
Crypto-integrity

Moti Yung

Department of Computer Science, Columbia University,
moti@cs.columbia.edu

Abstract. Designing cryptographic mechanisms and products is a chal-
lenging task. This task will become increasingly hard as software tech-
nology and systems evolve and as the new computational environment
becomes more distributed, more diverse, and more global. In order to
enable the inclusion of cryptographic components in the future infras-
tructure and within future applications, it is argued that assurance of
their (secure) operation has to be provided and their robustness has to
be exhibited in real time. This assurance, which we call crypto-integrity
will guarantee the correct functioning of the cryptographic components
in an efficient fashion. This built-in integrity should have no impact on
the system security and should have minimal impact on its function,
performance and composability.
We review the need for crypto-integrity in various known settings, ways
to implement it based on known protocol techniques as well as potential
future directions. The paper is written as a position paper and not as a
survey of the vast relevant literature.

1 Introduction

Integrity assurance is a part of many modern cryptography constructions. In
fact, cryptography itself is often employed to provide strong integrity such as
“message integrity” (assured by hashing a message based on a secret key in a
MAC operation). Other cryptographic operations have integrity associated with
them, e.g. digital signing (initiated by Diffie-Hellman, Rivest Shamir and Adle-
man, and Rabin) involves a verification procedure which assures the authenticity
of the signature.

The design of cryptographic protocols where many parties are involved in a
joint activity allows dishonest adversaries to behave in arbitrary devious ways.
Thus, the need to assure well behaved parties arises naturally. Early proto-
cols like Rabin’s signature protocol and Blum’s coin flipping had assurance of
behavior designed into them. Then, the development of the basic notion of zero-
knowledge by Goldwasser, Micali and Rackoff was crucial to recognizing the
central idea of systematic assurance of well behaved parties. The fact that NP
languages have zero-knowledge proofs (and arguments) is fundamental and can
be used to assure that actions taken in a cryptographic protocol are in accor-
dance with the protocol specifications. This serves as a general plausibility result
that integrity of parties in a protocol can be upheld and monitored.

Y. Zheng (Ed.): ASIACRYPT 2002, LNCS 2501, pp. 567–573, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



568 Moti Yung

However, for every protocol solving a specific task, we need to design specific
proofs and integrity mechanisms that are efficient and suitable to its setting.
In fact, as cryptographic services are deployed, every system configuration and
every specialized setting will need to provide efficient and specialized methods
for exhibiting the correct behavior of components; we call these methods crypto-
integrity. Next we mention some systems factors affecting the need for specialized
crypto-integrity.

1.1 System Setting and Requirements

We will now review some practical requirements and will argue how they can be
achieved/ strengthened by having crypto-integrity functions.

As cryptographic primitives and protocols are being developed as products,
their adoption into the computing and communication infrastructure will be
based on their usefulness and effectiveness (typically measured in business by
“Return on Investment”). This means that certain basic properties are required,
some of which are related to generic desired properties (like user-friendliness),
while others relate directly to the intrinsic properties of cryptographic design:

– Generality and composability of components: the basic product should be
useful in many settings as a general primitive. We should be able to employ
it with many (current and future) applications and it should remain secure
in these settings.

– Adaptability (or scalable security): we should be able to embed the prod-
uct in various settings (of different scales) and change its environment and
even the threats to which it is susceptible, yet it should keep on being se-
cure. (Many designs are too “setting specific” and are hard to adapt to new
environments).

– Performance: this is an important factor that may fail the product when
e.g. speed is a requirement or when it becomes too costly to implement fast
or compact solutions. In some environments performance criteria are crucial
(and this changes as technology changes).

– Assurance: there should be assurance about the product workings. Besides
the proof of security which should be done in the proper setting of the entire
application (end-to-end arguments), and besides testing, it will be useful
if the product will have on-line assurance of the way its components work
(namely, what we called crypto-integrity).

The above and similar requirements usually serve as a feedback to the crucial
work on foundations of cryptography, where new notions are defined, designed
and improved, and where the characteristic and inherent properties of the basic
notions are investigated.

These requirements are also very useful to practitioners. To have a sustainable
business one needs to have certain quality in its products. Having crypto-integrity
may ease re-usability of components and shorten the test cycle. Having a general
component that is adaptable to various settings and can support current and
emerging applications is, at times, an important prerequisite for profit.



Crypto-integrity 569

The notion of crypto-integrity has implications to all the above requirements.
It helps assure the proper behavior of components, which means that parties are
committed to certain computations, something that leads to predictable per-
formance (and time-out mechanisms can further detect delays that are system
specific methods to cope with delays caused by misbehaving components). It
helps in exhibiting (at the interface between components) what is done by indi-
vidual components and sub-systems, and thus helps in composing systems and
the adaptability of components. It supports and reinforces formal assurance pro-
cedures such as certification of products by government bodies.

Crypto-integrity is an assurance mechanism which is achieved by enhancing
the function of the component itself (in on-line operation). On-line integrity has
many implications in special contexts. Let us mention one current implication.
The context is a trusted computing environment run under a tamper resistant
component of the architecture. This setting may have a lot of positive impli-
cations. It has however, many bad implications, if it is not run according to a
“publicly agreed upon” specification. With crypto-integrity we may be able, at
least partially, to assure compliance of a well specified trusted environment with
its global specification (especially if we limit it to very specialized functions,
since in general we cannot really tell what a tamper resistance cryptographic
environment is doing as was shown by the notion of Kleptography [Young and
Yung, Crypto 96, Eurocrypt 97, Crypto 97]).

In the rest of this paper I will mention examples of mechanisms (protocol
design and settings) where crypto-integrity plays an important role.

2 Examples: the Usefulness of Crypto-integrity

2.1 Cryptographic Program Checking

Blum introduced the useful and elegant notion of Program Result Checking. In
this setting, given arbitrary input α and program P , a checker C for a function
f will catch, with high probability, if P (α) �= f(α). The checker has only “black-
box” access to the program and accomplishes its goal on-line. Cryptographic
program checking (developed in [Frankel, Gemmel and Yung, STOC96]) allows
the on-line checking of programs computing cryptographic functions in a working
environment.

In this model the checker worries about correctness (a concern that tradi-
tional “program checking” takes care of), since due to the adversarial setting
we require correctness with very high probability. In addition, the owner of a
program will output P (α) provided it is authorized to output the result, but the
checker (user) learns nothing more about P from this checking procedure, in the
spirit of the zero-knowledge complexity approach to knowledge. Such checking
methods are witness-based (they allow the output of a few values to be known
as a witness) and achieve fast verification. In some sense the procedures can be
viewed as extending the “deniable signature” proof method of Chaum.

The basic application of this method is testing cryptographic servers. In the
future, many servers will act on behalf of user populations and assurance of



570 Moti Yung

non-spoofed service will be important. We now discuss several applications for
cryptographic program checking.

Consider the encrypting-machine requester game where the encrypting-machine
(server) is willing to encrypt authorized requests. If the checking process requires
the encryption of other (unauthorized) plaintext so that the output of the request
can be checked, then the checker can exploit this service to encrypt unauthorized
texts as well. Cryptographic program checking can be used to prevent such an
exposure.

Another similar application is the international key escrow game. This is
related to specifications of key recovery methods between organizations and en-
tities, an issue that is not yet well understood (on a technical level), but is similar
to the concept of escrow encryption systems.

In this situation country A has a key escrow system and will allow country
B to obtain decryption of messages of A’s citizens under some predefined treaty
and under some conditions. A does not want to provide B with the actual keys
of its citizens (only the decrypted messages should be disclosed) while country B
does not trust that A will reply with the correct cleartext values. Cryptographic
program checking, in turn, allows B to verify the correctness of the outputs,
while A knows that it is not being abused (by revealing messages not covered
by the treaty or conditions). Of course, the setting is applicable to many (less
controversial) scenarios. The basic ideas of our methodology can be applied to
a verifier hardware-device game, where a holder of a result computed by some
hardware device needs to probe a verifying device. For example, it makes it pos-
sible to make sure that a value computed in the past (a time stamp) is correct
without the verification process leaking the computation itself (thus, recomput-
ing the time stamp– which in effect causes an undesirable back-stamping). The
methodology of cryptographic program checking applies to this situation as well.

2.2 Threshold Cryptosystems

One of the applications that motivated this research on cryptographic program
checking is in the development of verification algorithms for threshold cryptog-
raphy (where a function sharing or capability sharing is taking place). This is
a method to distribute control of a function by a dealer or distributedly. In the
function sharing game a function f is distributed amongst n agents as programs
P1(·), . . . , Pn(·) such that a threshold (quorum) of, say, any t are able to compute
f(α) from Pi1(α), . . . , Pit

(α). There are several interesting applications for which
function sharing is a very useful solution in practice (e.g., distributed decryp-
tion, signature generation, public key certification generation, e-cash generation,
etc.).

Once the shares are available there is a polynomial-time combiner that col-
lects the shares and combines them to the final result of the function. When
agents misbehave this gives rise to the game between the agents and the com-
biner, where the combiner has to be sure to pick correct shares into its compu-
tation. If there is no efficient way to verify correctness of shares, the combiner
may need to try all subsets of shares (but this will take exponential time). The



Crypto-integrity 571

agent combiner game will assure the combiner which of the agents acted cor-
rectly. The need for robust function sharing was also expressed in an application
for replicating services in a network were some of the clients and servers have
been corrupted by an adversary. Since there is a real systems’ need for the prim-
itive, inefficient methods like non-interactive zero-knowledge techniques should
be avoided. While many results have been achieved in this area, the applicability
and usability of the results has yet to be realized.

2.3 Proactive Security

Another game, called the proactive function sharing game, is an extension of the
robust function sharing game. In this system the agents’ state is modified over
time (by the agents themselves) so that an adversary may have access to all
agents over the lifetime of the system but not to all (or not even to a quorum)
at any particular point in time. The agents periodically modify their state so
that information learned by a mobile adversary at two points in time is, for
practical purposes, uncorrelated. In this game, the honest agents make sure that
changing their state does not provide a means for the adversary to learn too
much information nor to destroy the ability of honest agents to later compute
the function. Hence each of the agents verifies that the information provided
to it by other agents is correct before it changes states. This notion is called
proactive security.

The notion of proactive security was a result of dealing with a mobile ad-
versary which corrupts different parts of the system in different times. It was
motivated by new threats like network viruses. It was first developed for the
area of general secure multi-party computation (initiated by Yao and Goldreich,
Micali and Wigderson) in [Ostrovsky and Yung, PODC 91]. It was somewhat
motivated by an early notion of allowing users in this setting of general multi-
party computation to leave and re-join the computation smoothly. (This last
idea needed the method of “share-of-shares” which is a robustness mechanism
was first employed in a work [Galil, Haber and Yung, Crypto 87]). It was also
further motivated by Dijkstra’s notion of self-stabilizing protocols which allows
transient faults, whereas proactive protocols allows persisting faults (rather than
transient) by introducing redundancy (requiring honest majority).

Many procedures have been “proactivized” and in particular so have many
distributed cryptosystems. The need for integrity when we have the system dy-
namically changing and when honest users re-join, is crucial.

Proactive methods allow us to change the quorum of users that hold some
computational capability distributedly within a system. This is a new function
that is made possible by the built-in integrity mechanism which ensures the
correctness of the shared capability, throughout.

2.4 Voting Schemes

Voting schemes have interesting requirements. They ask that the voter’s action
is universally verifiable yet his ballot has to remain secret. Various methods



572 Moti Yung

assuring the integrity of the system and limiting malicious voters, preventing
them from disturbing the global voting process have been developed. Recently
(in [Kiayias and Yung, PKC 2002]) a small scale election with unique properties
was given. It assures increased privacy (where in order to compromise the privacy
of a ballot, all other voters have to collude against an individual) and combines
it with a form of fault tolerance and universal verifiability in a way that there are
no disputes in the on-line process (dispute freeness) due to the built-in crypto-
integrity.

2.5 Assurance with respect to Off-line Third Parties

In escrow and key recovery systems (especially in auto recoverable cryptosys-
tems, see [Young and Yung, Eurocrypt’98, PKC’00]), as well as in traceable
e-cash and in various other settings, we have a user assuring that some action by
an off-line third party is in fact doable, once this third party becomes active. The
availability of public keys and the proof techniques which use them, enable such
proof of actions by a third party where there is no need for on-line parties to
participate. we expect such methods to find further applications in many areas.

2.6 Minimizing Key-Exposure

Recently, cryptosystems have been designed where key exposure is coped with
either by “forwarding” (self updating) the key, making past keys inaccessible,
or by sharing the key with a server (key-insulated cryptosystems developed in
[Dodis, Katz, Xu and Yung, Eurocrypt’02]). We note that when sharing and
updating keys with other elements, crypto-integrity is a must.

2.7 Multi User Setting

The case where multi users are present in a system (rather than two parties: a
sender and a receiver) may change the setting and the possibility of procedures
that can be employed. For example a “distributed proof” can be conducted
assuring a group of users with honest majority of a fact while not revealing
the underlying secret. Many areas of multi-user oriented cryptography are still
open, and crypto-integrity is likely to play an increasingly important role in this
setting.

2.8 Environmental Constraints and Protocols

Due to technological changes, the environment where protocols are being exe-
cuted is changing. Protocol notions based on the Internet concurrency, and no-
tions based on limited execution environments (mobile devices and smart cards)
are being considered nowadays. These changes will affect the crypto-integrity
requirements among other changes that they will dictate.

Environmental constraints also motivate research on modularity and compo-
sition of crypto protocols. The methods that assure integrity are paramount to



Crypto-integrity 573

allowing properties like composition in specialized settings. For example, the is-
sue of self-testing protocols while retaining the protocol’s security is in its infancy
(see [Franklin, Garay and Yung, DISC’99]).

3 Conclusions

We reviewed areas where crypto-integrity methods have been developed and
used extensively. We showed how the notion allows for integrity assurance while
retaining the secrecy of cryptographic techniques.

We claim that on-line assurance is a crucial security component: If we run
tests of the systems in a working environment where we have to give up security
to validate the system’s correctness, we are at risk that someone in control of
moving from test mode to operational mode can use this capability to compro-
mise the system.

Also, on-line assurance is very important in working systems which evolve
and change. It makes sure the core cryptographic component is acting correctly.
Maintaining the integrity as the system changes is an interesting open area of
research.

On-line crypto-integrity adds “function” by allowing parties to be off-line but
nevertheless assuring that when they join they will be able to perform their task.
With cryptography being part of many applications, such tools are expected to
be crucial.

The research questions regarding on-line integrity in cryptographic settings
are many: from improving the efficiency and other properties of existing methods,
through questions related to new techniques and new primitives where integrity
is crucial, to possibly new areas where crypto-integrity functionality is a must
such as “safe cryptographic testing and development,” “general notions of com-
posability and modularity,” “theory of reusable cryptographic methods,” and
“theory of update of system based on change of threats.” We believe that given
that “cryptosystems deployment as part of more general computing systems”
is still (in spite of deployment successes) an area in its infancy, the area of as-
suring integrity in cryptographic settings is open to further investigation and to
innovations.


	1 Introduction
	1.1 System Setting and Requirements

	2 Examples: the Usefulness of Crypto-integrity
	2.1 Cryptographic Program Checking
	2.2 Threshold Cryptosystems
	2.3 Proactive Security
	2.4 Voting Schemes
	2.5 Assurance with respect to Off-line Third Parties
	2.6 Minimizing Key-Exposure
	2.7 Multi User Setting
	2.8 Environmental Constraints and Protocols

	3 Conclusions

