
represented by a given tree is minimized by associating with the edges of
the tree the (conditional) probability distributions of the child attribute
given the parent attribute that can be computed from p. (This is also called
the projection of p onto the tree.) Let U = {44,...,A,} and let, without
restricting generality, attribute Ay be the root of the tree. Furthermore, let
Aj(;) be the parent of attribute A; in the tree. For convenience, I denote all
probabilities derived from p with P, all derived from p; by P;. Finally, I use
P(u) as an abbreviation for P(A 4 .y Ai = a;), P(a1) as an abbreviation
for P(A; = ay1) and analogous abbreviations for other expressions. It is

Ixtaiv(p, pt)

P(u)
— P(u)log n
VA;eU: ge:dom(Ai) ’ Py (al) Hj=2 P (aj ‘ ak(j))
— _ (Shannon) (Al o An) _ Z P(u) log, Pt(a1) H Pt(aj | Clk(j))
VA, EU: J=2
a;€dom(A;)
_H(Shannon) (Al L An) _ Z P(al) 10g2 Pt((ll)
a1 €dom(Aq)
_Z Z P(aj, axj)) logy Pr(aj | axg))
= aj€dom(Ay)

aj(j) €dom(Ag(j))

From lemma A.4 we know that ) ;o p1(E)log, po(E) is maximized for a
fixed distribution p; by choosing ps = p;. Consequently, the above expres-
sion is minimized by choosing
Va; € dom(A4;1): Pi(a) = P(ay) and
Va; € dom(Ay) : Yag) € dom(Ag;)) @ Pilaj | argy) = Plaj | argy)-
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This proves one part of the theorem, namely that the (conditional) proba-
bilities must be those computed from the distribution p.

To show that the best tree is obtained by constructing a maximum
weight spanning tree with Shannon information gain providing the edge
weights, we simply substitute these equations into the Kullback-Leibler in-
formation divergence. This yields

Ixraiv(p, pt)

- _H(Shannon) (Al o An) _ Z P(al) 10g2 P(al)
a1 €dom(Ay)
—Z > Plaj,ang)logy Pla; | ar))
= aj€dom(Ay)
ak(J>€d0m(Ak(J))

_ _H(Shannon) (A B An) + H(Shannon) (Al)

P(a’ , Qg )
- Z Z P(aj, ar)) <log2 W(a(])) + log, P(aj))
a;E€dom(Aj) k(5)
ax () Edom( Ay )

_H(Sharmon) (Al L An) _ Z H(Shannon) (Az)
i=1

Shannon
ng(ama ¢ ) AJ’Ak(]))

Since the first two terms are independent of the structure of the tree, the
Kullback-Leibler information divergence is minimized by choosing the tree
that maximizes the third term, which is the sum of the edge weights of the
tree. Hence the tree underlying the best tree-structured approximation is
obtained by constructing the maximum weight spanning tree with Shannon
information gain providing the edge weights. This proves the theorem. [

A.16 Proof of Theorem 7.5

Theorem 7.5 If an undirected tree is extended by adding edges only between
nodes with a common neighbor in the tree and if the added edges alone do
not form a cycle, then the resulting graph has hypertree structure and its
maximal cliques contain at most three nodes.
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@ . @ . Figure A.1: Maximal cliques with four

/ or more nodes cannot be created without

@ @ @ @ breaking the rules for adding edges.

@ . Figure A.2: The node A can be bypassed
only by an edge connecting the node D to

@ @ a neighbor of A.

Proof: Consider first the size of the maximal cliques. Figure A.1 shows,
with solid edges, the two possible structurally different spanning trees for
four nodes. In order to turn these into cliques the dotted edges have to
be added. However, in the graph on the left the edge (B, D) connects two
nodes not adjacent in the original tree and in the graph on the right the
additional edges form a cycle. Therefore it is impossible to get a clique with
a size greater than three without breaking the rules for adding edges.

In order to show that the resulting graph has hypertree structure, it is
sufficient to show that all cycles with a length greater than three have a
chord (cf. section 4.2.2). This is easily verified with the following argument.
Neither the original tree nor the graph without the edges of this tree contain
a cycle. Therefore in all cycles there must be a node A at which an edge
from the original tree meets an added edge. Let the former edge connect
the nodes B and A and the latter connect the nodes C and A. Since edges
may only be added between nodes that have a common neighbor in the tree,
there must be a node D that is adjacent to A as well as to C in the original
tree. This node may or may not be identical to B. If it is identical to B and
the cycle has a length greater than three, then the edge (B, C) clearly is a
chord. Otherwise the edge (A, D) is a chord, because D must also be in the
cycle. To see this, consider figure A.2, which depicts the situation referred
to. To close the cycle we are studying there must be a path connecting B
and C' that does not contain A. However, from the figure it is immediately
clear that any such path must contain D, because A can only be bypassed
via an edge that has been added between D and a neighbor of A (note that
this neighbor may or may not be B). O
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precise tuple, 140
prediction, 8
preprocessing, 7
Prim algorithm, 251
prior knowledge, 17, 52, 55
priority problem, 279
probabilistic causal network, 273
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