
HOT: Hypergraph­based Outlier Test for Categorical Data ∗

Aoying Zhou, Li Wei, Weining Qian
†

Dept. of Computer Science, Fudan Univ.

{ayzhou, lwei, wnqian}@fudan.edu.cn

Wen Jin
Dept. of Computer Science, Simon Fraser Univ.

wjin@cs.sfu.ca

ABSTRACT
As a widely used data mining technique, outlier detection is
a process which aims to find anomalies while providing good
explanations. Most existing detection methods are basically
designed for numeric data, however, real-life data such as
web pages, business transactions and bioinformatics records
always contain categorical data. So it causes difficulty to
find reasonable exceptions in the real world applications.

In this paper, we introduce a novel outlier mining method
based on hypergraph model for categorical data. Since hy-
pergraphs precisely capture the distribution characteristics
in data subspaces, this method is effective in identifying
anomalies in dense subspaces and presents good interpre-
tations for the local outlierness. By selecting the most rel-
evant subspaces, the problem of ”curse of dimensionality”
in very large databases can also be ameliorated. Further-
more, the connectivity property is used to replace the dis-
tance metrics, so that the distance-based computation is not
needed anymore, which enhances the robustness for han-
dling missing-value data. The fact that connectivity com-
putation facilitates the aggregation operations supported by
most SQL-compatible database systems, makes the mining
process much efficient. Finally, we give experiments and
analysis which show that our method can find outliers in
categorical data with good performance and quality.

Keywords
Outlier, Hypergraph, High-dimensional data

1. INTRODUCTION
∗The work is partially supported by the National Grand
Fundamental Research 973 Program of China under Grant
No. G1998030414 and the National Research Foundation for
the Doctoral Program of Higher Education of China under
Grant No. 99038
†The author is partially supported by Microsoft Research
Fellowship.

Outlier detection is one of the major technologies in data
mining, whose task is to find small groups of data objects
that are exceptional when compared with rest large amount
of data. Outlier mining has strong application background
in telecommunication, financial fraud detection, and data
cleaning, since the patterns lying behind the outliers are
usually interesting for helping the decision makers to make
profit or improve the service quality.

A descriptive definition of outliers is given by Hawkins like
this:”an outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was gener-
ated by a different mechanism” [12]. Although some differ-
ent definitions have been adopted by researchers, they may
meet problems when being applied to real-life data. In real
applications, data are usually mix-typed, which means they
contain both numeric and categorical data. Since most cur-
rent definitions are based on distance, such as distance-based
outlier [18, 19], local outlier [9], or density in cells, such as
high-dimensional outlier [1], they cannot handle categorical
data effectively. The following example shows the difficulties
of processing categorical data.

Example 1. Consider a ten-record, five-dimensional cus-
tomer information dataset with dimensions RID, Name, Age-
range, Car-type, and Salary-level. as shown in Table 1. Ob-
viously, it is nonsensical to test dimensions record-id and
customer name. We are interested in the other three dimen-
sions, that is Age-range, Car-type, and Salary-level, which
may be useful for analyzing the latent behavior of the cus-
tomers. Each of the three attributes has two possible val-
ues, as presented in the table. By calculating, we can see
that occurrences of the combinations of the attribute values
are close to each other - there are two instances of (’Mid-
dle’, ’Sedan’, ’Low’), three of (’Young’, ’Sports’, ’Low’),
one of (’Young’, ’Sedan’, ’High’), one of (’Young’, ’Sports’,
’High’ ), and three of (’Middle’, ’Sedan’, ’High’). So it is
hard to figure out the outliers: based on the occurrence,
no record is outlier, or all are outliers. Along with the
dimensionality and the number of possible values of each
attribute increase, this problem may become even more se-
vere, for the well-known curse of dimensionality problem.
Therefore, finding outliers in global space is meaningless.
However, even finding outliers in subspaces is impossible for
the existence of the problem combinational explosion, which
will lead to inefficient search and inexplainable result.

Example 1 illustrates the problems of curse of dimension-



Table 1: Some Simple Customer Data
RID Name Age-range Car-type Salary-level

1 Mike Middle Sedan Low
2 Jack Middle Sedan High
3 Mary Young Sedan High
4 Alice Middle Sedan Low
5 Frank Young Sports High
6 Linda Young Sports Low
7 Bob Middle Sedan High
8 Sam Young Sports Low
9 Helen Middle Sedan High
10 Gary Young Sports Low

ality and combinational explosion met by data containing
categorical attributes. Unfortunately, they are not the only
difficulties we are confronting. In some applications, data
may contain missing values, which means that for some ob-
jects, the value of certain attribute is unknown. Obviously,
distance- or density-in-cell- based definitions cannot process
this kind of data. However, these research works do provide
valuable ideas for observing outliers. In [9], the authors em-
phasize that outlying is a relative concept, which should be
studied in local area. In [19] and [1], the outliers are mined
in subspaces, where only partial attributes are considered,
so that the curse of dimensionality is partially overcome.

How to define the local outliers in mix-typed, high-dimensional
data? Is there an approach to find the outliers efficiently?
This paper introduces a possible solution to these two ques-
tions.

1.1 Our Contributions
The major contributions of this paper are as follows:

• We propose a definition for outliers in high-dimensional
categorical data, which not only considers the locality
of the whole data space, but also of the dimensions, so
that the outliers can be easily explained;

• We propose an efficient algorithm for finding this kind
of outliers, which is robust for missing values;

• The techniques for handling real life data are discussed,
which include the preprocessing for numeric data, han-
dling missing values, postprocessing for pruning banal
outliers, and explanation and management of outliers
and the corresponding knowledge, so that the method
can be applied in real applications;

• We introduce a quantified method for measuring the
outliers, which can be used to analyze the quality of
outlier detection results.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2 pro-
vides the hypergraph model and the definitions for outliers
formally. In section 3, the algorithm for mining outliers is
presented with the enhancement for handling real-life data.
The empirical study of the proposed method is given in sec-
tion 4. After a brief introduction to related work in section
5, section 6 is for conclusion remarks.

Table 2: Hypergraph modeling
HyperedgeID Frequent itemsets Vertices

1 (’Middle’, *, *) 1, 2, 4, 7, 9
2 (’Young’, *, *) 3, 5, 6, 8, 10
3 (*, ’Sedan’, *) 1, 2, 3, 4, 7, 9
4 (*, *, ’Low’) 1, 4, 6, 8, 10
5 (*, *, ’High’) 2, 3, 5, 7, 9
6 (’Middle’, ’Sedan’, *) 1, 2, 4, 7, 9

2. PROBLEM STATEMENT
In the above, we have briefly examined the problems exist-
ing in the outlier detection of real-life data, especially those
with categorical attributes or missing attribute values. To
address the problems, we propose a hypergraph-based out-
lier detection method for categorical data. Here, we will first
describe the hypergraph model and give our own outlier def-
inition based on the model.

Definition 1. A hypergraph H = (V, HE) is a generalized
graph, where V is a set of vertices and HE is a set of hy-
peredges. Each hyperedge is a set that contains more than
two vertices.

In our model, each vertex v ∈ V corresponds to a data object
in the dataset, and each hyperedge he ∈ HE denotes a group
of objects that all contain a frequent itemset. In other words,
each hyperedge corresponds to a frequent itemset, and is the
set of vertices corresponding to the objects containing the
itemset.

With this model, the original dataset in the high-dimensional
space is mapped into a hypergraph. In the following exam-
ples, we will show that hypergraph can provide outliers with
both appropriate viewpoints and reasonable explanations.

Example 2. To model the dataset in Example 1 using a
hypergraph, the ten records in the dataset are mapped to
the vertices in the hypergraph. Assume that the minimum
support count is set to five, we can get the hyperedges shown
in Table 2. The frequent itemsets in the table are pre-
sented in trinaries, of which the elements denote the values
in Age − range, Car − type, and Salary − level respec-
tively. Furthermore, the ’*’ denotes that any value of the
corresponding attribute does not appear in the itemset. The
items in the vertices column denote the RIDs of the objects
that appear in each hyperedge.

It is obvious that the objects falling in the same hyper-
edge have common attribute values that form the hyperedge.
Therefore, if we observe the dataset from this angle, these
objects are similar. They fall in a local area determined by
part of the dimensions.

Before giving our definition for outliers, we list the notions
to be used in Table 3.

Definition 2. For data object o in a hyperedge he and
attribute A, the deviation of the data object o on at-



Table 3: Notions
Notion Meaning
N The number of objects in database DB.
‖DS‖ The number of elements in set DS.
A, Ai Each denotes an attribute.
B, C Each denotes a set of attributes.
vi

o The value of attribute Ai in object o.
ADS The set of values of A appearing in dataset DS.

Then Ahe and ADB denotes the A’s values
appear in hyperedge he and whole database
respectively.

SDS
A (x) Given x ∈ A and dataset DS, it is the number

of objects in DS having value x in A. Similar
to ADS , She

A and SDB
A are defined respectively.

Table 4: The deviation value of some data records
in example 1
RID Name Age- Car- Salary- Devhe

range type level (o, Car − type)
3 Mary Young Sedan High -0.708
5 Frank Young Sports High 0.708
6 Linda Young Sports Low 0.708
8 Sam Young Sports Low 0.708
10 Gary Young Sports Low 0.708

tribute A w.r.t. he is defined as Devhe(o, A) =
She

A (xo)−µ
She

A
σhe

SA

,

where µShe
A

= 1
‖Ahe‖

P
x∈A She

A (x) is the average value of

She
A (x) for all x ∈ Ahe, and σShe

A
=
q

1
‖Ahe‖

P
(She

A (x)− µShe
A

)2

is the standard deviation of She
A (x) for all x ∈ Ahe.

Definition 3. Given a hyperedge he, a data object o in it
is defined as an outlier with common attributes C and
outlying attribute A, in which C is the set of attributes
that have values appear in the frequent itemset correspond-
ing to he, if Devhe(o, A) < θ.

The threshold of deviation θ determines how abnormal the
outliers will be. Usually, θ is set to a negative value.

Example 3. Let us revisit the dataset in Example 1. When
analyzing the second hyperedge, which contains objects 3, 5,
6, 8, and 10, we calculate the deviation of them on attribute
Car−type. The result is shown in Table 4. According to the
outlier definition above, object 3 is discerned as an outlier,
for the deviation value of it is -0.708, while that of other
data records in the hyperedge is 0.708. We can also give
reasonable explanation to the phenomenon, that is, data
records with Age − range =′ Y oung′ usually have the at-
tribute value Car − type =′ Sports′, but the third object is
different with the attribute value Car − type =′ Sedan′, so
it is an outlier in the hyperedge. Although characteristics
of these objects are similar when observed from all three
attributes, the third one is totally different with other four
objects when we study them from the Age− range angle.

From this example, we find that although the objects are
always sparse in the whole space, and seem to have no spe-
cial characteristics from that point of view, some of them
are anomalies when observed from certain viewpoint. We
argue that the hyperedges are the appropriate viewpoints
for observing outliers. Firstly, since the itemsets forming
hyperedges are frequent, the objects falling in each of them
construct a quite large group. Note that outliers are anoma-
lies according to common objects. The size of the group,
which equals to the support of the corresponding itemset,
guarantees that the objects in it are common from certain
view. Secondly, a hyperedge determines not only the locality
of objects but also the dimensions. In other words, it deter-
mines a dense subspace in the whole data space. Current
research has proved that subspace-based approach is useful
for high-dimensional data. At last, since only part of the di-
mensions are considered in each hyperedge, the objects with
missing-values can also be examined in the hyperedges that
are not related to the attribute its missing values belong to.
The hyperedge is robust to incomplete data.

Furthermore, the example shows that discriminating the
common attributes and outlying attributes when finding
outliers is important for searching anomalous objects. There-
fore, in this paper, we study the problem of given the mini-
mum support threshold min sup and the deviation threshold
θ, finding all outliers according to definition 3.

3. ALGORITHM
In this section, we will introduce a bottom-up algorithm
using multi-dimensional array.

3.1 Basic Algorithm
The main algorithm for mining outliers is shown in Figure
1. The process for mining outliers can be roughly divided
into three steps for each outlier, as we will introduce one by
one in the follows.

Step 1. Building the hierarchy of the hyperedges

The line 1 and 2 of main algorithm find the frequent item-
sets, in which items are attribute values, and build the hi-
erarchy of them. For one k-frequent-itemset Ik and one
(k +1)-frequent-itemset Ik+1, if Ik ⊂ Ik+1, then Ik is Ik+1’s
ancestor in the hierarchy. And, i-frequent-itemset is in ith
level. We employ Apriori [5] for finding the frequent item-
sets. Note that Apriori tests all subsets of Ik+1, including
Ik, when finding Ik+1 [5]. Our algorithm just records the
subset relationships, so that the two steps are integrated
together.

Step 2. Constructing multidimensional array

For each frequent itemset I = {A1 = a1, A2 = a2, ..., Ap =
ap}, we construct a multi-dimensional array M , whose di-
mensions are attributes other than A1, A2, ..., Ap, and co-
ordinates are the identities of values of corresponding at-
tributes. Each entry in the array is the count of objects
falling in the hyperedge whose attribute values are equal to



procedure HypergraphBasedOutlierTest
input: DB, min sup, θ
output: Ouliers: (o, C, A)
// C is the set of common attributes
// A is the outlying attribute

1. Mine frequent itemsets(DB,min sup);

2. Build hypergraph and construct the hierarchy;

3. for each node i in level 1

4. Construct multi-dim. array Mi;

5. for level l = 2 to n

6. for each node i in level l begin

7. Choose one of i’s ancestor j;

8. Construct multi-dim. array Mi from Mj;

9. FindOutlier(hei,Mi,θ);

10. endfor

endprocedure

Figure 1: HOT algorithm

the coordinates respectively. More formally, the entry of the
array, named as amount in the rest of paper, according to
frequent itemset I above with coordinates (ap+1, ap+2, ..., ak)
is ‖{o|o.Ai = ai, i = 1, 2, ..., k}‖, in which Ai, i = p + 1, ..., k
are the attributes that have no value appear in I.

Assume that i and j are two nodes in the hierarchy, and j
is one of i’s ancestor, which means j ⊂ i, and ‖i‖ = ‖j‖ +
1. Mi and Mj are their multi-dimensional arrays respec-
tively. Mj is stored in a table (A′1, A′2, ..., A′k−p, amount),
in which i − j = {A′k−p = a}, and Mi will be stored in ta-
ble (A′1, A′2, ..., A

′
k−p−1, amount). Then, we get Mi from Mj

like this:

select A′1, A
′
2, ..., A

′
k−p−1, sum(amount)

into Mi

from Mj

where A′k−p = a

Step 3. Finding outliers in the array

Given a multi-dimensional array, the process to traverse the
array to find outliers is shown in Figure 2. For each di-
mension, it calculates the occurrence of each value (line 3).
Then, the deviation of each value is tested, so that outliers
are found.

Heuristic 1. When choosing ancestors to generate mul-
tidimensional array (line 7 of Figure 1), we choose the an-
cestor with minimum records.

Although any ancestor of a node can be chosen for comput-
ing the multi-dimensional array, using the smallest one is

procedure FindOutlier
input: he, M, θ
output: (o, C, A)

1. Set C as the set of attributes forming he;

2. for each dimension Ai in M begin

3. Calculate She
Ai

(v) for each value v in Ahe
i ;

4. Calculate µShe
Ai
;

5. for each value v in Ahe
i

6. if Devhe(v, Ai) < θ

7. for each object o ∈ he with v in Ai

8. Output (o, C, Ai);

9. endfor

endprocedure

Figure 2: Finding outliers in array

the most efficient choice. This is because that it only need
linear scan on the multi-dimensional array of the ancestor
node to get the new one. Therefore, choosing the smallest
one can reduce the entries to be examined, and minimize
the I/O cost.

Heuristic 2. If both i and j are nodes in the hierarchy,
and j is an ancestor of i (so, i has one more item A = a
than j), then, when finding outliers in the hyperedge corre-
sponding to j, we don’t execute the test of line 6 in Figure
2.

Since any object o in i has quite a lot of similar objects on
attribute A in j, for i is frequent, they may not be outliers
with outlying attribute A. In all of our experiments, whether
using this heuristic doesn’t affect the outliers found.

3.2 Analysis
The performance analysis for frequent itemset mining using
Apriori is given in [5]. To construct a multi-dimensional
array for node i from that of node j, the complexity is O(nj),
in which nj is the number of entries in multi-dimensional
array of j.

The time complexity of each step in the outer iteration of
Figure 2 is shown in Table 5. The outer iteration will be exe-
cuted at most (k−p) times, where k is the dimensionality of
the database, and p is the number of itemsets correspond-
ing to the hyperedge. Note that in each hyperedge, ni is
always larger than any ‖Ahe‖, and smaller than ‖he‖, the
total time complexity is O(‖HE‖ · k · max{‖he‖}), where
‖HE‖ is the number of hyperedges found by Apriori, after
the hyperedges are found. The algorithm needs to store the
multi-dimensional array for each hyperedge. Therefore, the
space complexity is O(‖HE‖ · k ·max{‖he‖}).



Table 5: Time complexity for finding outliers in
multi-dimensional array according to certain he
Process Time Notes

complexity
Calculate O(ni) ni denotes the number of
She

Ai
(v) entries in multi-dimensional

array of i, ni < ‖he‖
Calculate O(‖Ahe

i ‖)
µShe

Ai

Test outliers O(‖Ahe
i ‖)

3.3 Enhancement for Real Applications
The datasets in real-life applications are usually complex.
They have not only categorical data but also numeric data.
Sometimes, they are incomplete, which means some data
values are missing. In most cases, the datasets are very
large, for example, containing 1,000,000 objects, even one
percent outliers will have 10,000 objects! Therefore, expla-
nation and postprocessing are important. Furthermore, in
real applications, expert knowledge is usually a valuable re-
source. How to utilize it should also be considered. In this
section, we discuss the techniques for handling data with
these characteristics in HOT.

3.3.1 Handling numeric data
To process numeric data, we apply the widely used binning
technique [15], since it is the only available popular tech-
nique for discretizing numeric data in unsupervised condi-
tion. Our purpose is to find outliers, so we choose equal-
width method, although it is not preferred in some envi-
ronments for its sensitiveness to outliers. Furthermore, we
apply another heuristic to make sure the bins are enough
for discriminating the different characteristics of different
objects.

Heuristic 3. The number of bins is set to the maximum
cardinality of all categorical attributes.

Although, other preprocessing technique can also be com-
bined with HOT for handling numeric data. Expert knowl-
edge may be helpful as well. Since our paper focus on han-
dling categorical data, we omit the details here.

3.3.2 Handling missing­value data
HOT does not need additional techniques for handling missing-
value. It is robust to incomplete data, since the relationships
between two objects are tested on attributes one by one, in-
stead of on distance between two objects, like in most other
outlier mining algorithms. An incomplete object will not be
considered when the attribute containing the missing-value
is tested. However, it may still be found as outliers with
other outlying attributes. Meanwhile, this object is also con-
sidered in hyperedges it falls in, so that it still contributes
in finding other outliers that have common attribute values
with it.

3.3.3 Existing knowledge integration

HOT can take advantage of two kinds of expert knowledge:
horizontal and vertical. Horizontal knowledge means the in-
formation of grouping of objects. The groups of objects can
be added into the hypergraph as new hyperedges or even just
use these groups as hyperedges. Therefore, similar objects
are defined by existing knowledge. However, at that time,
common attributes do not exist anymore. But the outly-
ing attributes are still available. Vertical knowledge means
the information of interested attributes. The values in at-
tributes that are interested by experts or users can be viewed
as class labels, and these attributes as class attributes. Then,
the HOT changes from an unsupervised algorithm to a su-
pervised one. Only the class attributes values are tested in
the algorithm.

3.3.4 Pruning banal outliers
Outliers found by HOT may be not of equal interest. Some
outliers are consistent with commonsense - the ”already-
known” exceptions. Others are out of the expectation of
the experts and are more valuable because they may give us
some novel knowledge. Following example demonstrates the
condition.

Example 4. Suppose that in a 1000-record customer infor-
mation dataset, only five customers have Rolls-Royce mo-
tor cars. Since the occurrence is low, this kind of data
records will be identified as outliers in most hyperedges.
They are trivial outliers because they are accord with the
general knowledge, that is, owners of Rolls-Royce are sure
very exceptional, and they form a small cluster in the whole
dataset. Now assume there are 500 customers having Sedan
cars in the same dataset. It’s not a small cluster and we
would not expect them to be outliers. However, in a spe-
cific 500-record hyperedge, the number of data records with
Car− type =′ Sedan′ is only five, and are discerned as out-
liers. They are interesting since they deviate greatly from
our expectation.

To distinguish the two kinds of outliers, we give the concept
of degree of interest first.

Definition 4. Given a hyperedge he and the outlier o in it

with common attributes C and outlying attribute A, ‖he‖·She
A (xo)

N·SDB
A (xo)

is called the degree of interest of outlier o with com-
mon attributes C and outlying attribute A, denoted
as Doihe(o, A).

Then, the formal definition of banal outliers and interesting
outliers, for distinguishing trivial and unexpected outliers,
is given as follows.

Definition 5. Given an outlier o in hyperedge he with out-
lying attribute A, if Doihe(o, A) ≥ δ, where δ is the thresh-
old of interest, in he o is an interesting outlier according
to A, otherwise it is a banal outlier according to A.

Obviously, ‖he‖
N·SDB

A (xo)
is the reciprocal of the expectation of

data records having A = xo in hyperedge he, according to



the theory of probability. After multiplying with She
A (xo),

which is the actual number of data records having A = xo in
hyperedge he, the value can be regarded as a measurement
of the difference between reality and estimation. The larger
the value is, the more surprising the outlier is. According
to users’ information request, a pruning process can be in-
tegrated easily into HOT algorithm to filter banal outliers,
as postprocessing.

3.3.5 Mining result explanation
HOT provides sufficient information for explaining an out-
lier: common attributes, outlying attribute and deviation.
Therefore, the objects similar to the outlier in the common
attributes are easy to be retrieved for further study. Mean-
while, the values in outlying attributes can be provided to
users. This kind of knowledge is useful in applications such
as data cleaning, since users may be interested in know-
ing not only the anomalous object but also the outlying at-
tribute values, so that dirty attribute values can be found.
Furthermore, the deviation values can help users to find pos-
sible correct values.

4. EXPERIMENTAL RESULT
4.1 Experimental Setup
The experiments are tested on a Pentium 4 PC workstation
with 256MB RAM running Microsoft Windows 2000.

To test the ability of our method for finding outliers, some
experiments are done based on the Mushroom and Flag
datasets obtained from the UCI repository [20], which in-
cludes data sets designed for classification and machine learn-
ing applications. We choose these two datasets for three
reasons. First, they both contain categorical data, which
is our main aim to handle. Each attribute may contain
two to several possible values, on which no measurement
can be defined except equal. Second, they are both high-
dimensional data, especially when considering the dimen-
sionality vs. the number of objects in the dataset. Last
but not the least, mushroom dataset contains unknown at-
tribute values, which is a restrict condition for other outlier
mining algorithms’ applying on. The first two conditions
are related to curse of dimensionality and combinational
explosion. The last one is the well known incomplete data
problem. All these three problems make the problem of min-
ing outliers in such kind of datasets difficult. We will first
present some interesting outliers found by our method, then
use quantified measurements to show why the outliers found
are interesting.

4.2 Experiments on Real­life Data
We test the effectiveness of our algorithm on the Mushroom
and Flag datasets and detect numerous outliers. Actually,
all outliers found are rather deviant in some respect, but it
is impractical to exhibit them one by one here. So only some
outlier examples will be presented.

Mushroom Dataset Mushroom dataset is an 8124-record
dataset, which includes descriptions of hypothetical sam-
ples of gilled mushrooms in the Agaricus and Lepiota Fam-
ily. Each mushroom is identified as definitely edible, def-
initely poisonous, or of unknown edibility and not recom-
mended. Besides the classification propriety, there are other

Table 6: The deviation value of data records in hy-
peredge he corresponding to frequent itemset {V eil−
type =′ p′, Ring − type =′ p′} in mushroom dataset

Cap-surface Number of Devhe(o, Cap− surface)
occurrence

′f ′ 1248 0.22
′g′ 4 -0.85
′s′ 1212 0.19
′y′ 1504 0.44

Table 7: The deviation value of data records in hy-
peredge he corresponding to {Bruises =′ f ′, Gill −
attachment =′ f ′, Gill − spacing =′ c′, V eil − type =′ p′}
in mushroom dataset

Edibility Number of Devhe(o, Edibility)
Occurrence

′p′ 3170 0.71
′e′ 160 -0.71

22 attributes for each mushroom, such as cap-shape, odor,
gill-attachment, stalk-shape etc.. All attributes are nomi-
nally valued and there are some missing values among them,
which are denoted by ”?”.

When finding frequent itemsets, the minimal support is set
to 40 percent and 565 frequent itemsets are generated.

In one test, we set the threshold of deviation to -0.849 to
discover outliers deviating greatly from other data. We
find that among 3968 records satisfying the frequent itemset
{V eil − type =′ p′, Ring − type =′ p′}, only 4 records have
the attribute value Cap− surface =′ g′, as shown in Table
6. That is to say, most mushrooms with partial veil and
pendant ring will not have grooves-like cap surface. But
there are 4 mushrooms that do have partial veil, pendant
ring, and grooves-like cap surface. So they are detected as
outliers.

When the threshold is set to -0.7, another interesting kind
of outliers we find is as following. Totally, there are 3330
records comply the frequent itemset {Bruises =′ f ′, Gill −
attachment =′ f ′, Gill − spacing =′ c′, V eil − type =′ p′},
most of which are poisonous. But there are 160 mushrooms
of this kind are edible and so are regarded as outliers. Table
7 illustrates the condition clearly. These outliers are not only
interesting but also useful. When the knowledge is applied
to practice, it will gain much benefit.

Flag Dataset Flag dataset contains details of 194 nations
and their flags. There are overall 30 attributes, such as
name, landmass, religion, color in the top-left corner of the
flag etc., 10 of which are numeric-valued, others are either
Boolean- or nominal-valued. In the experiment, we ignore
numeric-valued attributes, since our purpose is to test the
ability of the algorithm for processing categorical data.

We set the minimal support to 60 percent when finding fre-
quent itemsets. 75 frequent itemsets are found, and accord-
ingly, there are 75 hyperedges in the hypergraph.



When the threshold of deviation is set to -0.71, 13 data ob-
jects are detected as outliers, which belong to two types.
One kind is that most countries (111 countries in the Flag
dataset), whose flags have white color but have neither cres-
cent moon symbol nor letters, are not located in South
America. However, we find 11 countries having these at-
tributes are South American countries. The other kind is
that gold color appears in two countries’ flags which have
no black or orange colors, while it is not present in the flags
of other 120 countries without black or orange colors.

4.3 Quantitative Empirical Study
In this subsection, we will show the quantized analysis of
the outliers found by HOT. First of all, we will define two
kinds of densities.

Definition 6. In a database DB, for an object o(v1
o , v2

o , ..., vk
o ),

its density in whole space is defined as densityall
o =

‖{p|p ∈ DB, vi
p = vi

o, i = 1, ..., k}‖/‖DB‖. Given an at-
tribute set B = {Ai1 , Ai2 , ...Ail} ⊆ A, o’s subspace den-
sity over B is defined as densityB

o = ‖{p|p ∈ DB, vij
p =

vij
o , j = 1, 2, ...l}‖/‖DB‖.

We will study an outlier o in hyperedge he with common
attributes C and outlying attribute Ao from following four
aspects:

• o’s density in whole space vs. minimum, maximum,
average density in whole space for all p ∈ DB;

• o’s density in whole space vs. minimum, maximum,
average density in whole space for all p ∈ he;

• o’s subspace density over C∪{Ao} vs. minimum, max-
imum, average subspace density over C ∪ {Ao} for all
p ∈ DB;

• o’s subspace density over C∪{Ao} vs. minimum, max-
imum, average subspace density over C ∪ {Ao} for all
p ∈ he;

The experiments still run on mushroom dataset, while the
threshold of deviation is set to -0.84, and 32 outlier types are
found as well as 76 outliers. In the test dataset, the density
in whole space of any object is 1/8124. This result is consis-
tent with our foresight. Since in high-dimensional data with
categorical attributes, most data object is distinct. This
also supports our conclusion that full-space outlier mining
algorithm is ineffective for this kind of data, since every data
object or no object is outlier according to those definitions.

Figure 3 shows the result for comparison of subspace density
between outliers and all data. Remember that results we get
by HOT algorithm are data records with outlying attribute
in a certain hyperedge. They are actually a kind of data
records and we call the characteristics shared by them out-
lier class. The x-axis denotes the 32 outlier classes found by
HOT, the y-axis denotes the logarithmic subspace density.
We can see that although outliers found by HOT always
have very low subspace density relatively in the database,

they are not always the most sparse ones. There are twelve
outlier classes (No. 1, 3, 4, 9, 10, 27, 28, 29, 30, 31, 32 in
the result) have higher subspace density values than that of
some other objects in the database over the same attributes.
After examining the result, we found that this situation hap-
pens for two reasons:

1. Some objects with very low subspace density over some
attributes even do not appear in any hyperedges. There-
fore, they are not similar to large amount of other data.
Note that we want to find relative outliers. These data
can be treated as noises, since the values in any at-
tribute of them are rare.

2. Some objects appear in certain hyperedges, but they
do not have outlying attributes. This means that in
those hyperedges, most distinct values in attributes
other than common ones occur few times. Therefore,
no object is special compared to other objects similar
to it. Although they are sparse in the whole database
over those attributes, this only means that they form
a cluster over certain attributes (e.g. the common at-
tributes).

Note that our purpose is to find objects having anomalous
attribute value while be similar to a large group of other data
in some other attributes. These two kinds of data objects
should not be treated as outliers.

Figure 4 shows the result for comparison of subspace density
between outliers and all data in the hyperedge the outlier
falling in. Different with the result that compared to the
data in whole database, outliers’ subspace densities are al-
ways the lowest ones in the hyperedge. This property is
guaranteed by our definition and algorithm. It ensures that
the most anomalous data can be found in each local dense
area.

In the above experiments, it is found that when the thresh-
old of deviation is not very negative, large amount of out-
lier classes as well as outliers will be found. It is still hard
for users to browse so many outliers and find information
valuable to them. Actually, some of the outliers are not so
interesting to users, which are banal outliers we defined in
section 3.3.4. Fortunately, with the threshold of interest, we
can prune banal outliers in advance and only keep interest-
ing outliers in the result.

Experiments are done on Mushroom dataset with the thresh-
old of interest set to 3.0, to filter those outliers with Doihe(o, A)
smaller than 3.0. Table 8 shows the number of outlier classes
and outliers after pruning compared to those without prun-
ing, which indicates that our algorithm is efficient in finding
and pruning banal outliers.

5. RELATED WORK
Outlier detection is firstly studied in the field of statistics [6,
12]. Many techniques have been developed to find outliers,
which can be categorized into distribution-based [6, 12] and
depth-based [22, 24]. However, recent research has proved
that these methods are not suitable for data mining appli-
cations, since that they are either ineffective and inefficient



0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Outliers

L
o

g
a
ri

th
m

ic
 s

u
b

s
p

a
c
e
 d

e
n

s
it

y

Subspace density of oulier Min. subspace density Max. subspace density Avg. subspace density

Figure 3: o’s subspace density over A∪ {Ao} vs. minimum, maximum, average subspace density over A∪ {Ao}
for all p ∈ DB

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Outliers

L
o

g
a
ri

th
m

ic
 s

u
b

s
p

a
c
e
 d

e
n

s
it

y

Subspace density of outlier Min. subspace density Max. subspace density Avg. subspace density

Figure 4: o’s subspace density over A∪ {Ao} vs. minimum, maximum, average subspace density over A∪ {Ao}
for all p ∈ he



Table 8: Banal outliers pruning ratio
Without pruning With pruning

θ Num of Num of Num of Num of Pruning
outlier outliers outlier outliers ratio
classes classes

-0.75 637 5856 130 676 88.46%
-0.77 569 5200 126 668 87.15%
-0.79 415 4756 108 620 86.96%
-0.81 269 2484 90 572 76.97%

for multidimensional data, or need a priori knowledge about
the distribution underlying the data [18].

Traditional clustering algorithms focus on minimizing the
affect of outliers on cluster-finding [21, 10, 28, 27, 11, 25,
13, 17]. Outliers as well as noises are eliminated without
further analyzing in these methods, so that they are only
by-products which are not cared about.

In recent years, outliers themselves draw much attention,
and outlier detection is studied intensively by the data min-
ing community [18, 19, 8, 23, 9, 16, 26, 1]. Distance-based
outlier detection is to find data that are sparse within the
hyper-sphere having given radius [18]. Researchers also de-
veloped efficient algorithms for mining distance-based out-
liers, such as cell-based algorithm for disk-resident data [18],
and partition-based algorithm [23]. However, since these
algorithms are based on distance computation, they may
fall down when processing categorical data or datasets with
missing values. In fact, the heuristics used in these algo-
rithms are inapplicable for high-dimensional datasets even
all attributes are numerical and contain no missing value,
that is caused by curse of dimensionality [7].

Graph-based spatial outlier detection is to find outliers
in spatial graphs based on statistical test [26]. However,
both the attributes for locating a spatial object and the
attribute value along with each spatial object are assumed
to be numeric, which restricts the application of the efficient
algorithm on datasets with categorical attributes.

In [8] and [9], the authors argue that the outlying character-
istics should be studied in local area, in which data points
usually share similar distribution property, namely density.
This kind of methods is called local outlier detection. Both
efficient algorithms [8, 16] and theoretical background [9]
have been researched for local outliers. However, it should
be noted that in high-dimensional space, data are almost al-
ways sparse, so that density-based methods may suffer the
problems that all data points are outliers or none of them
is outlier. Similar condition holds in categorical datasets.
Furthermore, the density definition employed also bases on
distance computation. As the result, it is inapplicable for
the condition datasets having missing values, which is usu-
ally true in real data mining applications.

Multi- and high-dimensional data make the outlier mining
problem more complex because of the impact of curse of
dimensionality on algorithms’ both performance and effec-
tiveness. In [19], Knorr and Ng tried to find the smallest
attributes to explain why an object is exceptional, and is it

dominated by other outliers. These information are called
intensional knowledge of the outliers. Different strategies to
scan the value lattice are analyzed and evaluated so that
efficient algorithm is developed. However, Aggarwal and
Yu argued that this approach may be expensive for high-
dimensional data [1]. Therefore, they proposed a definition
for outliers in low-dimensional projections and developed an
evolutionary algorithm for finding outliers in projected sub-
spaces. Both of these two methods consider the outlier in
global. The sparsity or deviation property is studied in the
whole dataset, so that they cannot find outliers relatively
exceptional according to the objects near it. Moreover, as
other existing outlier detection methods, they are both de-
signed for numeric data, and cannot handle dataset with
missing values.

Analyzing properties of high-dimensional data in subspaces
is a general approach for overcoming curse of dimensionality
that has been widely applied in clustering [4, 2, 14, 3]. How-
ever, these works focus on finding patterns for large amount
of data. As other clustering methods, they eliminate or ig-
nore outliers with noises to achieve robustness. However,
the success of these algorithms proves that different sets of
data may have different grouping property in different sub-
sets of dimensions. This conclusion supports our choice of
the approach to find outliers.

6. CONCLUSION AND FUTURE WORK
In this paper, we present a novel definition for outliers that
captures the local property of objects in partial dimensions.
This definition has the advantages that 1) it can process
categorical data effectively, since it overcomes the curse of
dimensionality and combinational explosion problems; 2) it
is robust to incomplete data, for its independence to tradi-
tional distance definition; 3) the knowledge, which includes
common attributes, outlying attribute, and deviation, is
provided along with the outliers, so that the mining result is
easy for explanation. Therefore, it is suitable for modeling
anomalies in real applications, such as fraud detection or
data cleaning for commercial data. Both the algorithm for
mining such kind of outliers and the techniques for applying
it in real-life dataset are introduced. Furthermore, a method
for analyzing outlier-mining results in subspaces is devel-
oped. By using this analyzing method, our experimental
result shows that HOT can find interesting, although may
not be most sparse, objects in subspaces. Both qualitative
and quantitative empirical studies support the conclusion
that our definition of outliers can capture the anomalous
properties in categorical and high-dimensional data finely.
To the best of our knowledge, this is the first trial to find
outliers in categorical data.

Current work uses pre- and post-processing for handling nu-
meric data and finding interesting outliers. Our future work
includes integrating these two processes into the algorithm,
so that the algorithm can be more efficient.

7. REFERENCES
[1] C. Aggarwal and P. Yu. Outlier detection for high

dimensional data. In Proc. of ACM SIGMOD Int’l
Conf. on Management of Data, pages 37–47. ACM
Press, 2001.



[2] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S.
Yu, and J. S. Park. Fast algorithms for projected
clustering. In Proc. of ACM SIGMOD Int’l Conf. on
Management of Data, pages 61–72. ACM Press, 1999.

[3] C. C. Aggarwal and P. S. Yu. Finding generalized
projected clusters in high dimensional spaces. In Proc.
of ACM SIGMOD Int’l Conf. on Management of
Data, pages 70–81. ACM Press, 2000.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
Proc. of ACM SIGMOD Int’l Conf. on Management
of Data, pages 94–105. ACM Press, 1998.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. of 20th
Int’l Conf. on Very Large Data Bases, pages 487–499.
Morgan Kaufmann, 1994.

[6] V. Barnett and T. Lewis. Outliers In Statistical Data.
John Wiley, Reading, New York, 1994.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is nearest neighbors meaningful? In
Proc. of 7th Int’l Conf. on Data Theory, pages
217–235. Springer, 1999.

[8] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander.
Optics-of: Identifying local outliers. In Proc. of 3rd
European Conf. on Principles and Practice of
Knowledge Discovery in Databases, pages 262–270.
Springer, 1999.

[9] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. Lof:
Identifying density-based local outliers. In Proc. of
ACM SIGMOD Int’l Conf. on Management of Data,
pages 93–104. ACM Press, 2000.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. of 2nd
Int’l Conf. on Knowledge Discovery and Data Mining,
pages 226–231. AAAI Press, 1996.

[11] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient
clustering algorithm for large databases. In Proc. of
ACM SIGMOD Int’l Conf. on Management of Data,
pages 73–84. ACM Press, 1998.

[12] D. Hawkins. Identification of Outliers. Chapman and
Hall, Reading, London, 1980.

[13] A. Hinneburg and D. Keim. An efficient approach to
clustering in large multimedia databases with noise. In
Proc. of 4th Int’l Conf. on Knowledge Discovery and
Data Mining, pages 58–65. AAAI Press, 1998.

[14] A. Hinneburg and D. A. Keim. Optimal
grid-clustering: Towards breaking the curse of
dimensionality in high-dimensional clustering. In Proc.
of 25th Int’l Conf. on Very Large Data Bases, pages
506–517. Morgan Kaufmann, 1999.

[15] F. Hussain, H. Liu, C. L. Tan, and M. Dash.
Discretization: An enabling technique. Technical
Report TRC6/99, National University of Singapore,
School of Computing, 1999.

[16] W. Jin, A. K. Tung, and J. Han. Mining top-n local
outliers in large databases. In Proc. of ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining,
pages 293–298. ACM Press, 2001.

[17] G. Karypis, E. Han, and V. Kumar. Chameleon: A
hierarchical clustering algorithm using dynamic
modeling. IEEE Computing, 32(8):68–75, 1999.

[18] E. Knorr and R. Ng. Algorithms for mining
distance-based outliers in large datasets. In Proc. of
24th Int’l Conf. on Very Large Data Bases, pages
392–403. Morgan Kaufmann, 1998.

[19] E. Knorr and R. Ng. Finding intensional knowledge of
distance-based outliers. In Proc. of 25th Int’l Conf. on
Very Large Data Bases, pages 211–222. Morgan
Kaufmann, 1999.

[20] G. Merz and P. Murphy. Uci repository of machine
learning databases. Technical Report, University of
California, Department of Information and Computer
Science:
http://www.ics.uci.edu/mlearn/MLRepository.html,
1996.

[21] R. Ng and J. Han. Efficient and effective clustering
methods for spatial data mining. In Proc. of 20th Int’l
Conf. on Very Large Data Bases, pages 144–155.
Morgan Kaufmann, 1994.

[22] F. Preparata and M. Shamos. Computational
Geometry: an Introduction. Springer-Verlag, Reading,
New York, 1988.

[23] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets. In
Proc. of ACM SIGMOD Int’l Conf. on Management
of Data, pages 427–438. ACM Press, 2000.

[24] I. Ruts and P. Rousseeuw. Computing depth contours
of bivariate point clouds. Journal of Computational
Statistics and data Analysis, 23:153–168, 1996.

[25] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
Wavecluster: A multi-resolution clustering approach
for very large spatial databases. In Proc. of 24th Int’l
Conf. on Very Large Data Bases, pages 428–439.
Morgan Kaufmann, 1998.

[26] S. Shekhar, C.-T. Lu, and P. Zhang. Detecting
graph-based spatial outliers: Algorithms and
applications (a summary of results). In Proc. of ACM
SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining. ACM Press, 2001.

[27] W. Wang, J. Yang, and R. Muntz. Sting: A statistical
information grid approach to spatial data mining. In
Proc. of 23rd Int’l Conf. on Very Large Data Bases,
pages 186–195. Morgan Kaufmann, 1997.

[28] T. Zhang, R. Ramakrishnan, and M. Linvy. Birch: An
efficient data clustering method for very large
databases. In Proc. of ACM SIGMOD Int’l Conf. on
Management of Data, pages 103–114. ACM Press,
1996.


