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AbstratA spatial time series dataset is a olletion of time series, eah referening a loationin a ommon spatial framework. Correlation analysis is often used to identify pairs ofinterating elements from the ross produt of two spatial time series datasets. However,the omputational ost of orrelation analysis is very high when the dimension of the timeseries and the number of loations in the spatial frameworks are large. The key ontributionof this paper is the use of spatial autoorrelation among spatial neighboring time series toredue the omputational ost. A �lter-and-re�ne algorithm based on oning, i.e. group ofloations, is proposed to redue the ost of orrelation analysis over a pair of spatial timeseries datasets. Cone-level orrelation omputation an be used to eliminate (�lter out) alarge number of element pairs whose orrelation is learly below (or above) a given threshold.Element pair orrelation needs to be omputed for remaining pairs. Using algebrai ostmodels and experimental studies with Earth siene datasets, we show that the �lter-and-re�ne approah an save a large fration of the omputational ost, partiularly when theminimal orrelation threshold is high.Keywords: Spatial Time Series, Correlation Analysis, Filter-and-re�ne, SpatialAutoorrelation

yThis work was partially supported by NASA grant No. NCC 2 1231 and by Army High PerformaneComputing Researh Center ontrat number DAAD19-01-2-0014. The ontent of this work does not neessarilyreet the position or poliy of the government and no oÆial endorsement should be inferred. Aess toomputing failities was provided by the AHPCRC and the Minnesota Superomputing Institute.�The ontat author. E-mail: pusheng�s.umn.edu. Tel: (612) 626-7515



1 IntrodutionSpatio-temporal data mining [14, 15, 17, 16, 18, 13, 20, 7℄ is important in many appliationdomains suh as epidemiology, eology, limatology, or ensus statistis, where datasets whihare spatio-temporal in nature are routinely olleted. The development of eÆient tools [1,4, 8, 10, 11℄ to explore these datasets, the fous of this work, is ruial to organizations whihmake deisions based on large spatio-temporal datasets.A spatial framework [21℄ onsists of a olletion of loations and a neighbor relationship.A time series is a sequene of observations taken sequentially in time [2℄. A spatial time seriesdataset is a olletion of time series, eah referening a loation in a ommon spatial framework.For example, the olletion of global daily temperature measurements for the last 10 years isa spatial time series dataset over a degree-by-degree latitude-longitude grid spatial frameworkon the surfae of the Earth.
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tFigure 1: An Illustration of the Correlation Analysis of Two Spatial Time Series Datasets
Correlation analysis is important to identify interating pairs of time series aross two spatialtime series datasets. A strongly orrelated pair of time series indiates potential movement inone series when the other time series moves. For example, El Nino, the anomalous warming ofthe eastern tropial region of the Pai�, has been linked to limate phenomena suh as droughtsin Australia and heavy rainfall along the Eastern oast of South Ameria [19℄. Figure 1illustrates the orrelation analysis of two spatial time series datasets D1 and D2. D1 has 4spatial loations and D2 has 2 spatial loations. The ross produt of D1 and D2 has 8 pairsof loations. A highly orrelated pair, i.e. (D12,D21), is identi�ed from the orrelation analysisof the ross produt of the two datasets.However, a orrelation analysis aross two spatial time series datasets is omputationallyexpensive when the dimension of the time series and number of loations in the spaes are large.The omputational ost an be redued by reduing time series dimensionality or reduing thenumber of time series pairs to be tested, or both. Time series dimensionality redution teh-niques inlude disrete Fourier transformation [1℄, disrete wavelet transformation [4℄, singularvetor deomposition [6℄, et.The number of pairs of time series an be redued by a one-based �lter-and-re�ne approahwhih groups similar time series within eah dataset together. A �lter-and-re�ne approahhas two logial phases. First, the �ltering phase groups similar time series as ones in eahdataset and alulates the entroids and boundaries of eah one. These one parameters
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allow omputation of the upper and lower bounds of the orrelations between the time seriespairs aross ones. Many All-True and All-False time series pairs an be eliminated at theone level to redue the set of time series pairs to be tested by the re�nement phase. Wepropose to exploit an interesting property of spatial time series datasets, namely spatialauto-orrelation [5℄, whih provides a omputationally eÆient method to determine ones.We use spatial auto-orrelation measurement tools suh as orrelograms [5℄ to identify onesize. Experiments with Earth siene data [12℄ and an algebrai ost model show that the�lter-and-re�ne approah an save a large fration of omputational ost espeially whenthe minimal orrelation threshold is high. To the best of our knowledge, this is the �rstpaper exploiting spatial auto-orrelation among time series at nearby loations to redue theomputational ost of orrelation analysis over a pair of spatial time series datasets.Sope and Outline: In this paper, the omputation saving methods fous on redution oftime series pairs to be tested. Methods based on non-spatial properties (e.g. time-series powerspetrum [1, 4, 6℄) are beyond the sope of the paper and will be addressed in future work.The rest of the paper is organized as follows. In Setion 2, the basi onepts and lemmasabout one boundaries are provided, and Setion 3 proposes our �lter-and-re�ne algorithm.The ost model is proposed in Setion 4, and the experimental design and results are presentedin Setion 5. We summarize our work and disuss future diretions in Setion 6.
2 Basi ConeptsIn this setion, we introdue the basi onepts of orrelation alulation and the multi-dimensional unit sphere formed by normalized time series. We de�ne the one onept inthe multi-dimensional unit sphere and prove two lemmas to bound the orrelation of pairs oftime series from two ones.2.1 Correlation and Test of Signi�ane of CorrelationLet x = hx1; x2; : : : ; xmi and y = hy1; y2; : : : ; ymi be two time series of lengthm. The orrelationoeÆient [3℄ of the two time series is de�ned as:

orr(x; y) = 1m� 1 mXi=1(xi � x�x )� (yi � y�y ) = bx� by
where x = Pmi=1 xim , y = Pmi=1 yim , �x = qPmi=1(xi�x)2m�1 , �y = qPmi=1(yi�x)2m�1 , bxi = 1pm�1 xi�x�x ,byi = 1pm�1 yi�y�y , bx = hbx1; bx2; : : : ; bxmi, and by = hby1; by2; : : : ; bymi.A simple method to test the null hypothesis that the produt moment orrelation oeÆientis zero an be obtained using a Student's t-test [3℄ on the t statisti as follows: t = pm� 2 rp1�r2 ,where r is the orrelation oeÆient between the two time series. The freedom degree of theabove test is m � 2. Using this we an �nd a p � value or �nd the ritial value for a testat a spei�ed level of signi�ane. For a dataset with larger length m, we an adopt Fisher'sZ-test [3℄ as follows: Z = 12 log 1+r1�r , where r is the orrelation oeÆient between the two time
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series. The orrelation threshold an be determined for a given time series length and on�denelevel2.2 Multi-dimensional Sphere StrutureIn this subsetion, we disuss the multi-dimensional unit sphere representation of time series.The orrelation of a pair of time series is related to the osine measure between their unit vetorrepresentations in the unit sphere.Fat 1 (Multi-dimensional Unit Sphere Representation) Let x = hx1; x2; : : : ; xmi andy = hy1; y2; : : : ; ymi be two time series of length m. Let bxi = 1pm�1 xi�x�x , byi = 1pm�1 yi�y�y ,bx = hbx1; bx2; : : : ; bxmi, and by = hby1; by2; : : : ; bymi. Then bx and by are loated in the surfae of amulti-dimensional unit sphere and orr(x; y) = bx� by = os(\(bx; by)) where \(bx; by) is the angle ofbx and by in [0; 180Æ℄ in the multi-dimensional unit sphere .Beause the sum of the bxi2 is equal to 1: Pmi=1 bxi2 = Pmi=1( 1pm�1 xi�xrPmi=1(xi�x)2m�1 )2 = 1,bx is loated in the multi-dimensional unit sphere. Similarly, by is also loated in the multi-dimensional unit sphere. Based on the de�nition of orr(x; y), we have orr(x; y) = bx� by =os(\(bx; by)).Lemma 1 (Correlation and Cosine) Given two time series x and y and a user spei�edminimal orrelation threshold � where 0 < � � 1, jorr(x; y)j = j os(\(bx; by))j � � if and onlyif 0 � \(bx; by) � �a or 180Æ � �a � \(bx; by) � 180Æ, where �a = aros(�) and 0 � �a � 90Æ.
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Figure 3: Angle of Time Series in Two SpherialCones
Proof: Figure 2 shows that jorr(x; y)j = j os(\(bx; by))j falls in the range of [�; 1℄ or [�1;��℄if and only if \(bx; by) falls in the range of [0; aros(�)℄ or [180Æ � aros(�); 180Æ℄. �The orrelation of two time series is diretly related to the angle between the two time seriesin the multi-dimensional unit sphere. Finding pairs of time series with an absolute value oforrelation above the user given minimal orrelation threshold � is equivalent to �nding pairsof time series bx and by on the unit multi-dimensional sphere with an angle in the range of [0,�a℄ or [180Æ � �a; 180Æ℄. 3



2.3 Cone and Correlation between a Pair of ConesThis subsetion formally de�nes the onept of one and proves two lemmas to bound theorrelations of pairs of time series from two ones. The user spei�ed minimal orrelationthreshold is denoted by � and aros(theta) is denoted by �a aordingly.De�nition 1 (Cone) A one is a set of time series in the multi-dimensional unit sphere, andit is haraterized by two parameters, the enter and the span of the one. The enter of theone is the mean of all the time series in the one. The span � of the one is the maximal anglebetween any time series in the one and the one enter.We now investigate the relationship of two time series from two ones in the multi-dimensional unit sphere as illustrated in Figure 3 (a). The largest angle(\P1OQ1) betweentwo ones C1 and C2 is denoted as max and the smallest angle (\P2OQ2) is denoted as min.We prove the following lemmas to show that if max and min are in spei� ranges, the absolutevalue of orrelation of any pair of time series from the two ones are all above � (or below �).Thus all pairs of time series between the two ones satisfy (or dissatisfy) the minimal orrelationthreshold.Lemma 2 (All-True Lemma) Let C1 and C2 be two ones from the multi-dimensional unitsphere struture. Let bx and by be any two time series from the two ones respetively. If 0 �max � �a, then 0 � \(bx; by) � �a. If 180Æ��a � min � 180Æ, then 180Æ��a � \(bx; by) � 180Æ.If either of the above two onditions is satis�ed, fC1; C2g is alled an All-True one pair.Proof: For the �rst ase, it is easy to see from Figure 3 that if max � �a, then the anglebetween bx and by is less or equal to �a. For the seond ase, when 180Æ � �a � min � 180Æ, weneed to show that 180Æ � �a � \(bx; by) � 180Æ. If this were not true, there exist bx0 2 C1 andby0 2 C2 where 0 � \(bx0; by0) < 180Æ��a sine the angle between any pairs of time series is hosenfrom 0 to 180Æ. From this inequality, we would have either min � � = \(bx0; by0) < 180Æ � �a asshown in Figure 9 (b) or 360Æ�max � � = \(bx0; by0) < 180Æ� �a as shown in Figure 9 (). The�rst ondition ontradits our assumption that 180Æ� �a � min � 180Æ. The seond onditionimplies that 360Æ� max < min sine 180Æ� �a � min. This ontradits our hoie of min asthe minimal angle of the two ones. �Lemma 2 shows that when two ones are lose enough, any pair of time series from the twoones are highly positively orrelated; and when two ones are far apart enough, any pair oftime series from the two ones are highly negatively orrelated.Lemma 3 (All-False Lemma) Let C1 and C2 be two ones from the multi-dimensional unitsphere; let bx and by be any two time series from the two ones respetively. If �a � min � 180Æand min � max � 180Æ� �a, then �a � \(bx; by) � 180Æ� �a and fC1; C2g is alled an All-Falseone pair.Proof: The proof is straightforward from the inequalities. �Lemma 3 shows that if two ones are in a moderate range, any pair of time series from thetwo ones is weakly orrelated.
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3 Cone-based Filter-and-Re�ne AlgorithmOur algorithm onsists of four steps as shown in Algorithm 1: Pre-proessing (step 1), ConeFormation (step 2), Filtering i.e. Cone-level Join (step 4), and Re�nement i.e. Instane-levelJoin (steps 7-10).Algorithm 1 Correlation FinderInput: 1) S1 = fs11; s12; : : : ; s1ng: n1 spatial referened time series where eah instanereferenes a spatial framework SF1;2) S2 = fs21; s22; : : : ; s2ng: n2 spatial referened time series where eah instanereferenes a spatial framework SF2;3) a user defined orrelation threshold �;Output: all pairs of time series eah from S1 and S2 with orrelations above �;Method:Pre-proessing(S1); Pre-proessing(S2); (1)CN1 = Cone Formation(S1 ; SF1); CN2 = Cone Formation(S2 ; SF2); (2)for all pair 1 and 2 eah from CN1 and CN2 do f (3)Filter F lag = Cone-level Join(1, 2, �); (4)if (Filter F lag == ALL TRUE) output all pairs in the two ones (5)else if (Filter F lag != ALL FALSE) f (6)for all pair s1 and s2 eah from 1 and 2 do f (7)High Corr F lag = Instane-level Join(s1,s2, �); (8)if (High Corr F lag) output s1 and s2; (9)g (10)g (11)
The �rst step is to pre-proess the raw data to the multi-dimensional unit sphere repre-sentation. The seond step, one formation, involves grouping similar time series into onesin spatial time series datasets. Clustering the time series is an intuitive approah. However,lustering on time-series datasets itself may be expensive and sensitive to the lustering methodand its objetive funtion. For example, K-means approahes [9℄ �nd globular lusters whiledensity-based lustering approahes [9℄ �nd arbitrary shaped lusters with user-given densitythresholds. Spatial indexes, e.g. R� trees, built after time series dimensionality redution [1, 4℄ould be another approah to group similar time series together. In this paper, we explorespatial auto-orrelation for the one formation. First the spae is divided into disjoint ells.The ells an ome from domain experts, suh as the El Nino region, or ould be as simpleas uniform grids. For uniform grids, we will disuss the ell size by using a orrelogram insetion 5.1. By sanning the dataset one, we map eah time-series into its orresponding ell.Eah ell ontains similar time series and represents a one in the multi-dimensional unit sphererepresentation. The enter and span are alulated to haraterize eah one.Example 1 (Spatial Cone Formation) Figure 4 shows an illustrative example of the spatialone formation for two datasets, namely land and oean. Both land and oean frameworksonsist of 16 loations. The time series of length m in a loation s is denoted as F (s) =F1(s); F2(s); : : : ; Fi(s); : : : Fm(s). Figure 4 only depits a time series for m = 2. Eah arrowin a loation s of oean or land represents the vetor < F1(s); F2(s) > normalized to the twodimensional unit sphere. Sine the dimension of the time series is two, the multi-dimensionalunit sphere redues to a unit irle, as shown in Figure 4 (b). By grouping time series in eah
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Figure 4: An Illustrative Example for Spatial Cone Formation
datasets into 4 disjoint ells aording to their spatial proximity, we have 4 ells eah for oeanand land. The oean is partitioned to L1�L4 and the land is partitioned to O0�O4, as shownin Figure 4 (a). Eah ell represents a one in the multi-dimensional unit sphere. For example,the path L2 in Figure 4 (a) mathes L2 in the irle in Figure 4 (b).After the one formation, one-based join is applied between the two datasets. The al-ulation of the angle between eah pair of one enters is arried out, and the minimum andmaximum bounds of the angles between the two ones are derived based on the spans of thetwo ones. The All-False one pairs or All-True one pairs are �ltered out based on the lemmas.Finally, the andidates whih annot be �ltered are explored in the re�nement step.Example 2 (Filter-and-re�ne) The join operations between the ones in Figure 4 (a) areapplied as shown in Table 1. The number of orrelation omputations is used in this paper asthe basi unit to measure omputation osts. Many All-False one pairs and All-True one pairsare deteted in the �ltering step and the number of andidates explored in the re�nement stepare redued substantially. The ost of the �ltering phase is 16. Only pairs (O1, L1), (O3, L4),and (O4, L4) annot be �ltered and need to be explored in the re�nement step. The ost of there�nement step is 3� 16 sine there are 4 time series in both the oean and land one for all 3pairs. The total ost of �lter-and-re�ne adds up to 64. The number of orrelation alulationsusing the simple nested loop is 256, whih is greater than the number of orrelation alulationsin the �lter-and-re�ne approah. Thus when the ost of the one formation phase is less than192 units, the �lter-and-re�ne approah is more eÆient.Completeness and Corretness Based on the lemmas in Setion 2, All-True one pairs andAll-False one pairs are �ltered out so that a superset of results is obtained after the �lteringstep. There are no false dismissal for this �lter-and-re�ne algorithm. All pairs found by thealgorithm satisfy the given minimal orrelation threshold.
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Oean-Land Filtering Re�nement Oean-Land Filtering Re�nementO1 � L1 No 16 O3 � L1 All-TrueO1 � L2 All-False O3 � L2 All-TrueO1 � L3 All-False O3 � L3 All-TrueO1 � L4 All-False O3 � L4 No 16O2 � L1 All-False O4 � L1 All-TrueO2 � L2 All-False O4 � L2 All-TrueO2 � L3 All-False O4 � L3 All-TrueO2 � L4 All-False O4 � L4 No 16Table 1: Cone-based Join in Example Data
4 Analytial Evaluation and Cost ModelsIn this setion, we provide simple algebrai ost models for the omputation ost of orrelationanalysis in spatial time series datasets Suppose the two input datasets are D1 and D2, and theorresponding one sets after the oning step are C1 and C2 respetively.The ost model for the proposed algorithm an be divided into three parts: the ost of oneformation, the ost of one-based orrelation joins, and the ost of orrelation alulations inthe re�nement step. The ost of the one formation,M1, onsists of the ost of alulating oneenter and one angle for eah one and is determined by the number of time series in bothdatasets. Thus, M1 = jD1j + jD2j, where jD1j and jD2j are the numbers of time series in D1and D2 respetively. The seond part, M2, is the ost of the orrelation join between two onesets, and the ost is the number of orrelation omputations of their ross produts. Given thenumber of ones in the two one sets, M2 is �xed as the produt of the sizes of the two onesets. Thus we getM2 = jC1j�jC2j. The third part,M3, depends on the Filtering Ability Ratio,denoted as FAR, of the one level join. The FAR is the fration of time series pairs reduedin the �ltering step, i.e. FAR = Ntime series pairs�filteredjD1j�jD2j . The number of orrelation omputationafter �ltering is jD1j � jD2j � (1� FAR). The total ost model is denoted as follows:Cost =M1 +M2 +M3 = jD1j+ jD2j+ jC1j � jC2j+ jD1j � jD2j � (1� FAR)=jD1j+ jD2j+ jD1jCone� Size1 + jD2jCone� Size2 + jD1j � jD2j � (1� FAR) (1)

From the equation, we see that the ost model is related to the sizes of the ones of thedatasets and to the FAR. The FAR is determined by the one sizes and minimal orrelationthreshold �. Thus the ost model is sensitive to the one sizes and the minimal orrelationthreshold. If we �x the one sizes and inrease the minimal orrelation threshold, the FARinreases. The minimal orrelation threshold does not a�et the ost of M1 and M2. Soinreasing the minimal orrelation threshold will derease the overall ost. If we �x the minimalorrelation threshold and inrease the one sizes, M1 remains the same and M2 monotoniallydereases with inreasing one sizes. However, FAR stops inreasing and starts to dereaseafter the one sizes reah some value, whih leads M3 to stop dereasing and start to inrease.So inreasing the one sizes does not neessarily derease overall osts. The hoie of the onesizes depends on the datasets and more disussion about the seletion of one sizes is available
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in Setion 5.1.
5 Performane EvaluationWe want to answer two questions: (1)How does the spatial auto-orrelation based inexpensivegrouping algorithm a�et �ltering eÆieny? In partiular, how do we identify the proper onesize to ahieve better overall savings? (2) How does the minimal orrelation threshold inuenethe �ltering eÆieny? These questions an be answered in two ways: algebraially as disussedin setion 5.1 and experimentally as disussed in setion 5.2.Figure 5 desribes the experimental setup to evaluate the impat of parameters on theperformane of the algorithm. We evaluated the performane of the algorithm with a datasetfrom NASA Earth siene data [12℄. In this experiment, a orrelation analysis between the EastPai� Oean region (80W - 180W, 15N - 15S) and the United States was investigated. Thetime series from 2901 land ells of the United States and 11556 oean ells of the East Pai�Oean were obtained under a 0.5 degree by 0.5 degree resolution.Net Primary Prodution (NPP) was the attribute of the land ells, and Sea Surfae Temper-ature (SST) was the attribute for the oean ells. NPP is the net photo-syntheti aumulationof arbon by plants. Keeping trak of NPP is important beause NPP inludes the food soureof humans and all other organisms and thus, sudden hanges in the NPP of a region an havea diret impat on the regional eology. The reords of NPP and SST are monthly data from1982 to 1993.
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5.1 Parameter SeletionsIn this setion we investigate the seletive range of the one spans to improve �ltering eÆieny.Both All-False and All-True �ltering an be applied in the �ltering step. Thus we investigatethe appropriate range of the one spans in eah of these �ltering ategories.Given a minimal orrelation threshold � (0 < � < 1), max = Æ+�1+�2 and min = Æ��1��2,where Æ is the angle between the enters of two ones, and the �1 and �2 are the spans of thetwo ones respetively. For simpliity, suppose �1 ' �2 = � .Lemma 4 Given a minimal orrelation threshold �, if a pair of ones both with span � is anAll-True one pair, then � < aros(�)2 .
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Figure 6: All-True and All-False Filtering Perentages for Di�erent Parameters

Proof: Assume that a one pair satis�es the All-True Lemma, i.e., either max < aros(�) ormin > 180Æ � aros(�) is satis�ed. In the former senario, the angle Æ is very small, and weget Æ+2� < aros(�), i.e., � < aros(�)�Æ2 . In the latter senario, the angle Æ is very large, andwe get Æ � 2� > 180Æ � aros(�), i.e., � < aros(�)+Æ�180Æ2 . The � is less than aros(�)2 in eithersenario sine � < 180Æ. �Lemma 5 Given a minimal orrelation threshold �, if a pair of ones both with span � is anAll-False one pair, then � � 180Æ4 � aros(�)2 .Proof: Assume that a one pair satis�es the All-False Lemma, i.e., the onditions min >aros(�) and max < 180Æ�aros(�) hold. Based on the two in-equations above, max�min <180Æ�2 aros(�) and max�min = 4� < 180Æ�2 aros(�) are true. Thus when the All-Falselemma is satis�ed, � < 180Æ4 � aros(�)2 . �The range of � is related to the minimal orrelation thresholds. In this appliation domain,the pairs with absolute orrelations over 0.3 are interesting to the domain experts. As shownin Figure 6, All-False �ltering provides stronger �ltering than All-True �ltering for almost allvalues of one sizes and orrelation thresholds. Thus we hoose the one span � for maximizingAll-False �ltering onditions. The value of aros(�) is less than 72:5Æ for � 2 (0:3; 1℄, so theone span � should not be greater than 180Æ4 � aros(�)2 = 8:75Æ.An empirial orrelogram [5℄ is often used to demonstrate the spatial autoorrelation ofspatial data in spatial statistis. As shown in Figure 7, the orrelograms of samples from oeanand land are presented, and the relationships between pairwise distanes and orrelations amongsamples are illustrated. The x-axis represents the distanes of the oean-land pairs in the unitof degree, and the y-axis represents the orrelations of the time series of the oean-land pairs.Aording to this �gure, the oean demonstrates higher spatial autoorrelation than the land.This is beause the maximum one angle should be less than 8:75Æ, and the one size shouldkeep the orrelations between any time series in the one and the one enter less than 0.988.Aording to this utting line, land annot satisfy this riterion, and the distane in the oeanorrelogram is between 1 and 2. Thus the one size of land is hosen as 1� 1, and the one sizeof oean is hosen as 3� 3. 9
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Figure 7: Empirial Correlograms for Land and Oean Samples

5.2 Experimental ResultsExperiment 1: E�et of Coning The purpose of the �rst experiment was to evaluateunder what oning sizes the savings from �ltering outweighs the overhead. When the one issmall, the time series in the one are relatively homogeneous, resulting in a small one span � .Although it may result in more All-False and All-True pairs of ones, suh one formation inursmore �ltering overhead beause the number of ones is substantially inreased and the numberof �ltered instanes in eah All-False or All-True pair is small. When the one is large, thevalue of the one span � is large, resulting in a derease in the number of All-False and All-Truepairs. The e�ets of the All-False and All-True �ltering in the given data are investigated.Experiment 2: E�et of Minimal Correlation Thresholds In this experiment, we eval-uated the performane of the �ltering algorithm when the minimal orrelation threshold ishanged. Various minimal orrelation thresholds were tested and the trends of �ltering eÆ-ieny was identi�ed with the hange of minimal orrelation thresholds.5.2.1 E�et of ConingThis setion desribes a group of experiments arried out to show the net savings of the algo-rithm for di�erent one sizes. For simpliity, we only hanged the one size for one dataset.Aording to the analysis of the previous setion, the land one size is �xed at 1 � 1. Wearried out a series of experiments using the �xed minimal orrelation threshold, the �xed landone size, and various oean one sizes. The minimal orrelation threshold � was �xed as 0.5.Figure 8 (a) shows the net savings as a perentage of the omputational ost of the nestedloop join algorithm for di�erent oean one sizes. The x-axis represents the di�erent one sizesranging from 1� 1 to 6� 6, and the y-axis represents the net savings in omputational ost asa perentage of the osts using the simple nested loop join algorithm. The net savings rangefrom 40 perent to 62 perent, whih is onsistent with the empirial orrelogram of the oeansamples.
10
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(a) Testing Di�erent OeanCone Size
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(b) Testing �
Figure 8: Testing Di�erent Cone Sizes and Minimal Correlation Threshold �

5.2.2 E�et of Minimal Correlation ThresholdsIn this experiment, we investigated the e�ets of minimal orrelation threshold � on the savingsin omputation ost for orrelation analysis. The land and oean one sizes were �xed as 1� 1and 3 � 3 respetively, and a series of experiments was arried out for di�erent �s. Figure 8(b) shows the total savings as a perentage of the omputational ost of the nested loop joinalgorithm for di�erent �s. The x-axis represents the di�erent one sizes ranging from 1 � 1to 6 � 6, and the y-axis represents the total savings as a perentage of the omputationalost of the nested loop join algorithm. The net savings perentages range from 44 perentto 88 perent with the higher savings at higher values of orrelation thresholds. Thus whenother parameters are �xed, the �ltering algorithm generally ahieves better performane as theminimal orrelation threshold is inreased.
6 Conlusion and Future WorkIn this paper, a �lter-and-re�ne orrelation analysis algorithm for a pair of spatial time seriesdatasets is proposed. A ost model and experimental evaluations using a NASA Earth sienedataset are presented. The total savings of orrelation analysis omputation range from 40perent to 88 perent.In future work, we would like to explore other oning methods, whih are listed in Figure 9.Cluster and spatial methods using other shemes may provide higher �ltering apabilities butpossibly with higher overheads. Time series dimensionality redution and indexing methods [1,4, 6℄ (e.g., F-index [1℄) will also be explored to determine the tradeo� between �ltering eÆienyand overhead.
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