
Electricity Based External Similarity of Categorical Attributes

Christopher R. Palmer1 and Christos Faloutsos2

1 Vivisimo, Inc.

2435 Beechwood Blvd, Pittsburgh, PA

palmer@vivisimo.com
2 Computer Science Department, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA

christos@cs.cmu.edu

Abstract. Data mining tools use similarity or distance computations as a fundamental and critical data prop-

erty. Categorical attributes abound in databases. For example, the Car Make, Gender , Occupation, etc. �elds in

a car insurance database contain a great deal of useful information that is encoded as categorical values. Sadly,

categorical data is not easily amenable to similarity computations. Typically, a domain expert could manually

specify some or all of the similarity relationships. This is error-prone and not feasible for attributes that take on

many values, nor is it useful for cross-attribute similarities, such as between Gender and Occupation. External

similarity functions de�ne a similarity between, say, Car Makes by looking at how they co-occur with the other

categorical attributes. In this paper we exploit a rich duality between random walks on graphs and electrical

circuits to develop an external similarity function called REP. The only previously proposed external similarity

function is ad-hoc while REP is theoretically grounded. To illustrate the usefulness of REP, we conduct two

experiments. First, we cluster categorical attribute values to show the relationships inferred by REP. Second,

we use REP e�ectively as a nearest neighbour classi�er.

1 Introduction

Similarity between objects is a fundamental property required for data mining applications. For example, clustering is

a basic data mining tool used to understand data. Standard clustering algorithms use the similarity between objects

to group them into clusters. Common visualization tools map a similarity matrix into 2 or 3 dimensional points,

allowing the data set to be displayed on a terminal. Similarity is necessary or useful for many other applications.

There is a great deal of categorical data stored in databases but it is diÆcult to de�ne similarity between categorical

values. For example, an car insurance database may contain a �eld with di�erent automobile manufacturers such

as Toyota, Hyundai and Porsche. One solution to the lack of similarity in this �eld is to manually specify the 3x3

similarity table for these automobiles. However, such an approach is error-prone and becomes nearly impossible

when we have a more realistic number of car manufacturers. Little else could be done if the car information appears

in isolation. However, there is other information in the database such as Age, Gender , Occupation, and Number of

Accidents . The goal of this research is e�ectively use these additional attributes to infer a superior similarity function

over the automobile manufacturer categorical values. Such a similarity function is known as an External Similarity

function [3].

Our proposed similarity function is based on random walks in graphs (equivalently, currents in circuits). We

treat categorical data in this way because it naturally o�ers a way to de�ne \recursive" similarities. To motivate the

need for this recursiveness, consider the toy shopping basket in Figures 1 and 2. In these tables, the �rst customer

bought Bud , Diapers , and Chips while the second bought Coors , Diapers , and Cheesies , and so on. The problem is

to measure the similarity between the three beverages (Bud , Coors , and Milk) using the other items in the shopping

baskets (Diapers , Chips , Cheesies , and Cookies).

bud coors milk diapers chips cheesies cookies

1 1 1

1 1 1

1 1 1

Fig. 1. First example shopping basket data



bud coors milk diapers chips cheesies cookies

1 1 1

1 1 1

1 1 1

1 1

Fig. 2. Second example shopping basket data with 3rd customer

In the �rst table, Bud , Coors , and Milk should all be equally similar. Each is purchased with Diapers and that

is the only information given. The table in Figure 2 is identical except for a fourth customer who purchased Chips

and Cheesies . This purchase provides a link between the Chips purchased with the Bud and the Cheesies that were

purchased with the Coors and we would like the similarity function to take into account these secondary (recursive)

similarities.

To compute the similarity between Bud and Coors , we could run the following random process. Initially begin

with Bud . Randomly pick an item that co-occurs with Bud in the shopping basket table. Repeat with the newly

selected item. Then Bud and Coors are similar if the expected number of steps between Bud and Coors is small.

In section 4 we will explore several options based on random walks of this type to help motivate the random walk

based similarity function de�ned in section 5.

The main contribution of this paper is the development of REP, a similarity/distance function with the following

properties:

1. REP is theoretically grounded.

2. REP allows comparisons between di�erent values of the same attribute and allows comparisons between values

from di�erent attributes. For example, we can compare car types in an insurance data base but we can equally

well compare a car types and an occupation.

3. REP may be computed eÆciently using a relaxation algorithm and scales very well with data base size.

4. REP shows improved performance on real tasks using real data.

The remainder of this paper is organized as follows. In the following section, we describe some related work.

Section 3, provides background material relating random walks to electrical circuits and explains the construction

of a graph (electrical circuit), given a table of categorical data. Section 4 presents three potential, but awed simi-

larity/distance functions based on random walks (electrical current). Section 5 presents REP which corrects these

aws. Section 6 demonstrates experimentally the validity of our approach and examines the scalability of REP .

2 Related Work

The speci�c problem of clustering categorical data has been studied extensively recently [5{7] but this di�ers from

our current study because it is based on clustering tuples that contain categorical values rather than in developing

a more generally useful similarity function.

Jeh and Widow proposed a distance function for graphs using random walks [8]. To measure the distance between

nodes u and v, place a random web surfer at each of these vertices. In lock-step, the surfers randomly walk the graph

and we measure the expected distance until they meet at a common node. Their method has some surprising

properties. All nodes in a cycle are in�nitely far apart (because random walkers walking in lock step will never meet).

Such a property may be unfortunate. Moreover, it is expensive to compute. Given a graph G with n nodes, the

computation is based on G2, a graph with n2 nodes. This makes it impractical for our work.

Das and Manila proposed the only prior work on external similarity [3]. Given a probe set P and attributes A
and B, de�ne the distance between A and B as:

Dfr;P (A;B) =
X
D2P

jfr(A;D) � fr(B;D)j

where fr(x; y) is the fraction of rows containing both x and y in the data base. Two comments are in order at

this point. First, without loss of generality, we can remove the probe set. The probe set can be viewed as a projection

of the attributes and in this work we use all attributes (other than A and B) as the probe set. Second, this function



does not de�ne distances recursively. For the toy example in the introduction Milk , Bud , and coors are all equally

far apart.

Finally, a Klein and Randic proposed one of the alternatives that we consider in section 4 for the problem of

de�ning the similarity between molecules [9]. They proposed a resistance distance which is simply the reciprocal

of the current similarity . When we evaluate this current similarity, we will see that it is not appropriate for our

requirements.

3 Background and De�nitions

After providing the required notion and de�nitions, we present a pair of theorems which are part of the strong

relationship between electrical circuits and random walks on graph. The use of electrical circuits helps provide

intuition into some of the proposed similarity functions and leads to an eÆcient implementation of REP . To actually
address the issue of categorical attributes, at the end of this section we present two constructions that convert a

table of categorical data into a graph.

3.1 De�nitions

Categorical A table of categorical values has n rows and m columns. The total number of (column) distinct attributes

values is M . In Figure 2, there are n = 3 rows, m = 7 columns and M = 14 distinct attributes (each column takes

on a value of 0 or 1 but we count all 14 possibilities, not just the 2 distinct attributes!).

Electricity In a circuit the current (I), voltage (V ) and resistance (R) are related by the equation I = V=R.
Conductance, C is the reciprocal of resistance (C = 1=R). Voltage is measured as a decrease in electric potential

between pairs of points. We say voltage at x whenever the second point is obviously inferred (such as the ground).

At any point in an electrical circuit the total current entering this point is the same as the total current leaving this

point (the Kircho�'s law of conservation of current).

Walks - Let G be an edge weighted undirected graph with vertices V , edges E and edge weights w : V � V ! R. A
(u; v) walk is a sequence of vertices beginning with u and ending with v,

(u = x0 ! x1! � � � ! xn = v)

such that (xi�1; xi) is an edge in E. We write u !� v to refer to a (u; v) walk. We also de�ne u !+ v to be a

non-trivial (u; v) walk. That is, one in which u 6= v and thus must include at least one step (n > 0).

Constrained walks u!� v=S, where S is a set of vertices from V are (u; v) walks in which none of the intermediate

nodes belong to S. That is, a walk u !� v=fu; vg is a walk which starts from u and then never returns to u before

it reaches v (for the �rst time). Notionally, let u!� v=x1; x2; � � � ; xk be equivalent to u!� v=fx1; x2; � � � ; xkg.

Random walks on G are de�ned by the edge weightings. Let Cu be the total of all edge weights incident with u,
then the probability of moving from u to v is w(u; v)=Cu. That is, the probability of following each edge leaving u is

simply proportional to its edge weight. De�ne P (u !� v=S) as the probability that a random walk beginning from

u satis�es the condition u!� v=S.

Commute distance between nodes u and v in G is the expected length of a tour that begins at u and passes through

v prior to returning to u.

3.2 Electricity vs. Walks

Electricity and random walks on graphs are intimately related. Doyle and Snell provide an excellent introduction to

this synergy in [4]. We present the basic information required for this work. The circuit corresponding to a graph (and

visa-versa) is de�ned by replacing each edge (with weight w(u; v)) with a resister with resistance R(u; v) = 1=w(x; y)
(or C(u; v) = w(x; v)). Given the pairing of a graph and a circuit we present two theorems relating electrical properties

and random walks.



Theorem 1. Let Z be a circuit with a battery attached to u (+1 volt) and v (ground). Here Z is assumed to be a

single connected circuit. Let C be the total of the conductance of all resisters in Z. Let I(u; v) be the current owing
from u to v. Then, 2C=I(u; v) is the commute distance between u and v.

Proof. The unweighted version of this proof is in [2], theorem 2.1. The weighted version follows naturally from that

proof.

ut

Theorem 2. Let C be a circuit with a battery attached to u (+1 volt) and grounded to each element in S. Assume
that u =2 S. Let G be the graph corresponding to C. Let E be the voltage drop at x. Then E = P (x!� u=S) (in G).

Proof. (sketch) - Let E(x) be the voltage drop at x and then, for an electrical circuit, the law of conservation of

current requires that at any node, x (other than u where E(u) = 1 and s 2 S where E(s) = 0):

P
y�x

E(y)�E(x)

R(x;y)
= 0

)
P

y�x
E(y)

R(x;y)
= E(x) � 1=R(x)

)
P

y�x
E(y)�R(x)

R(x;y)
= E(x)

For the random walks in G, we can write the function f(x) = P (x!� u=S) as
8<
:
P (x!� u=S) = 1 if x = u
P (x!� u=S) = 0 if x 2 S
P (x!� u=S) =

P
y�x P (x! y) � P (y !� u=S) if x 6= u; x =2 S

Both f(x) and E(x) are harmonic functions. They share boundary values and the uniqueness theorem of harmonic

functions states f(x) = E(x) which completes the proof.

ut

Escape probability is similar to P (x!� u=S), but is de�ned as the probability that a walk started from x will reach

S before it returns to x.

3.3 Treating Categorical Data as a Graph

Our goal is to de�ne a similarity function for categorical data that recursively uses co-occurrence information from

the other attributes. To do so, we propose two methods for converting a table of categorical values into an edge

weighted graph. The �rst method preserves the tuples while the second method produces a more compact graph.

Chips

Cheesies

Bud

Coors

Milk

Diapers

row 1

row 2

row 3

row 4

Bud

Coors

Milk

Diapers

Chips

Cheesies

(a) Tuple Attribute Graph (b) Attribute-Attribute graph

Fig. 3. Two graph representations for the table 2

Tuple-Attribute Graph Given the table of categorical data in �gure 1 (where non-existent values are treated as

NULLs), we will explain how to generate the tuple-attribute graph shown in Figure 3(a). Create a node, ri, for each
of the n rows. Create a node aj for each of the M distinct attribute values. Place an edge (with weight 1) between

ri and aj if and only if the attribute value j appears in row i. This construction results in a bipartite graph.



Attribute-Attribute Graph Given the table of categorical data in �gure 1, we will explain how to generate the attribute-

attribute graph shown in Figure 3(b). This time, create a node aj for each of the M distinct attribute values. The

edge set is implied by the weight function

w(ai; aj) = fr(ai; aj) = number of tuples containing both ai and aj

There is obviously a strong relationship between these two graphs. In this paper we concentrate on the smaller

attribute-attribute graph. The use of the Tuple-Attribute graph is an area that we are exploring.

4 Electric Similarity Functions

Given the attribute-attribute graph corresponding to a table, there are several intuitive similarity functions to

consider. We see that they have aws and we use these aws to motivate our proposed similarity measure, REP .

4.1 Flawed similarity/distance functions

Electrical Current Similarity De�ne I(x; y) to be the current owing between x and y in the electrical circuit where

we have attached a 1 volt battery across x and y. This is a natural function with two excellent properties best

expressed as random walks:

1. x and y are more similar if they are connected by shorter walks.

2. x and y are more similar if they are connected by more walks.

Unfortunately, current also has serious scale issues. Take for example the simple table in Figure 4a). Here x and

y occur with a every time they appear. Also, p and q appear with b every time they appear. We expect the similarity

between x and y to be the same as the similarity between p and q because their appearances of equivalent, except

for scale. Unfortunately, I(x; y) = 2 � I(p; q) (I(x; y) = 0:75 for the attribute-attribute graph and I(x; y) = 0:5 for the
tuple-attribute graph). This is a serious practical issue, causing pairs of very frequent attributes to be very similar.

X or Y A or B

x a

x a

y a

y a

p b

q b

X or Y Z

x z1

x z2

x z3

x z0

y z0

y z4

y z5

y z6

a) Electrical current similarity b) Escape probability

Fig. 4. Examples that show poor behaviour for the proposed similarity/distance functions

Commute Distance To correct the scale problem, we considered the commute distance (expected length of a commute

starting from x, reaching y and then returning to x). By theorem 1, the commute distance is simply 2C=I(x; y) which
normalizes the distances and corrects the �rst example (C is the total conductance of all resisters in the circuit).

Commute distance has a subtle aw. For data that is relatively uniform (the out degree distribution of the graph does

not follow a skewed distribution), the commute distance may indeed appear useful. However, for realistic data where

the degree distribution follows a Zipf or power-law relationship, the commute distance degenerates. High degree

nodes will have a much higher stationary probability (probability that a random walk will be at the high degree

node at any given time) and consequently all the distances are skewed toward the largest nodes. This was discovered

when we began the experiments discussed in section 6. When clustering attribute values, the highest degree node

was invariably the focal point of the clustering and distances were not particularly useful.



Escape Probability An attempt to correct the problem with the commute distance used the escape probability. The

escape probability is the probability of a non-trivial walk starting at x will return to x before reaching y. This has a
natural de�nition in terms of circuits. Place a +1 volt battery at x and grounded at y, and then measure the e�ective

conductance, C, between x and y (C = I(x; y) since we have a 1 volt drop) and let C(x) be the conductance of x.
Then,

Pesc(x; y) = I(x; y)=C(x) = I(x; y) �R(x)

(for a proof see [4], page 42). In the case of our attribute graphs, C(x) is the number of rows containing x. It is
this normalization based on the number of rows which made the escape probability a candidate similarity metric. To

make it symmetric, we simply de�ne

Sesc(x; y) =
Pesc(x; y) + Pesc(y; x)

2

Sesc is also awed because it does not account for the length of a (x; y) walk, only its existence. For example, see

Figure 4b). Here there is a direct relationship between x and y and only an indirect relationship (through x and y!)
between z1 and z6. However, the escape probability similarity assigns

Sesc(x; y) = :125 and Sesc(z1; z6) = :25

which is a very poor similarity function indeed!

4.2 Proposal: Re�ned Escape Probability (REP)

We now combine the positive points of each method discussed above to de�ne our proposed similarity function, the

Re�ned Escape Probability (REP) similarity. Commute distance was appealing because it accounts for the length of

(x; y) walks. Escape probability normalized according to frequency of an attribute but became walk-length agnostic.

To correct this problem with the escape probability, we will use the concept of a sink node, s, that we attach to

all nodes in the network. We assign resistances such that the probability of stepping from any node to the sink is

sink p. We then can measure the probability of (x; y) walks that do not pass through either x, y or s. That is, given
G attach the sink node as described and then de�ne

SREP (x; y) = R(y) � P (x!� y=x; y; or s)

In the next section we convert this to two electrical circuit computations and show that it is symmetric (which

explains the use of R(y) as a normalization factor).

5 REP Algorithm

Given the high level description of REP , we now turn out attention to making the procedure concrete and considering

the eÆciency of implementation. Recall that the similarity between x and y is the probability of a walk from x to y
that does not pass through x, y or some new \sink" node. The sink node provides a bias toward short walks and we

apply a normalization factor to make this symmetric. In this section, we will complete the algorithm by:

1. Explaining the addition of the sink nodes to the graph.

2. Showing that SREP is symmetric.

3. Converting the probability de�nition of SREP into a de�nition based on electrical circuits.

4. Using a relaxation algorithm based on Kirchho�'s laws to solve these circuits.



5.1 Adding sink Nodes to a Graph

From a table of categorical attributes (or some other source), we have a graphG0. The problem is to construct a graph,

G, fromG0 by adding a new sink node, s, and adding an edge from every node, x, ofG0 to s such that the probability of
a random step from x to s is some constant, sink p. To do this, we note that P (x! s) = w(x; s)=CG(x) where CG(x)
is the total conductance of x in the graphG and w(x; s) is the weight of the edge. Now, since CG(x) = CG0

(x)+w(x; s)
we just solve the equation

w(x;s)

CG0
(x)+w(x;s)

= p

CG0
(x) + w(x; s) = w(x; s)=p

w(x; s) � (1=p� 1) = CG0
(x)

w(x; s) = CG0
(x) 1

1=p�1

And thus it is easy to add the required edges to the graph.

5.2 SREP is Symmetric

Theorem 3. Let SREP (x; y) = Ry � P (x!
� y=x; y; s) then SREP (x; y) = SREP (y; x).

Proof. Let W = (x = u0 ! u1 ! � � � ! uk = y) be any (x; y) walk where ui =2 fx; y; sg for 1 � i < k. From W we

can also de�ne the walk �W = (y = uk ! uk�1 ! � � � ! u0 = x). There is a one-to-one correspondence between the

(x; y) walks and the (y; x) walks. Thus to prove the result, we must show that Ry � P (W ) = Rx � P ( �W ). Write:

Ry � P (W ) = Ry � P (u0 ! u1) � P (u0 ! u1) � � �P (ui�1 ! uk)

Let Cui = 1=Ru1 be the total conductance of node ui and recall that P (ui ! ui+1) = w(u; ui+1)=Cui and then

we can express P (W ) as

Ry � P (W ) = P (W ) � Ry =
w(x; u1)

Cx

�
w(u1; u2)

Cu1

� � �
w(uk�2; uk�1)

Cuk�2

�
w(uk�1; y)

Cuk�1

�
1

Cy

which we can rewrite by simple \shifting" the denominators to the left

Ry � P (W ) =
1

Cx

�
w(x; u1)

Cu1

�
w(u1; u2)

Cu2

� � �
w(uk�2; uk�1)

Cuk�1

�
w(uk�1; y)

Cy

and then w(ui; ui+1) = w(ui+1; ui) by de�nition and reordering gives the required result

Ry � P (W ) =
1

Cx
�
w(u1; x)

Cu1

�
w(u2; u1)

Cu2

� � �
w(uk�1; uk�2)

Cuk�1

�
w(y; uk�1)

Cy
= Rx � P ( �W )

ut

5.3 SREP as Electrical Currents

We proposed a similarity function based on the quantity

P (x!� y=x; y; s)

we can use the relationships between random walks and electrical current to compute this quantity. We can

compute P (x!� y=y; s) by using theorem 2 (place a battery across y and s and measure the voltage drop at x). This
is not the required probability because it also includes walks that pass through x one or more times before reaching

y. Thus, we can separate the x to x loops from the required walk and write:

P (x!� y=y; s) =
�P

1

i=0
P (x!� x=x; y; s)i

�
� P (x!� y=x; y; s)

) P (x!� y=x; y; s) = (1� P (x!� x=x; y; s)) � P (x!� y=y; s)



Let Ey;s(x) be the voltage drop at x with the battery across y and s. Let Ey:x;s(u) be the voltage drop at u when

the battery is attached to y and grounded at x; s. Then, we can de�ne the probability of a loop from x to x as by

taking one step and using theorem 2 again:

P (y !� y=x; y; s) =
P

u�y P (y ! u) � P (u!� y=x; y; s)

P (y !� y=x; y; s) =
P

u�y
w(y;u)

C(y)
�Ey:x;s[u]

That is, we can de�ne

SREP (x; y) = Ey:s[x] �
X
u�y

w(y; u)

C(y)
� Ey:x;s[u]

and the only non-trivial computation that we explain in the next section is ES1:S2 [u].

5.4 Kirchho� Relaxation Algorithm for Voltages

We need to compute ES1:S2 which is the set of voltage drops between all nodes in the circuit when the nodes in set

S1 are �xed at 1 volt and the nodes in S2 are �xed at 0 volts (ground). We assume that S1 and S2 are disjoint. For

brevity of notation, let Vi[u] be the i
th approximation to ES1:S2 [u]. We initialize the relaxation algorithm by setting

V0[u] = 1 i� u 2 S1

and then at each step of the relaxation algorithm we update

8<
:
Vi[u] = 1 if u 2 S1
Vi[u] = 0 if u 2 S2

Vi[u] =
P

v�u
w(u;v)

C(u)
� V0[v] otherwise

where the last sub-equation is simply the basic identify I = V=R subject to Kirchho�'s law (conservation of

current):

P
v�u

V [u]�V [v]
R(u;v)

= 0

) (V [u] �
P

v�u 1=R(u; v))�
P

v�u
V [v]
R(u;v)

= 0

) V [u] � C[u] =
P

v�u
V [v]
R(u;v)

) V [u] =
P

v�u
C(u;v)
C(u)

� V [v]

It is easy to verify that these approximation follow a monotone increasing relationship 0 � V0[u] < � � � < Vi[u] <
� � � < Vl[u] = ES1:S2 [u] (exercise 1.2.5 of [4]) and then converge to the true value. We truncate the approximation

sequence when a suitably accurate result is found.

5.5 Running Time of REP

There are two phases to our algorithm. First, a graph is constructed from a table of categorical values. This requires

the addition of O(n �m2) edges for a table with n rows and m columns. Assuming reasonable hashing, this can be

done in O(n �m2) time.

Computing SREP requires that we use the relaxation algorithm described in the previous section. In that algo-

rithm, the running time to compute V0 is O(n) where n is the number of nodes. Each improvement step computes

Vi from Vi�1 and requires O(# edges) time. Since a graph from a categorical table has one node for each distinct

attribute value (and the sink) it has M +1 nodes. The worst case bound on the number of edges is O(M2), which is

rarely reached in practice. Thus, the time to compute SREP is the time to do two calls to the relaxation algorithm

and is thus O(M2) in the worst case.

It is very interesting is that the time to compute the similarities is independent of the number of rows in the

table and that the pre-computation grows linearly with the number of rows in the input table. We will explore this

in the next section.



6 Experiments

Since the Dfr;P algorithm represents the \state of the art" in computing distances for categorical data, the following

experiments attempt to compare REP to the Dfr;P algorithm. To do so, we de�ne a distance function:

dREP (x; y) = 1=SREP (x; y)

We use clustering as a means of visualizing the similarity function to see that REP produces superior distances

over three data sets. De�ne the distance of a vector of categorical values as:

dREP (< x1; x2; � � � ; xk >; y) = jj < dREP (x1; y); dREP (x2; y); � � � ; dREP (xk; y) > jj

We can use this distance function to do nearest neighbour classi�cation on �ve data sets to see that REP o�ers

excellent classi�cation.

6.1 Clustering

The purpose of the clustering experiments is to visualize the distance function over di�erent attributes and di�erent

data sets. We will �nd that REP provides similarity functions that match our expectations better than the distance

functions computed by Dfr;P . Since Dfr;P has been previously evaluated using single link hierarchical clustering,

that is the algorithm that we will use here [3]. The three data sets we evaluated are:

1. Adult - a selection of �elds from the 1994 census data collected in the United States. There are 32,561 training

examples and 16,281 test examples with 6 numeric �elds and 8 categorical �elds. In the experiments that follow,

we treat the numeric �elds as categorical �elds (that is, each value is a category). We also performed experiments

using only the 8 categorical �elds which were similar to those reported here. This data set is available from the

UC Irvine repository [1].

2. Autos - (imports-85) a data base of automobile speci�cations and insurance risk measures. There are 205

instances with 16 numeric �elds and 10 categorical �elds. Most of the numeric �elds are actually drawn from

a small ranges and it is appropriate to treat them as categorical �elds. This data set is available from the UC

Irvine repository [1].

3. Reuters - we extracted the subject keywords from the standard Reuters-21578 text collection and used each

keyword as a binary attribute. There are 19,716 instances with 445 boolean �elds. This is the same data used

in [3].

Figure 5 shows four di�erent clusterings. The left column is always REP and the right column is always Dfr;P .

Overall, REP appears to match our understand of the data better than Dfr;P . In particular, in parts (a) and (b),

we see that REP creates clusters for the Latin American countries which are not well represented by Dfr;P . In

parts (c) and (d) where we have clustered by maximum level of education attained, our REP results are basically

perfect (represents the real hierarchy of education levels) while Dfr;P is reasonably good but failed to identify the

post-high school degree vs. high school degree split seen in part (c). In parts (e) and (f) where we have clustered

by a person's occupation type, we see that REP creates three clusters: manual labour, lower level occupations and

senior occupations. Conversely, Dfr;P has left Private house servant as an outlier, combined Clerical with Other

service and combined Sales and Technical support . The �nal pair of clusterings in parts (g) and (h) show the makes

of cars in the Auto data set. The comparison here is more subtle, but the REP clustering has a more natural looking

structure and three very distinct clusters for the luxury cars, the family cars and the imports. Dfr;P on the other

hand has combined Mercury with the Alfa Romeo and the Porsche which is somewhat surprising.

Overall, we see that even with very di�erent data sets and di�erent choices of the attribute on which to cluster,

the REP distance function appears both more natural and more \correct" than the Dfr;P distance function.

6.2 Classi�cation

Now that we see that REP appears to be producing good distance measures. Now, we quantitatively evaluate its

performance using the vector de�nition of our distance function to do nearest neighbour classi�cation. This nearest

neighbour classi�cation relies on a good distance function. For comparison, we use C4.5 [10] which provides an
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(a) REP clustering of Reuters countries (b) Dfr;P clustering of Reuters countries
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(e) REP clustering of Adult occupation type (f) Dfr;P clustering of Adult occupation type
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Fig. 5. Comparison of REP and Dfr;P by using clustered output



Data set name REP C4.5 NN-hamming

Adult 15.1 % 13.6 % 21.5%

Audiology 23.1 % 15.4 % 30.8%

Letter recognition 28.2 % 32.4 % 30.5%

Mushrooms 0.8 % 0.2 % 0%

Optical recognition of handwritten digits 12.2 % 43.2 % 14.4 %

Table 1. Error rates show REP has classi�cation error similar to C4.5 and better than NN with hamming distance

excellent benchmark of quality. For further comparison, we also ran a NN algorithm using the hamming distance

between instances. We hope to see performance that is similar to C4.5 algorithm and is better than the simple

hamming distance function. We ran this classi�cation task for 5 data sets available from the UCI collection [1]. These

results are summarized in Table 1 where we record the percent error for each method.

REP o�ers performance similar to C4.5. It has lower error for two data sets, nearly identical error for two data

sets and higher error for only one data set. Using nearest neighbour classi�cation with hamming distance is actually

surprisingly good on some of the simpler tasks but is quite poor for the adult data set.

Thus we have seen experimentally that our distance function, REP both provides distance matrices that appear

reasonable based on our background knowledge and that provide reasonable classi�cation accuracy when used for

NN classi�cation.

6.3 Sensitivity to sink p

Our distance function has one parameter, sink p, which is the transition probability from each node to the terminal

sink node. The larger the value of sink p, the less value will be assigned to longer paths. In Figure 6, we ran the

classi�cation task for many values of sink p to test the sensitivity of our results.
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Fig. 6. Classi�cation results are not very sensitive to sink p

Here we see that the results can be completely useless for very small values of sink p. For very small values of

sink p, the similarity between two values is essentially the number of walks between these two values. This gives high

similarity to common values, independent of their distribution (because there are just more walks involving them).

Most of the data sets exhibit increasing performance as sink p grows from 0:5. The letter and digit recognition tasks

are the exceptions which perform worse for very large values of sink p.
Overall the results are quite stable for many di�erent values of sink p. We used 0.85 as a default value of the

sink p parameter which appears to be a good general purpose choice.

6.4 Scalability

The time to compute distances using REP has both a preprocessing component and a per-distance component. To

realistically measure the running time, we chose to measure the time required to compute the distances to cluster

the maximum education attained for the Adult data set. To vary the input size, we used the �rst x tuples of the



combined training and test sets. In Figure 7 we report the preprocessing time and the average time to compute each

of the 16� 7 required distances in the education distance array. These times are averaged over 3 runs.
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Fig. 7. Running time scales at most linearly with data set size

Our analysis claimed that the preprocessing time is linear in the number of edges in the graph and in terms of

the number of input rows. We see this behaviour in our experiment and further see that it is the cost of the edges

that are dominating in our experiment. The time becomes almost constant at the point where all pairs of attributes

that will appear in the same tuple have appeared in the same time. The average time to compute a distance array

element varies from .03 seconds to .13 and scales excellently with the input size!

7 Conclusion

In this paper we presented a node similarity function for graphs. We used this node similarity function to provide an

external similarity function called SREP . We found that this function is:

{ better than the best existing external distance function,
{ built upon a theoretical foundation (the existing approach is not), and
{ allows cross attribute similarity computations which allows
{ excellent nearest neighbour classi�cation.

Our implementation was evaluated and we found that it

{ provides excellent scalability with input size, and
{ is not sensitive to its only parameter.
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