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Abstra
tA spatial time series dataset is a 
olle
tion of time series, ea
h referen
ing a lo
ationin a 
ommon spatial framework. Correlation analysis is often used to identify pairs ofintera
ting elements from the 
ross produ
t of two spatial time series datasets. However,the 
omputational 
ost of 
orrelation analysis is very high when the dimension of the timeseries and the number of lo
ations in the spatial frameworks are large. The key 
ontributionof this paper is the use of spatial auto
orrelation among spatial neighboring time series toredu
e the 
omputational 
ost. A �lter-and-re�ne algorithm based on 
oning, i.e. group oflo
ations, is proposed to redu
e the 
ost of 
orrelation analysis over a pair of spatial timeseries datasets. Cone-level 
orrelation 
omputation 
an be used to eliminate (�lter out) alarge number of element pairs whose 
orrelation is 
learly below (or above) a given threshold.Element pair 
orrelation needs to be 
omputed for remaining pairs. Using algebrai
 
ostmodels and experimental studies with Earth s
ien
e datasets, we show that the �lter-and-re�ne approa
h 
an save a large fra
tion of the 
omputational 
ost, parti
ularly when theminimal 
orrelation threshold is high.Keywords: Spatial Time Series, Correlation Analysis, Filter-and-re�ne, SpatialAuto
orrelation
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1 Introdu
tionSpatio-temporal data mining [14, 15, 17, 16, 18, 13, 20, 7℄ is important in many appli
ationdomains su
h as epidemiology, e
ology, 
limatology, or 
ensus statisti
s, where datasets whi
hare spatio-temporal in nature are routinely 
olle
ted. The development of eÆ
ient tools [1,4, 8, 10, 11℄ to explore these datasets, the fo
us of this work, is 
ru
ial to organizations whi
hmake de
isions based on large spatio-temporal datasets.A spatial framework [21℄ 
onsists of a 
olle
tion of lo
ations and a neighbor relationship.A time series is a sequen
e of observations taken sequentially in time [2℄. A spatial time seriesdataset is a 
olle
tion of time series, ea
h referen
ing a lo
ation in a 
ommon spatial framework.For example, the 
olle
tion of global daily temperature measurements for the last 10 years isa spatial time series dataset over a degree-by-degree latitude-longitude grid spatial frameworkon the surfa
e of the Earth.
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tFigure 1: An Illustration of the Correlation Analysis of Two Spatial Time Series Datasets
Correlation analysis is important to identify intera
ting pairs of time series a
ross two spatialtime series datasets. A strongly 
orrelated pair of time series indi
ates potential movement inone series when the other time series moves. For example, El Nino, the anomalous warming ofthe eastern tropi
al region of the Pa
i�
, has been linked to 
limate phenomena su
h as droughtsin Australia and heavy rainfall along the Eastern 
oast of South Ameri
a [19℄. Figure 1illustrates the 
orrelation analysis of two spatial time series datasets D1 and D2. D1 has 4spatial lo
ations and D2 has 2 spatial lo
ations. The 
ross produ
t of D1 and D2 has 8 pairsof lo
ations. A highly 
orrelated pair, i.e. (D12,D21), is identi�ed from the 
orrelation analysisof the 
ross produ
t of the two datasets.However, a 
orrelation analysis a
ross two spatial time series datasets is 
omputationallyexpensive when the dimension of the time series and number of lo
ations in the spa
es are large.The 
omputational 
ost 
an be redu
ed by redu
ing time series dimensionality or redu
ing thenumber of time series pairs to be tested, or both. Time series dimensionality redu
tion te
h-niques in
lude dis
rete Fourier transformation [1℄, dis
rete wavelet transformation [4℄, singularve
tor de
omposition [6℄, et
.The number of pairs of time series 
an be redu
ed by a 
one-based �lter-and-re�ne approa
hwhi
h groups similar time series within ea
h dataset together. A �lter-and-re�ne approa
hhas two logi
al phases. First, the �ltering phase groups similar time series as 
ones in ea
hdataset and 
al
ulates the 
entroids and boundaries of ea
h 
one. These 
one parameters
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allow 
omputation of the upper and lower bounds of the 
orrelations between the time seriespairs a
ross 
ones. Many All-True and All-False time series pairs 
an be eliminated at the
one level to redu
e the set of time series pairs to be tested by the re�nement phase. Wepropose to exploit an interesting property of spatial time series datasets, namely spatialauto-
orrelation [5℄, whi
h provides a 
omputationally eÆ
ient method to determine 
ones.We use spatial auto-
orrelation measurement tools su
h as 
orrelograms [5℄ to identify 
onesize. Experiments with Earth s
ien
e data [12℄ and an algebrai
 
ost model show that the�lter-and-re�ne approa
h 
an save a large fra
tion of 
omputational 
ost espe
ially whenthe minimal 
orrelation threshold is high. To the best of our knowledge, this is the �rstpaper exploiting spatial auto-
orrelation among time series at nearby lo
ations to redu
e the
omputational 
ost of 
orrelation analysis over a pair of spatial time series datasets.S
ope and Outline: In this paper, the 
omputation saving methods fo
us on redu
tion oftime series pairs to be tested. Methods based on non-spatial properties (e.g. time-series powerspe
trum [1, 4, 6℄) are beyond the s
ope of the paper and will be addressed in future work.The rest of the paper is organized as follows. In Se
tion 2, the basi
 
on
epts and lemmasabout 
one boundaries are provided, and Se
tion 3 proposes our �lter-and-re�ne algorithm.The 
ost model is proposed in Se
tion 4, and the experimental design and results are presentedin Se
tion 5. We summarize our work and dis
uss future dire
tions in Se
tion 6.
2 Basi
 Con
eptsIn this se
tion, we introdu
e the basi
 
on
epts of 
orrelation 
al
ulation and the multi-dimensional unit sphere formed by normalized time series. We de�ne the 
one 
on
ept inthe multi-dimensional unit sphere and prove two lemmas to bound the 
orrelation of pairs oftime series from two 
ones.2.1 Correlation and Test of Signi�
an
e of CorrelationLet x = hx1; x2; : : : ; xmi and y = hy1; y2; : : : ; ymi be two time series of lengthm. The 
orrelation
oeÆ
ient [3℄ of the two time series is de�ned as:


orr(x; y) = 1m� 1 mXi=1(xi � x�x )� (yi � y�y ) = bx� by
where x = Pmi=1 xim , y = Pmi=1 yim , �x = qPmi=1(xi�x)2m�1 , �y = qPmi=1(yi�x)2m�1 , bxi = 1pm�1 xi�x�x ,byi = 1pm�1 yi�y�y , bx = hbx1; bx2; : : : ; bxmi, and by = hby1; by2; : : : ; bymi.A simple method to test the null hypothesis that the produ
t moment 
orrelation 
oeÆ
ientis zero 
an be obtained using a Student's t-test [3℄ on the t statisti
 as follows: t = pm� 2 rp1�r2 ,where r is the 
orrelation 
oeÆ
ient between the two time series. The freedom degree of theabove test is m � 2. Using this we 
an �nd a p � value or �nd the 
riti
al value for a testat a spe
i�ed level of signi�
an
e. For a dataset with larger length m, we 
an adopt Fisher'sZ-test [3℄ as follows: Z = 12 log 1+r1�r , where r is the 
orrelation 
oeÆ
ient between the two time
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series. The 
orrelation threshold 
an be determined for a given time series length and 
on�den
elevel2.2 Multi-dimensional Sphere Stru
tureIn this subse
tion, we dis
uss the multi-dimensional unit sphere representation of time series.The 
orrelation of a pair of time series is related to the 
osine measure between their unit ve
torrepresentations in the unit sphere.Fa
t 1 (Multi-dimensional Unit Sphere Representation) Let x = hx1; x2; : : : ; xmi andy = hy1; y2; : : : ; ymi be two time series of length m. Let bxi = 1pm�1 xi�x�x , byi = 1pm�1 yi�y�y ,bx = hbx1; bx2; : : : ; bxmi, and by = hby1; by2; : : : ; bymi. Then bx and by are lo
ated in the surfa
e of amulti-dimensional unit sphere and 
orr(x; y) = bx� by = 
os(\(bx; by)) where \(bx; by) is the angle ofbx and by in [0; 180Æ℄ in the multi-dimensional unit sphere .Be
ause the sum of the bxi2 is equal to 1: Pmi=1 bxi2 = Pmi=1( 1pm�1 xi�xrPmi=1(xi�x)2m�1 )2 = 1,bx is lo
ated in the multi-dimensional unit sphere. Similarly, by is also lo
ated in the multi-dimensional unit sphere. Based on the de�nition of 
orr(x; y), we have 
orr(x; y) = bx� by =
os(\(bx; by)).Lemma 1 (Correlation and Cosine) Given two time series x and y and a user spe
i�edminimal 
orrelation threshold � where 0 < � � 1, j
orr(x; y)j = j 
os(\(bx; by))j � � if and onlyif 0 � \(bx; by) � �a or 180Æ � �a � \(bx; by) � 180Æ, where �a = ar

os(�) and 0 � �a � 90Æ.
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Proof: Figure 2 shows that j
orr(x; y)j = j 
os(\(bx; by))j falls in the range of [�; 1℄ or [�1;��℄if and only if \(bx; by) falls in the range of [0; ar

os(�)℄ or [180Æ � ar

os(�); 180Æ℄. �The 
orrelation of two time series is dire
tly related to the angle between the two time seriesin the multi-dimensional unit sphere. Finding pairs of time series with an absolute value of
orrelation above the user given minimal 
orrelation threshold � is equivalent to �nding pairsof time series bx and by on the unit multi-dimensional sphere with an angle in the range of [0,�a℄ or [180Æ � �a; 180Æ℄. 3



2.3 Cone and Correlation between a Pair of ConesThis subse
tion formally de�nes the 
on
ept of 
one and proves two lemmas to bound the
orrelations of pairs of time series from two 
ones. The user spe
i�ed minimal 
orrelationthreshold is denoted by � and ar

os(theta) is denoted by �a a

ordingly.De�nition 1 (Cone) A 
one is a set of time series in the multi-dimensional unit sphere, andit is 
hara
terized by two parameters, the 
enter and the span of the 
one. The 
enter of the
one is the mean of all the time series in the 
one. The span � of the 
one is the maximal anglebetween any time series in the 
one and the 
one 
enter.We now investigate the relationship of two time series from two 
ones in the multi-dimensional unit sphere as illustrated in Figure 3 (a). The largest angle(\P1OQ1) betweentwo 
ones C1 and C2 is denoted as 
max and the smallest angle (\P2OQ2) is denoted as 
min.We prove the following lemmas to show that if 
max and 
min are in spe
i�
 ranges, the absolutevalue of 
orrelation of any pair of time series from the two 
ones are all above � (or below �).Thus all pairs of time series between the two 
ones satisfy (or dissatisfy) the minimal 
orrelationthreshold.Lemma 2 (All-True Lemma) Let C1 and C2 be two 
ones from the multi-dimensional unitsphere stru
ture. Let bx and by be any two time series from the two 
ones respe
tively. If 0 �
max � �a, then 0 � \(bx; by) � �a. If 180Æ��a � 
min � 180Æ, then 180Æ��a � \(bx; by) � 180Æ.If either of the above two 
onditions is satis�ed, fC1; C2g is 
alled an All-True 
one pair.Proof: For the �rst 
ase, it is easy to see from Figure 3 that if 
max � �a, then the anglebetween bx and by is less or equal to �a. For the se
ond 
ase, when 180Æ � �a � 
min � 180Æ, weneed to show that 180Æ � �a � \(bx; by) � 180Æ. If this were not true, there exist bx0 2 C1 andby0 2 C2 where 0 � \(bx0; by0) < 180Æ��a sin
e the angle between any pairs of time series is 
hosenfrom 0 to 180Æ. From this inequality, we would have either 
min � � = \(bx0; by0) < 180Æ � �a asshown in Figure 9 (b) or 360Æ�
max � � = \(bx0; by0) < 180Æ� �a as shown in Figure 9 (
). The�rst 
ondition 
ontradi
ts our assumption that 180Æ� �a � 
min � 180Æ. The se
ond 
onditionimplies that 360Æ� 
max < 
min sin
e 180Æ� �a � 
min. This 
ontradi
ts our 
hoi
e of 
min asthe minimal angle of the two 
ones. �Lemma 2 shows that when two 
ones are 
lose enough, any pair of time series from the two
ones are highly positively 
orrelated; and when two 
ones are far apart enough, any pair oftime series from the two 
ones are highly negatively 
orrelated.Lemma 3 (All-False Lemma) Let C1 and C2 be two 
ones from the multi-dimensional unitsphere; let bx and by be any two time series from the two 
ones respe
tively. If �a � 
min � 180Æand 
min � 
max � 180Æ� �a, then �a � \(bx; by) � 180Æ� �a and fC1; C2g is 
alled an All-False
one pair.Proof: The proof is straightforward from the inequalities. �Lemma 3 shows that if two 
ones are in a moderate range, any pair of time series from thetwo 
ones is weakly 
orrelated.
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3 Cone-based Filter-and-Re�ne AlgorithmOur algorithm 
onsists of four steps as shown in Algorithm 1: Pre-pro
essing (step 1), ConeFormation (step 2), Filtering i.e. Cone-level Join (step 4), and Re�nement i.e. Instan
e-levelJoin (steps 7-10).Algorithm 1 Correlation FinderInput: 1) S1 = fs11; s12; : : : ; s1ng: n1 spatial referen
ed time series where ea
h instan
ereferen
es a spatial framework SF1;2) S2 = fs21; s22; : : : ; s2ng: n2 spatial referen
ed time series where ea
h instan
ereferen
es a spatial framework SF2;3) a user defined 
orrelation threshold �;Output: all pairs of time series ea
h from S1 and S2 with 
orrelations above �;Method:Pre-pro
essing(S1); Pre-pro
essing(S2); (1)CN1 = Cone Formation(S1 ; SF1); CN2 = Cone Formation(S2 ; SF2); (2)for all pair 
1 and 
2 ea
h from CN1 and CN2 do f (3)Filter F lag = Cone-level Join(
1, 
2, �); (4)if (Filter F lag == ALL TRUE) output all pairs in the two 
ones (5)else if (Filter F lag != ALL FALSE) f (6)for all pair s1 and s2 ea
h from 
1 and 
2 do f (7)High Corr F lag = Instan
e-level Join(s1,s2, �); (8)if (High Corr F lag) output s1 and s2; (9)g (10)g (11)
The �rst step is to pre-pro
ess the raw data to the multi-dimensional unit sphere repre-sentation. The se
ond step, 
one formation, involves grouping similar time series into 
onesin spatial time series datasets. Clustering the time series is an intuitive approa
h. However,
lustering on time-series datasets itself may be expensive and sensitive to the 
lustering methodand its obje
tive fun
tion. For example, K-means approa
hes [9℄ �nd globular 
lusters whiledensity-based 
lustering approa
hes [9℄ �nd arbitrary shaped 
lusters with user-given densitythresholds. Spatial indexes, e.g. R� trees, built after time series dimensionality redu
tion [1, 4℄
ould be another approa
h to group similar time series together. In this paper, we explorespatial auto-
orrelation for the 
one formation. First the spa
e is divided into disjoint 
ells.The 
ells 
an 
ome from domain experts, su
h as the El Nino region, or 
ould be as simpleas uniform grids. For uniform grids, we will dis
uss the 
ell size by using a 
orrelogram inse
tion 5.1. By s
anning the dataset on
e, we map ea
h time-series into its 
orresponding 
ell.Ea
h 
ell 
ontains similar time series and represents a 
one in the multi-dimensional unit sphererepresentation. The 
enter and span are 
al
ulated to 
hara
terize ea
h 
one.Example 1 (Spatial Cone Formation) Figure 4 shows an illustrative example of the spatial
one formation for two datasets, namely land and o
ean. Both land and o
ean frameworks
onsist of 16 lo
ations. The time series of length m in a lo
ation s is denoted as F (s) =F1(s); F2(s); : : : ; Fi(s); : : : Fm(s). Figure 4 only depi
ts a time series for m = 2. Ea
h arrowin a lo
ation s of o
ean or land represents the ve
tor < F1(s); F2(s) > normalized to the twodimensional unit sphere. Sin
e the dimension of the time series is two, the multi-dimensionalunit sphere redu
es to a unit 
ir
le, as shown in Figure 4 (b). By grouping time series in ea
h
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Figure 4: An Illustrative Example for Spatial Cone Formation
datasets into 4 disjoint 
ells a

ording to their spatial proximity, we have 4 
ells ea
h for o
eanand land. The o
ean is partitioned to L1�L4 and the land is partitioned to O0�O4, as shownin Figure 4 (a). Ea
h 
ell represents a 
one in the multi-dimensional unit sphere. For example,the pat
h L2 in Figure 4 (a) mat
hes L2 in the 
ir
le in Figure 4 (b).After the 
one formation, 
one-based join is applied between the two datasets. The 
al-
ulation of the angle between ea
h pair of 
one 
enters is 
arried out, and the minimum andmaximum bounds of the angles between the two 
ones are derived based on the spans of thetwo 
ones. The All-False 
one pairs or All-True 
one pairs are �ltered out based on the lemmas.Finally, the 
andidates whi
h 
annot be �ltered are explored in the re�nement step.Example 2 (Filter-and-re�ne) The join operations between the 
ones in Figure 4 (a) areapplied as shown in Table 1. The number of 
orrelation 
omputations is used in this paper asthe basi
 unit to measure 
omputation 
osts. Many All-False 
one pairs and All-True 
one pairsare dete
ted in the �ltering step and the number of 
andidates explored in the re�nement stepare redu
ed substantially. The 
ost of the �ltering phase is 16. Only pairs (O1, L1), (O3, L4),and (O4, L4) 
annot be �ltered and need to be explored in the re�nement step. The 
ost of there�nement step is 3� 16 sin
e there are 4 time series in both the o
ean and land 
one for all 3pairs. The total 
ost of �lter-and-re�ne adds up to 64. The number of 
orrelation 
al
ulationsusing the simple nested loop is 256, whi
h is greater than the number of 
orrelation 
al
ulationsin the �lter-and-re�ne approa
h. Thus when the 
ost of the 
one formation phase is less than192 units, the �lter-and-re�ne approa
h is more eÆ
ient.Completeness and Corre
tness Based on the lemmas in Se
tion 2, All-True 
one pairs andAll-False 
one pairs are �ltered out so that a superset of results is obtained after the �lteringstep. There are no false dismissal for this �lter-and-re�ne algorithm. All pairs found by thealgorithm satisfy the given minimal 
orrelation threshold.
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O
ean-Land Filtering Re�nement O
ean-Land Filtering Re�nementO1 � L1 No 16 O3 � L1 All-TrueO1 � L2 All-False O3 � L2 All-TrueO1 � L3 All-False O3 � L3 All-TrueO1 � L4 All-False O3 � L4 No 16O2 � L1 All-False O4 � L1 All-TrueO2 � L2 All-False O4 � L2 All-TrueO2 � L3 All-False O4 � L3 All-TrueO2 � L4 All-False O4 � L4 No 16Table 1: Cone-based Join in Example Data
4 Analyti
al Evaluation and Cost ModelsIn this se
tion, we provide simple algebrai
 
ost models for the 
omputation 
ost of 
orrelationanalysis in spatial time series datasets Suppose the two input datasets are D1 and D2, and the
orresponding 
one sets after the 
oning step are C1 and C2 respe
tively.The 
ost model for the proposed algorithm 
an be divided into three parts: the 
ost of 
oneformation, the 
ost of 
one-based 
orrelation joins, and the 
ost of 
orrelation 
al
ulations inthe re�nement step. The 
ost of the 
one formation,M1, 
onsists of the 
ost of 
al
ulating 
one
enter and 
one angle for ea
h 
one and is determined by the number of time series in bothdatasets. Thus, M1 = jD1j + jD2j, where jD1j and jD2j are the numbers of time series in D1and D2 respe
tively. The se
ond part, M2, is the 
ost of the 
orrelation join between two 
onesets, and the 
ost is the number of 
orrelation 
omputations of their 
ross produ
ts. Given thenumber of 
ones in the two 
one sets, M2 is �xed as the produ
t of the sizes of the two 
onesets. Thus we getM2 = jC1j�jC2j. The third part,M3, depends on the Filtering Ability Ratio,denoted as FAR, of the 
one level join. The FAR is the fra
tion of time series pairs redu
edin the �ltering step, i.e. FAR = Ntime series pairs�filteredjD1j�jD2j . The number of 
orrelation 
omputationafter �ltering is jD1j � jD2j � (1� FAR). The total 
ost model is denoted as follows:Cost =M1 +M2 +M3 = jD1j+ jD2j+ jC1j � jC2j+ jD1j � jD2j � (1� FAR)=jD1j+ jD2j+ jD1jCone� Size1 + jD2jCone� Size2 + jD1j � jD2j � (1� FAR) (1)

From the equation, we see that the 
ost model is related to the sizes of the 
ones of thedatasets and to the FAR. The FAR is determined by the 
one sizes and minimal 
orrelationthreshold �. Thus the 
ost model is sensitive to the 
one sizes and the minimal 
orrelationthreshold. If we �x the 
one sizes and in
rease the minimal 
orrelation threshold, the FARin
reases. The minimal 
orrelation threshold does not a�e
t the 
ost of M1 and M2. Soin
reasing the minimal 
orrelation threshold will de
rease the overall 
ost. If we �x the minimal
orrelation threshold and in
rease the 
one sizes, M1 remains the same and M2 monotoni
allyde
reases with in
reasing 
one sizes. However, FAR stops in
reasing and starts to de
reaseafter the 
one sizes rea
h some value, whi
h leads M3 to stop de
reasing and start to in
rease.So in
reasing the 
one sizes does not ne
essarily de
rease overall 
osts. The 
hoi
e of the 
onesizes depends on the datasets and more dis
ussion about the sele
tion of 
one sizes is available
7



in Se
tion 5.1.
5 Performan
e EvaluationWe want to answer two questions: (1)How does the spatial auto-
orrelation based inexpensivegrouping algorithm a�e
t �ltering eÆ
ien
y? In parti
ular, how do we identify the proper 
onesize to a
hieve better overall savings? (2) How does the minimal 
orrelation threshold in
uen
ethe �ltering eÆ
ien
y? These questions 
an be answered in two ways: algebrai
ally as dis
ussedin se
tion 5.1 and experimentally as dis
ussed in se
tion 5.2.Figure 5 des
ribes the experimental setup to evaluate the impa
t of parameters on theperforman
e of the algorithm. We evaluated the performan
e of the algorithm with a datasetfrom NASA Earth s
ien
e data [12℄. In this experiment, a 
orrelation analysis between the EastPa
i�
 O
ean region (80W - 180W, 15N - 15S) and the United States was investigated. Thetime series from 2901 land 
ells of the United States and 11556 o
ean 
ells of the East Pa
i�
O
ean were obtained under a 0.5 degree by 0.5 degree resolution.Net Primary Produ
tion (NPP) was the attribute of the land 
ells, and Sea Surfa
e Temper-ature (SST) was the attribute for the o
ean 
ells. NPP is the net photo-syntheti
 a

umulationof 
arbon by plants. Keeping tra
k of NPP is important be
ause NPP in
ludes the food sour
eof humans and all other organisms and thus, sudden 
hanges in the NPP of a region 
an havea dire
t impa
t on the regional e
ology. The re
ords of NPP and SST are monthly data from1982 to 1993.
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Coning
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thresholdcorrelation
time
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time
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All−False

Filtering

All−True

Minimal

Figure 5: Experiment Design
5.1 Parameter Sele
tionsIn this se
tion we investigate the sele
tive range of the 
one spans to improve �ltering eÆ
ien
y.Both All-False and All-True �ltering 
an be applied in the �ltering step. Thus we investigatethe appropriate range of the 
one spans in ea
h of these �ltering 
ategories.Given a minimal 
orrelation threshold � (0 < � < 1), 
max = Æ+�1+�2 and 
min = Æ��1��2,where Æ is the angle between the 
enters of two 
ones, and the �1 and �2 are the spans of thetwo 
ones respe
tively. For simpli
ity, suppose �1 ' �2 = � .Lemma 4 Given a minimal 
orrelation threshold �, if a pair of 
ones both with span � is anAll-True 
one pair, then � < ar

os(�)2 .
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Figure 6: All-True and All-False Filtering Per
entages for Di�erent Parameters

Proof: Assume that a 
one pair satis�es the All-True Lemma, i.e., either 
max < ar

os(�) or
min > 180Æ � ar

os(�) is satis�ed. In the former s
enario, the angle Æ is very small, and weget Æ+2� < ar

os(�), i.e., � < ar

os(�)�Æ2 . In the latter s
enario, the angle Æ is very large, andwe get Æ � 2� > 180Æ � ar

os(�), i.e., � < ar

os(�)+Æ�180Æ2 . The � is less than ar

os(�)2 in eithers
enario sin
e � < 180Æ. �Lemma 5 Given a minimal 
orrelation threshold �, if a pair of 
ones both with span � is anAll-False 
one pair, then � � 180Æ4 � ar

os(�)2 .Proof: Assume that a 
one pair satis�es the All-False Lemma, i.e., the 
onditions 
min >ar

os(�) and 
max < 180Æ�ar

os(�) hold. Based on the two in-equations above, 
max�
min <180Æ�2 ar

os(�) and 
max�
min = 4� < 180Æ�2 ar

os(�) are true. Thus when the All-Falselemma is satis�ed, � < 180Æ4 � ar

os(�)2 . �The range of � is related to the minimal 
orrelation thresholds. In this appli
ation domain,the pairs with absolute 
orrelations over 0.3 are interesting to the domain experts. As shownin Figure 6, All-False �ltering provides stronger �ltering than All-True �ltering for almost allvalues of 
one sizes and 
orrelation thresholds. Thus we 
hoose the 
one span � for maximizingAll-False �ltering 
onditions. The value of ar

os(�) is less than 72:5Æ for � 2 (0:3; 1℄, so the
one span � should not be greater than 180Æ4 � ar

os(�)2 = 8:75Æ.An empiri
al 
orrelogram [5℄ is often used to demonstrate the spatial auto
orrelation ofspatial data in spatial statisti
s. As shown in Figure 7, the 
orrelograms of samples from o
eanand land are presented, and the relationships between pairwise distan
es and 
orrelations amongsamples are illustrated. The x-axis represents the distan
es of the o
ean-land pairs in the unitof degree, and the y-axis represents the 
orrelations of the time series of the o
ean-land pairs.A

ording to this �gure, the o
ean demonstrates higher spatial auto
orrelation than the land.This is be
ause the maximum 
one angle should be less than 8:75Æ, and the 
one size shouldkeep the 
orrelations between any time series in the 
one and the 
one 
enter less than 0.988.A

ording to this 
utting line, land 
annot satisfy this 
riterion, and the distan
e in the o
ean
orrelogram is between 1 and 2. Thus the 
one size of land is 
hosen as 1� 1, and the 
one sizeof o
ean is 
hosen as 3� 3. 9
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Figure 7: Empiri
al Correlograms for Land and O
ean Samples

5.2 Experimental ResultsExperiment 1: E�e
t of Coning The purpose of the �rst experiment was to evaluateunder what 
oning sizes the savings from �ltering outweighs the overhead. When the 
one issmall, the time series in the 
one are relatively homogeneous, resulting in a small 
one span � .Although it may result in more All-False and All-True pairs of 
ones, su
h 
one formation in
ursmore �ltering overhead be
ause the number of 
ones is substantially in
reased and the numberof �ltered instan
es in ea
h All-False or All-True pair is small. When the 
one is large, thevalue of the 
one span � is large, resulting in a de
rease in the number of All-False and All-Truepairs. The e�e
ts of the All-False and All-True �ltering in the given data are investigated.Experiment 2: E�e
t of Minimal Correlation Thresholds In this experiment, we eval-uated the performan
e of the �ltering algorithm when the minimal 
orrelation threshold is
hanged. Various minimal 
orrelation thresholds were tested and the trends of �ltering eÆ-
ien
y was identi�ed with the 
hange of minimal 
orrelation thresholds.5.2.1 E�e
t of ConingThis se
tion des
ribes a group of experiments 
arried out to show the net savings of the algo-rithm for di�erent 
one sizes. For simpli
ity, we only 
hanged the 
one size for one dataset.A

ording to the analysis of the previous se
tion, the land 
one size is �xed at 1 � 1. We
arried out a series of experiments using the �xed minimal 
orrelation threshold, the �xed land
one size, and various o
ean 
one sizes. The minimal 
orrelation threshold � was �xed as 0.5.Figure 8 (a) shows the net savings as a per
entage of the 
omputational 
ost of the nestedloop join algorithm for di�erent o
ean 
one sizes. The x-axis represents the di�erent 
one sizesranging from 1� 1 to 6� 6, and the y-axis represents the net savings in 
omputational 
ost asa per
entage of the 
osts using the simple nested loop join algorithm. The net savings rangefrom 40 per
ent to 62 per
ent, whi
h is 
onsistent with the empiri
al 
orrelogram of the o
eansamples.
10
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Figure 8: Testing Di�erent Cone Sizes and Minimal Correlation Threshold �

5.2.2 E�e
t of Minimal Correlation ThresholdsIn this experiment, we investigated the e�e
ts of minimal 
orrelation threshold � on the savingsin 
omputation 
ost for 
orrelation analysis. The land and o
ean 
one sizes were �xed as 1� 1and 3 � 3 respe
tively, and a series of experiments was 
arried out for di�erent �s. Figure 8(b) shows the total savings as a per
entage of the 
omputational 
ost of the nested loop joinalgorithm for di�erent �s. The x-axis represents the di�erent 
one sizes ranging from 1 � 1to 6 � 6, and the y-axis represents the total savings as a per
entage of the 
omputational
ost of the nested loop join algorithm. The net savings per
entages range from 44 per
entto 88 per
ent with the higher savings at higher values of 
orrelation thresholds. Thus whenother parameters are �xed, the �ltering algorithm generally a
hieves better performan
e as theminimal 
orrelation threshold is in
reased.
6 Con
lusion and Future WorkIn this paper, a �lter-and-re�ne 
orrelation analysis algorithm for a pair of spatial time seriesdatasets is proposed. A 
ost model and experimental evaluations using a NASA Earth s
ien
edataset are presented. The total savings of 
orrelation analysis 
omputation range from 40per
ent to 88 per
ent.In future work, we would like to explore other 
oning methods, whi
h are listed in Figure 9.Cluster and spatial methods using other s
hemes may provide higher �ltering 
apabilities butpossibly with higher overheads. Time series dimensionality redu
tion and indexing methods [1,4, 6℄ (e.g., F-index [1℄) will also be explored to determine the tradeo� between �ltering eÆ
ien
yand overhead.
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