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Abstract

A spatial time series dataset is a collection of time series, each referencing a location
in a common spatial framework. Correlation analysis is often used to identify pairs of
interacting elements from the cross product of two spatial time series datasets. However,
the computational cost of correlation analysis is very high when the dimension of the time
series and the number of locations in the spatial frameworks are large. The key contribution
of this paper is the use of spatial autocorrelation among spatial neighboring time series to
reduce the computational cost. A filter-and-refine algorithm based on coning, i.e. group of
locations, is proposed to reduce the cost of correlation analysis over a pair of spatial time
series datasets. Cone-level correlation computation can be used to eliminate (filter out) a
large number of element pairs whose correlation is clearly below (or above) a given threshold.
Element pair correlation needs to be computed for remaining pairs. Using algebraic cost
models and experimental studies with Earth science datasets, we show that the filter-and-
refine approach can save a large fraction of the computational cost, particularly when the
minimal correlation threshold is high.
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1 Introduction

Spatio-temporal data mining [14, 15, 17, 16, 18, 13, 20, 7] is important in many application
domains such as epidemiology, ecology, climatology, or census statistics, where datasets which
are spatio-temporal in nature are routinely collected. The development of efficient tools [1,
4, 8, 10, 11] to explore these datasets, the focus of this work, is crucial to organizations which
make decisions based on large spatio-temporal datasets.

A spatial framework [21] consists of a collection of locations and a neighbor relationship.
A time series is a sequence of observations taken sequentially in time [2]. A spatial time series
dataset is a collection of time series, each referencing a location in a common spatial framework.
For example, the collection of global daily temperature measurements for the last 10 years is
a spatial time series dataset over a degree-by-degree latitude-longitude grid spatial framework
on the surface of the Earth.
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Figure 1: An Illustration of the Correlation Analysis of Two Spatial Time Series Datasets

Correlation analysis is important to identify interacting pairs of time series across two spatial
time series datasets. A strongly correlated pair of time series indicates potential movement in
one series when the other time series moves. For example, El Nino, the anomalous warming of
the eastern tropical region of the Pacific, has been linked to climate phenomena such as droughts
in Australia and heavy rainfall along the Eastern coast of South America [19]. Figure 1
illustrates the correlation analysis of two spatial time series datasets D! and D?. D! has 4
spatial locations and D? has 2 spatial locations. The cross product of D! and D? has 8 pairs
of locations. A highly correlated pair, i.e. (D3,D?), is identified from the correlation analysis
of the cross product of the two datasets.

However, a correlation analysis across two spatial time series datasets is computationally
expensive when the dimension of the time series and number of locations in the spaces are large.
The computational cost can be reduced by reducing time series dimensionality or reducing the
number of time series pairs to be tested, or both. Time series dimensionality reduction tech-
niques include discrete Fourier transformation [1], discrete wavelet transformation [4], singular
vector decomposition [6], etc.

The number of pairs of time series can be reduced by a cone-based filter-and-refine approach
which groups similar time series within each dataset together. A filter-and-refine approach
has two logical phases. First, the filtering phase groups similar time series as cones in each
dataset and calculates the centroids and boundaries of each cone. These cone parameters



allow computation of the upper and lower bounds of the correlations between the time series
pairs across cones. Many All-True and All-False time series pairs can be eliminated at the
cone level to reduce the set of time series pairs to be tested by the refinement phase. We
propose to exploit an interesting property of spatial time series datasets, namely spatial
auto-correlation [5], which provides a computationally efficient method to determine cones.
We use spatial auto-correlation measurement tools such as correlograms [5] to identify cone
size. Experiments with Earth science data [12] and an algebraic cost model show that the
filter-and-refine approach can save a large fraction of computational cost especially when
the minimal correlation threshold is high. To the best of our knowledge, this is the first
paper exploiting spatial auto-correlation among time series at nearby locations to reduce the
computational cost of correlation analysis over a pair of spatial time series datasets.

Scope and Outline: In this paper, the computation saving methods focus on reduction of
time series pairs to be tested. Methods based on non-spatial properties (e.g. time-series power
spectrum [1, 4, 6]) are beyond the scope of the paper and will be addressed in future work.

The rest of the paper is organized as follows. In Section 2, the basic concepts and lemmas
about cone boundaries are provided, and Section 3 proposes our filter-and-refine algorithm.
The cost model is proposed in Section 4, and the experimental design and results are presented
in Section 5. We summarize our work and discuss future directions in Section 6.

2 Basic Concepts

In this section, we introduce the basic concepts of correlation calculation and the multi-
dimensional unit sphere formed by normalized time series. We define the cone concept in
the multi-dimensional unit sphere and prove two lemmas to bound the correlation of pairs of
time series from two cones.

2.1 Correlation and Test of Significance of Correlation

Let z = (x1,22,... ,Zm) and y = (Y1, Y2, - - - , Ym) be two time series of length m. The correlation
coefficient [3] of the two time series is defined as:
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A simple method to test the null hypothesis that the product moment correlation coeflicient
is zero can be obtained using a Student’s t-test [3] on the t statistic as follows: ¢ = v/m — 2ﬁ,
where r is the correlation coefficient between the two time series. The freedom degree of the
above test is m — 2. Using this we can find a p — value or find the critical value for a test
at a specified level of significance. For a dataset with larger length m, we can adopt Fisher’s

Z-test [3] as follows: Z = %log if:, where r is the correlation coefficient between the two time




series. The correlation threshold can be determined for a given time series length and confidence
level

2.2 Multi-dimensional Sphere Structure

In this subsection, we discuss the multi-dimensional unit sphere representation of time series.
The correlation of a pair of time series is related to the cosine measure between their unit vector
representations in the unit sphere.

Fact 1 (Multi-dimensional Unit Sphere Representation) Let z = (z1,22,... ,Zm) and
y = (Y1,Y2,- .- ,Ym) be two time series of length m. Let T; = \/%m;:m, U = \/%ygy,
T = (T1,T2,... ,Tm), and Y = (Y1,Y2,--- ,Ym)- Then T and y are located in the surface of a

multi-dimensional unit sphere and corr(z,y) = Z-y = cos(£(Z,y)) where Z(Z,7) is the angle of
Z and y in [0,180°] in the multi-dimensional unit sphere .

Because the sum of the 7;% is equal to 1: .7 &% = .7 ( T T - )2 =1,
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Z is located in the multi-dimensional unit sphere. Similarly, % is also located in the multi-
dimensional unit sphere. Based on the definition of corr(z,y), we have corr(z,y) = -y =

cos(£(Z,7)).

Lemma 1 (Correlation and Cosine) Given two time series © and y and a user specified
minimal correlation threshold 8 where 0 < 0 < 1, |corr(z,y)| = |cos(£(Z,y))| > 6 if and only
if 0 < Z(Z,y) <6, or 180° — 6, < Z(z,y) < 180°, where 6, = arccos(f) and 0 < 6, < 90°.
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°
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Figure 2: Cosine Value vs. Figure 3: Angle of Time Series in Two Spherical
Central Angle Cones

Proof: Figure 2 shows that |corr(x,y)| = | cos(£(Z,y))| falls in the range of [0, 1] or [—1, —6]
if and only if Z(Z,y) falls in the range of [0, arccos(6)] or [180° — arccos(6),180°]. O

The correlation of two time series is directly related to the angle between the two time series
in the multi-dimensional unit sphere. Finding pairs of time series with an absolute value of
correlation above the user given minimal correlation threshold 6 is equivalent to finding pairs
of time series Z and g on the unit multi-dimensional sphere with an angle in the range of [0,
6] or [180° — 64, 180°].



2.3 Cone and Correlation between a Pair of Cones

This subsection formally defines the concept of cone and proves two lemmas to bound the
correlations of pairs of time series from two cones. The user specified minimal correlation
threshold is denoted by 6 and arccos(theta) is denoted by 6, accordingly.

Definition 1 (Cone) A cone is a set of time series in the multi-dimensional unit sphere, and
it is characterized by two parameters, the center and the span of the cone. The center of the
cone is the mean of all the time series in the cone. The span T of the cone is the maximal angle
between any time series in the cone and the cone center.

We now investigate the relationship of two time series from two cones in the multi-
dimensional unit sphere as illustrated in Figure 3 (a). The largest angle(ZP;0Q1) between
two cones C7 and Cy is denoted as Ymq, and the smallest angle (ZP,OQ2) is denoted as Ymin.
We prove the following lemmas to show that if 7,4, and v, are in specific ranges, the absolute
value of correlation of any pair of time series from the two cones are all above  (or below 6).
Thus all pairs of time series between the two cones satisfy (or dissatisfy) the minimal correlation
threshold.

Lemma 2 (All-True Lemma) Let C; and Cy be two cones from the multi-dimensional unit
sphere structure. Let T and § be any two time series from the two cones respectively. If 0 <
Ymaz < Oa, then 0 < L(Z,9) < 4. If 180° — 0y < Ymin < 180°, then 180° — 60, < Z(Z,7y) < 180°.
If either of the above two conditions is satisfied, {C1,Ca} is called an All-True cone pair.

Proof: For the first case, it is easy to see from Figure 3 that if vma: < 64, then the angle
between T and ¥ is less or equal to 6,. For the second case, when 180° — 0, < Ymin < 180°, we
need to show that 180° — 6, < Z(Z,y) < 180°. If this were not true, there exist ' € Cy and
7 € Cy where 0 < Z(7',3') < 180° — 6, since the angle between any pairs of time series is chosen
from 0 to 180°. From this inequality, we would have either vpin < ¢ = Z(Z',y’) < 180° — 6, as
shown in Figure 9 (b) or 360° — Ve < ¢ = Z(7',y’) < 180° — 6, as shown in Figure 9 (c). The
first condition contradicts our assumption that 180° — 6, < Ymin < 180°. The second condition
implies that 360° — Vimaez < Ymin since 180° — 0, < Ymin. This contradicts our choice of vy, as
the minimal angle of the two cones. O

Lemma 2 shows that when two cones are close enough, any pair of time series from the two
cones are highly positively correlated; and when two cones are far apart enough, any pair of
time series from the two cones are highly negatively correlated.

Lemma 3 (All-False Lemma) Let C; and Cy be two cones from the multi-dimensional unit
sphere; let T and § be any two time series from the two cones respectively. If 0, < Ymin < 180°
and Ymin < Ymaz < 180° —0,, then 0, < Z(Z,y) < 180° — 0, and {C1,Ca} is called an All-False
cone pair.

Proof: The proof is straightforward from the inequalities. ]
Lemma 3 shows that if two cones are in a moderate range, any pair of time series from the
two cones is weakly correlated.



3 Cone-based Filter-and-Refine Algorithm

Our algorithm consists of four steps as shown in Algorithm 1: Pre-processing (step 1), Cone
Formation (step 2), Filtering i.e. Cone-level Join (step 4), and Refinement i.e. Instance-level
Join (steps 7-10).

Algorithm 1 Correlation Finder

Input: 1) st = {s%,s%,... ,s%}: ni spatial referenced time series where each instance
references a spatial framework SFy;
2) §? = {s%,s%,... ,si}: no spatial referenced time series where each instance

references a spatial framework SFs;
3) a user defined correlation threshold 6;

Output: all pairs of time series each from S' and S? with correlations above 6;
Method:

Pre-processing(S'); Pre-processing(S?); (1)
CN, = Cone_Formation(Sl,SFl); CN, = Cone_Formation(S?‘,SFz); (2)
for all pair ¢; and ¢ each from CN; and CN; do { (3)
Filter_Flag = Cone-level_Join(ci, c2, 6); (4)

if (Filter_Flag == ALL_TRUE) output all pairs in the two cones (5)

else if (Filter_Flag '= ALL_FALSE) { (6)

for all pair s; and s» each from c; and cy do { (7
High_Corr_Flag = Instance-level_Join(si,s2, 0); (8)

if (High_Corr_Flag) output si and $Sa; 9)

} (10)

} (11)

The first step is to pre-process the raw data to the multi-dimensional unit sphere repre-
sentation. The second step, cone formation, involves grouping similar time series into cones
in spatial time series datasets. Clustering the time series is an intuitive approach. However,
clustering on time-series datasets itself may be expensive and sensitive to the clustering method
and its objective function. For example, K-means approaches [9] find globular clusters while
density-based clustering approaches [9] find arbitrary shaped clusters with user-given density
thresholds. Spatial indexes, e.g. R* trees, built after time series dimensionality reduction [1, 4]
could be another approach to group similar time series together. In this paper, we explore
spatial auto-correlation for the cone formation. First the space is divided into disjoint cells.
The cells can come from domain experts, such as the El Nino region, or could be as simple
as uniform grids. For uniform grids, we will discuss the cell size by using a correlogram in
section 5.1. By scanning the dataset once, we map each time-series into its corresponding cell.
Each cell contains similar time series and represents a cone in the multi-dimensional unit sphere
representation. The center and span are calculated to characterize each cone.

Example 1 (Spatial Cone Formation) Figure 4 shows an illustrative example of the spatial
cone formation for two datasets, namely land and ocean. Both land and ocean frameworks
consist of 16 locations. The time series of length m in a location s is denoted as F(s) =
Fi(s), Fa(s),... ,Fi(s),...Fn(s). Figure 4 only depicts a time series for m = 2. Each arrow
in a location s of ocean or land represents the vector < Fi(s), Fa(s) > normalized to the two
dimensional unit sphere. Since the dimension of the time series is two, the multi-dimensional
unit sphere reduces to a unit circle, as shown in Figure 4 (b). By grouping time series in each
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Figure 4: An Illustrative Example for Spatial Cone Formation

datasets into 4 disjoint cells according to their spatial proximity, we have 4 cells each for ocean
and land. The ocean is partitioned to Ly — L4 and the land is partitioned to Og — O4, as shown
in Figure 4 (a). Each cell represents a cone in the multi-dimensional unit sphere. For example,
the patch Ly in Figure 4 (a) matches Lo in the circle in Figure 4 (b).

After the cone formation, cone-based join is applied between the two datasets. The cal-
culation of the angle between each pair of cone centers is carried out, and the minimum and
maximum bounds of the angles between the two cones are derived based on the spans of the
two cones. The All-False cone pairs or All-True cone pairs are filtered out based on the lemmas.
Finally, the candidates which cannot be filtered are explored in the refinement step.

Example 2 (Filter-and-refine) The join operations between the cones in Figure 4 (a) are
applied as shown in Table 1. The number of correlation computations is used in this paper as
the basic unit to measure computation costs. Many All-False cone pairs and All-True cone pairs
are detected in the filtering step and the number of candidates explored in the refinement step
are reduced substantially. The cost of the filtering phase is 16. Only pairs (O1, L1), (O3, La),
and (Oy4, Lg) cannot be filtered and need to be explored in the refinement step. The cost of the
refinement step is 3 x 16 since there are 4 time series in both the ocean and land cone for all 3
pairs. The total cost of filter-and-refine adds up to 64. The number of correlation calculations
using the simple nested loop is 256, which is greater than the number of correlation calculations
in the filter-and-refine approach. Thus when the cost of the cone formation phase is less than
192 units, the filter-and-refine approach is more efficient.

Completeness and Correctness Based on the lemmas in Section 2, All-True cone pairs and
All-False cone pairs are filtered out so that a superset of results is obtained after the filtering
step. There are no false dismissal for this filter-and-refine algorithm. All pairs found by the
algorithm satisfy the given minimal correlation threshold.



Ocean-Land Filtering Refinement | Ocean-Land Filtering Refinement
O] — L] No 16 03 - L] All-True
01 - L2 All-False 03 - Lg All-True
O1— Ls All-False O3 — Lg All-True
01 - L4 All-False 03 - L4 No 16
Oy — 14 All-False O4— 14 All-True
02 - L2 All-False 04 - Lg All-True
Oy — L3 All-False O4 — Lg All-True
02 - L4 All-False 04 - L4 No 16

Table 1: Cone-based Join in Example Data

4 Analytical Evaluation and Cost Models

In this section, we provide simple algebraic cost models for the computation cost of correlation
analysis in spatial time series datasets Suppose the two input datasets are D; and Ds, and the
corresponding cone sets after the coning step are C7 and Cy respectively.

The cost model for the proposed algorithm can be divided into three parts: the cost of cone
formation, the cost of cone-based correlation joins, and the cost of correlation calculations in
the refinement step. The cost of the cone formation, Mj, consists of the cost of calculating cone
center and cone angle for each cone and is determined by the number of time series in both
datasets. Thus, My = |D;| + |Ds|, where |D;| and | D3| are the numbers of time series in D;
and Ds respectively. The second part, Ms, is the cost of the correlation join between two cone
sets, and the cost is the number of correlation computations of their cross products. Given the
number of cones in the two cone sets, Ms is fixed as the product of the sizes of the two cone
sets. Thus we get My = |C1|x |Cy|. The third part, M3, depends on the Filtering Ability Ratio,
denoted as F'AR, of the cone level join. The FAR is the fraction of time series pairs reduced
in the filtering step, i.e. FAR = N“'m““"%‘”‘ls";“‘%;f’“””. The number of correlation computation
after filtering is |Dq| x |D2| x (1 — FAR). The total cost model is denoted as follows:

Cost =My + My + M3 = ‘Dl‘ + |D2| + |Cl| X |02| + |D1| X |D2| X (1 — FAR)

D D (1)
Dyl 1D, +|D;| x |Ds| x (1 — FAR)

=ID1] + |Daf + Cone — Sizey Cone — Sizes

From the equation, we see that the cost model is related to the sizes of the cones of the
datasets and to the FAR. The FAR is determined by the cone sizes and minimal correlation
threshold #. Thus the cost model is sensitive to the cone sizes and the minimal correlation
threshold. If we fix the cone sizes and increase the minimal correlation threshold, the FFAR
increases. The minimal correlation threshold does not affect the cost of M; and Ms. So
increasing the minimal correlation threshold will decrease the overall cost. If we fix the minimal
correlation threshold and increase the cone sizes, M remains the same and M, monotonically
decreases with increasing cone sizes. However, FFAR stops increasing and starts to decrease
after the cone sizes reach some value, which leads M3 to stop decreasing and start to increase.
So increasing the cone sizes does not necessarily decrease overall costs. The choice of the cone
sizes depends on the datasets and more discussion about the selection of cone sizes is available



in Section 5.1.

5 Performance Evaluation

We want to answer two questions: (1)How does the spatial auto-correlation based inexpensive
grouping algorithm affect filtering efficiency? In particular, how do we identify the proper cone
size to achieve better overall savings? (2) How does the minimal correlation threshold influence
the filtering efficiency? These questions can be answered in two ways: algebraically as discussed
in section 5.1 and experimentally as discussed in section 5.2.

Figure 5 describes the experimental setup to evaluate the impact of parameters on the
performance of the algorithm. We evaluated the performance of the algorithm with a dataset
from NASA Earth science data [12]. In this experiment, a correlation analysis between the East
Pacific Ocean region (80W - 180W, 15N - 15S) and the United States was investigated. The
time series from 2901 land cells of the United States and 11556 ocean cells of the East Pacific
Ocean were obtained under a 0.5 degree by 0.5 degree resolution.

Net Primary Production (NPP) was the attribute of the land cells, and Sea Surface Temper-
ature (SST) was the attribute for the ocean cells. NPP is the net photo-synthetic accumulation
of carbon by plants. Keeping track of NPP is important because NPP includes the food source
of humans and all other organisms and thus, sudden changes in the NPP of a region can have
a direct impact on the regional ecology. The records of NPP and SST are monthly data from
1982 to 1993.
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Figure 5: Experiment Design

5.1 Parameter Selections

In this section we investigate the selective range of the cone spans to improve filtering efficiency.
Both All-False and All-True filtering can be applied in the filtering step. Thus we investigate
the appropriate range of the cone spans in each of these filtering categories.

Given a minimal correlation threshold 6 (0 < 6 < 1), Ymaz = 0+71+72 and Ymin = 6 — 71— T2,
where ¢ is the angle between the centers of two cones, and the 7 and 75 are the spans of the
two cones respectively. For simplicity, suppose 71 >~ 7 = 7.

Lemma 4 Given a minimal correlation threshold 0, if a pair of cones both with span T is an
All-True cone pair, then T < %05(0).
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Proof: Assume that a cone pair satisfies the All-True Lemma, i.e., either 7,4, < arccos() or
Ymin > 180° — arccos() is satisfied. In the former scenario, the angle ¢ is very small, and we

. 0)—6
get 0 + 27 < arccos(f), i.e., 7 < %
we get § — 27 > 180° — arccos(), i.e., T <
scenario since 7 < 180°. O

. In the latter scenario, the angle § is very large, and

arccos(6)+6—180° arccos(0)
2

. The 7 is less than in either

Lemma 5 Given a minimal correlation threshold 0, if a pair of cones both with span T is an
All-False cone pair, then T > 182 %"5(9).

Proof: Assume that a cone pair satisfies the All-False Lemma, i.e., the conditions i, >
arccos(f) and Ymar < 180° —arccos(f) hold. Based on the two in-equations above, Ymaz —Ymin <

180° — 2 arccos(f) and Yimaz — Ymin = 47 < 180° — 2 arccos(f) are true. Thus when the All-False

lemma is satisfied, 7 < 180 — %05(0) O

The range of 7 is related to the minimal correlation thresholds. In this application domain,
the pairs with absolute correlations over 0.3 are interesting to the domain experts. As shown
in Figure 6, All-False filtering provides stronger filtering than All-True filtering for almost all
values of cone sizes and correlation thresholds. Thus we choose the cone span 7 for maximizing
All-False filtering conditions. The value of arccos(f) is less than 72.5° for § € (0.3, 1], so the
cone span 7 should not be greater than % — %OS(G) = 8.75°.

An empirical correlogram [5] is often used to demonstrate the spatial autocorrelation of
spatial data in spatial statistics. As shown in Figure 7, the correlograms of samples from ocean
and land are presented, and the relationships between pairwise distances and correlations among
samples are illustrated. The x-axis represents the distances of the ocean-land pairs in the unit
of degree, and the y-axis represents the correlations of the time series of the ocean-land pairs.
According to this figure, the ocean demonstrates higher spatial autocorrelation than the land.
This is because the maximum cone angle should be less than 8.75° and the cone size should
keep the correlations between any time series in the cone and the cone center less than 0.988.
According to this cutting line, land cannot satisfy this criterion, and the distance in the ocean
correlogram is between 1 and 2. Thus the cone size of land is chosen as 1 x 1, and the cone size
of ocean is chosen as 3 x 3.
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Figure 7: Empirical Correlograms for Land and Ocean Samples

5.2 Experimental Results

Experiment 1: Effect of Coning The purpose of the first experiment was to evaluate
under what coning sizes the savings from filtering outweighs the overhead. When the cone is
small, the time series in the cone are relatively homogeneous, resulting in a small cone span 7.
Although it may result in more All-False and All-True pairs of cones, such cone formation incurs
more filtering overhead because the number of cones is substantially increased and the number
of filtered instances in each All-False or All-True pair is small. When the cone is large, the
value of the cone span 7 is large, resulting in a decrease in the number of All-False and All-True
pairs. The effects of the All-False and All-True filtering in the given data are investigated.

Experiment 2: Effect of Minimal Correlation Thresholds In this experiment, we eval-
uated the performance of the filtering algorithm when the minimal correlation threshold is
changed. Various minimal correlation thresholds were tested and the trends of filtering effi-
ciency was identified with the change of minimal correlation thresholds.

5.2.1 Effect of Coning

This section describes a group of experiments carried out to show the net savings of the algo-
rithm for different cone sizes. For simplicity, we only changed the cone size for one dataset.
According to the analysis of the previous section, the land cone size is fixed at 1 x 1. We
carried out a series of experiments using the fixed minimal correlation threshold, the fixed land
cone size, and various ocean cone sizes. The minimal correlation threshold 6 was fixed as 0.5.
Figure 8 (a) shows the net savings as a percentage of the computational cost of the nested
loop join algorithm for different ocean cone sizes. The x-axis represents the different cone sizes
ranging from 1 x 1 to 6 x 6, and the y-axis represents the net savings in computational cost as
a percentage of the costs using the simple nested loop join algorithm. The net savings range
from 40 percent to 62 percent, which is consistent with the empirical correlogram of the ocean
samples.
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5.2.2 Effect of Minimal Correlation Thresholds

In this experiment, we investigated the effects of minimal correlation threshold 6 on the savings
in computation cost for correlation analysis. The land and ocean cone sizes were fixed as 1 x 1
and 3 x 3 respectively, and a series of experiments was carried out for different fs. Figure 8
(b) shows the total savings as a percentage of the computational cost of the nested loop join
algorithm for different s. The x-axis represents the different cone sizes ranging from 1 x 1
to 6 x 6, and the y-axis represents the total savings as a percentage of the computational
cost of the nested loop join algorithm. The net savings percentages range from 44 percent
to 88 percent with the higher savings at higher values of correlation thresholds. Thus when
other parameters are fixed, the filtering algorithm generally achieves better performance as the
minimal correlation threshold is increased.

6 Conclusion and Future Work

In this paper, a filter-and-refine correlation analysis algorithm for a pair of spatial time series
datasets is proposed. A cost model and experimental evaluations using a NASA Earth science
dataset are presented. The total savings of correlation analysis computation range from 40
percent to 88 percent.

In future work, we would like to explore other coning methods, which are listed in Figure 9.
Cluster and spatial methods using other schemes may provide higher filtering capabilities but
possibly with higher overheads. Time series dimensionality reduction and indexing methods [1,
4, 6] (e.g., F-index [1]) will also be explored to determine the tradeoff between filtering efficiency
and overhead.
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