
A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order

Ivan Damg̊ard1 and Eiichiro Fujisaki2

1 BRICS, Dept. of Computer Science, Aarhus University,
Ny Munkegade AARHUS C DK-8000 Denmark,

ivan@daimi.au.dk
2 NTT Labs, 1-1 Hikarinooka, Yokosuka-shi 239-0847 Japan,

fujisaki@isl.ntt.co.jp

Abstract. We present a statistically-hiding commitment scheme allow-
ing commitment to arbitrary size integers, based on any (Abelian) group
with certain properties, most importantly, that it is hard for the commit-
ter to compute its order. We also give efficient zero-knowledge protocols
for proving knowledge of the contents of commitments and for verify-
ing multiplicative relations over the integers on committed values. The
scheme can be seen as a generalization, with a slight modification, of the
earlier scheme of Fujisaki and Okamoto [14]. The reasons we revisit the
earlier scheme and give some modification to it are as follows:
– The earlier scheme [14] has some gaps in the proof of soundness of
the associated protocols, one of which presents a non-trivial prob-
lem which, to the best of our knowledge, has remained open until
now. We fill all the gaps here using additional ideas including minor
modification of the form of a commitment.

– Although related works such as [8, 3, 10, 4] do not suffer from the
main problem we solve here, the reason for this is that they use
“commitments” with a single base (i.e., of form c = gs mod n). Such
commitments, however, cannot satisfy the standard hiding property
for commitments, and hence protocols using them cannot in general
be (honest-verifier) zero-knowledge nor witness indistinguishable.

– In a computationally convincing proof of knowledge where the prover
produces the common input (which is the type of protocol we look
at here), one cannot completely exclude the possibility that a prover
manages to produce a common input on which he can cheat easily.
This means that the standard definition of proofs of knowledge can-
not be satisfied. Therefore we introduce a new definition for computa-
tionally convincing proofs of knowledge, designed to handle the case
where the common input is chosen by the (possibly cheating) prover.

– Our results apply to any group with suitable properties. In particular,
they apply to a much larger class of RSA moduli than the safe prime
products proposed in [14] – Potential examples include RSA mod-
uli, class groups and, with a slight modification, even non-Abelian
groups.

Our scheme can replace the earlier one in various other constructions,
such as the efficient interval proofs of Boudot [4] and the efficient proofs
for the product of two safe primes proposed by Camenisch and Michels [9].

Y. Zheng (Ed.): ASIACRYPT 2002, LNCS 2501, pp. 125–142, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

126 Ivan Damg̊ard and Eiichiro Fujisaki

1 Introduction

1.1 Statistically-Hiding Commitment and Associated Protocols

The notion of commitment is at the heart of many cryptographic protocols.
The basic functionality one wants from a commitment is that the committer
may choose in private a secret s from some set S and release some information,
the commitment to a verifier, such that: even though the scheme is hiding, i.e.,
the verifier cannot compute anything about s from the commitment, it is also
binding, i.e., the committer cannot change his mind after having committed, but
he can later open the commitment to reveal s, and convince the verifier that this
was indeed the original value committed to.

In many applications, one wants extra functionality from a commitment
scheme, for instance that the committer can prove in zero-knowledge that he
knows how to open a given commitment, in particular that he knows the value
committed to. Also, if S has an algebraic structure, say as a ring or a group,
it can be very useful to have a multiplication protocol, i.e., a zero-knowledge
protocol in which the committer can prove that committed values a, b, c satisfy
ab = c. If S is a ring, one can often, in addition, achieve that from commitments
to a, b ∈ S, the verifier can compute a commitment to a+ b without interacting
with the committer.

One example of such a scheme where S = Z/qZ, where q is a prime, is the
scheme of Pedersen [17]. For the associated protocols and additional examples,
see [7]. In the vast majority of examples known, the set S is Z/mZ for some
m, where m may or may not be a prime. A multiplication protocol for such a
scheme is a protocol by which one can demonstrate that for committed numbers
a, b, c, ab = c mod m holds. However, there are several important cases where
what you actually need is something stronger, namely to be able to prove that
ab = c holds over the integers. One example of this is if you want to show that a
committed number s is an RSA signature on a given message a w.r.t. public key
n, 3. What we want to know is that a = s3 + tn for some t, and this of course
must be true over the integers and not just modulo m. Of course, one might
be able to solve this by choosing the commitment scheme such that m = n,
but this requires that at least you know n at the time the commitment scheme
was set up, and also a new instance of the commitment scheme for each n. This
is often unreasonable in practice. There are other ways around the problem,
see for instance [12], but the protocols are far from optimal, typically one has
to resort to “binary cut-and-choose”, which means communication complexity
at least quadratic in the security parameter. Another example of the need for
relations over the integers is the efficient zero-knowledge proofs of Boudot [4] for
demonstrating that a committed number is in a given interval. Here, it is crucial
for efficiency that one can prove efficiently that committed numbers a, b satisfy
b = a2 over the integers.

It should be clear that what we really need here is an integer commitment
scheme, that is, a scheme where S = Z (or at least some large finite interval), and
where there is an efficient multiplication protocol that works over the integers.

A Statistically-Hiding Integer Commitment Scheme 127

Here, by efficient, we mean constant round protocols requiring only communica-
tion linear in the security parameter.

1.2 The Earlier Scheme with Statistically-Hiding Commitment

In [14], Okamoto and the second author of this paper presented the first efficient
integer commitment scheme and also suggested an efficient multiplication pro-
tocol. The scheme is based on the strong RSA assumption suggested in [2,14].
However, via private communication, we found some gaps in the proof of sound-
ness of the associated protocols, one of which we think presents a non-trivial
problem which, to the best of our knowledge, has remained open until now.
Later in the paper we give a short explanation of the problem in the proof from
[14]. We fill all the gaps here using additional idea including a minor modification
of the form of a commitment.

1.3 Other Related Works

There are several related works inspired by [14] such as [8,3,10,4]. The protocols
constructed there generally do not suffer from the main problem we mentioned
above. However, the reason for this is that they use “commitments” with a single
base, i.e., a commitment to s is of form c = gs mod n. Such a commitment
does not satisfy the standard hiding property for commitments. For instance,
if a prover commits twice to the same value, this is immediately visible. Thus
derived protocols using such commitments are not in general (honest-verifier)
zero-knowledge nor witness indistinguishable.

Boudot [5] pointed out another problem in the proof of soundness – In this
type of protocols (based on a group with a hidden order), the natural protocol
for showing that one knows how to open a commitment c can in fact only show
that the prover can open c or −c (a problem that even [8,3,10,4] cannot avoid).
This is not so serious in practice but we suggest a solution to this problem too,
by changing the way in which commitments are opened.

1.4 Our Scheme

In this paper, we present a commitment scheme that may be seen as a gener-
alization of the Fujisaki-Okamoto scheme. We start with an arbitrary Abelian
group G, with some basic properties. We assume that the verifier can choose the
group and publish a description of it that allows anyone to compute the group
and inversion operations in G. For the RSA case, this amounts to publishing the
modulus n. The most important extra property we need is that it is hard, given
the description, to extract the roots of a given random element in G. This is just
a natural generalization of the strong RSA assumption. Some extra technical
conditions are needed as well, we detail those later. We then build from this
an integer commitment scheme, as well as a zero-knowledge protocol for prov-
ing knowledge of how to open a commitment, and an efficient zero-knowledge

128 Ivan Damg̊ard and Eiichiro Fujisaki

multiplication protocol. In order to analyze these protocols, we introduce a new
definition of computationally convincing proofs of knowledge, designed to handle
the case where the common input is chosen by the (possibly cheating) prover.
Our analysis is done in the exact security setting.

If we specialize to the case where G = (Z/nZ)× for an RSA modulus n, we
obtain - modulo some technical changes - the commitment scheme of Fujisaki and
Okamoto, in particular we get what appears to be the first secure multiplication
protocol for this type of scheme. In addition, the conditions we need on G turn
out to translate into conditions on n that are much milder than those needed
in the original paper [14], namely that n = pq is a safe prime product. We only
need that gcd(p− 1, q− 1) = 2 and p− 1, q− 1 don’t have too many small prime
factors (whose precise description follows below). Finally, our construction is
applicable to groups other than RSA, for instance class groups. Here, it should
be noted that finding roots in a class group seems to require finding the order
of the group, and this problem is known to be at least as hard as factoring, and
may in fact be harder.

Our commitment scheme and protocols are not exactly the same as those
of [14], even when specialized to G = (Z/nZ)×. However, with some minor
technical changes of the commitment scheme in [14], one can give correct proofs
for soundness of their protocols following the ideas we give here. However, our
protocols are slightly more efficient than those of [14].

There are several variants for our protocols that we do not explain here due
to space limitations, except for a few extensions given in Appendix B.

2 Model

As usual, probability ε(k) will be called negligible if for all polynomials f(·), we
have ε(k) ≤ 1/f(k) for all large enough k. On the other hand, 1 − ε(k) will be
called overwhelming if ε(k) is negligible. Also, we say ε(k) is significant if for
some polynomial f(k), we have ε(k) ≥ 1/f(k) for all large enough k.

Suppose now that we are given a probabilistic polynomial time algorithm G
which on input 1k outputs a description descr(G) of a finite Abelian group G,
where we assume one can efficiently verify from descr(G) that it actually specifies
such a group. The algorithm may also output some side information, such as the
order of G, or the prime factorization of the order; it may even be possible to
ensure that the order of the group satisfies certain conditions. An example of
such a G is an RSA key generation algorithm – in this case it is indeed possible
to generate a group with known and controlled order.

Given descr(G), we assume that one can compute efficiently some estimates
on the order, 2A ≤ ord(G) ≤ 2B , where A and B are polynomial in k. We
also assume that elements can be sampled randomly from the group and that
inversion and group operation can be computed efficiently.

In order for our protocols to work, we need, loosely speaking, that it is hard
to find non-trivial roots of elements in G. Furthermore, we need a condition
on the structure of G’s output by G. Loosely speaking, we need that G has a

A Statistically-Hiding Integer Commitment Scheme 129

large subgroup with only large prime factors in its order. To make this more
precise, we assume that two functions are associated with G: C(·), l(·), that map
positive integers to positive integers. Typically, C(k) is super-polynomially large
as a function of k, whereas l(k) is always a polynomial. For any G produced
by G on input 1k, we will consider primes greater that C(k) as being “large”.
By the structure theorem for Abelian groups, we can always write G = U ×H,
where the order of H has only prime factors larger than C(k), and the order of
U has only primes factors at most C(k). We say |H| is C(k)-rough, as opposed
to being C(k)-smooth, which means a number has only prime factors less than
C(k). Thus lG := |U | is C(k)-smooth.

We are now ready to state our assumptions about groups output by G:
Group Assumption. For any G generated by G on input 1k the following hold:

1. Write G = U×H as above, with C(k)-smooth, lG = |U | and C(k)-rough
|H|. Then lG ≤ l(k) and descr(G) includes lG.

2. For any string Y , when given descr(G), it can be decided in (determin-
istic) polynomial-time in k whether Y represents an element in G.

Root Assumption. Let A be a probabilistic algorithm. We run G on input
1k to get descr(G). We give descr(G) and a random Y ∈ G as an input to
A. We say that A solves the root problem if A outputs an integer e(> 1),
X ∈ G, and µ ∈ U such that Y = µXe (where µ ∈ U can be verified by
checking that µlG = 1 ∈ G). In particular, we say that the root problem is
(t(k), ε(k))-secure if for k, any adversary A that runs in time at most t(k),
solves the root problem with probability of at most ε(k). The probability is
taken over the coin tosses of G and A, as well as the random choice in G.

Some remarks on the assumptions:
The condition that lG ≤ l(k) says that G has many elements with only

large prime factors in their orders: If Y is chosen randomly in G, then there
is a significant probability, 1/l(k), that the order of Y is C(k)-rough. We want
to stress that it is essentially important that membership in G can be decided
efficiently – although this property is often ignored and forgotten, this was one
reason why proofs of soundness for the earlier protocols suggested in [14] were
incomplete. We will assume throughout that when a party receives an element
that is supposed to be in G, membership in G is always checked.

The assumption that lG is known and is part of the description can be re-
moved, if in the protocols to follow, one replaces exponentiations to the power
lG by exponentiations to l(k)!. The price is loss of efficiency, since l(k)! ∼√
2πl(k)l(k)+1/2e−l(k) � lG. However, the cost to exponentiate to power l(k)!

is still polynomial in k.
The second assumption is a generalization of the strong RSA assumption –

we require that extracting non-trivial roots is hard, even if one is allowed to
multiply the input by an element of relatively small known order. We may think
of this as root extraction in a factor group: when the adversary algorithm gets
an input element Y , this represents an element Ȳ in the quotient group G/U ,
and the adversary’s task actually is to extract a non-trivial (e’th) root of Ȳ in
G/U . He must, however, demonstrate that his answer when raised to the e’th

130 Ivan Damg̊ard and Eiichiro Fujisaki

power represents the same element as does Y . We require he does this by also
producing µ.

If we specialize to the RSA case, i.e., G = (Z/nZ)× for an RSA modulus
n, it may seem that the root assumption as we defined it here would make an
even stronger requirement than the standard strong RSA assumption [2,14] –
since the adversary in our case is given lG and does not have to find a root of
Y , but of µY for any µ ∈ U . This is not the case, however. We now show that
RSA moduli can be constructed such that our assumptions are satisfied for these
groups, based only on the strong RSA assumption in its standard form. Suppose
we make a k-bit modulus n = pq such that gcd(p−1, q−1) = 2. We choose C(k)
as some super-polynomial function much less than 2k, for instance C(k) = 2k/10,
and we set l(k) = k. We construct p, q such that the factor of (p− 1)(q− 1) with
prime factors less than C(k) is in O(k) (this factor is lG, where G = (Z/nZ)×

). We then set G = (Z/nZ)× and descr(G) = {n, lG}. Now, the root assumption
(in its asymptotic form) turns out to be equivalent to the standard strong RSA
assumption. First note that it makes little difference whether lG is known since it
can be guessed with significant probability. Then suppose algorithm A on input
Y, n, lG finds X, e, µ such that Y = µXe, µlG = 1. Now, if there is non-negligible
probability that µ �= ±1, we can use µ, lG to factor n, namely we first factor
lG and then we can find an element µ̃ of known prime order s. If s = 2, µ̃ is a
non-trivial square root of 1 and gcd(µ̃ − 1, n) is a factor in n. But if s is odd,
it cannot divide both p − 1 and q − 1 and therefore µ̃ must be congruent to
1 modulo one of p or q and be different from 1 modulo the other. Hence, also
in this case, gcd(µ̃ − 1, n) is a non-trivial factor of n. On the other hand, if
µ = ±1 with non-negligible probability, we can solve the strong RSA problem:
given input h ∈ (Z/nZ)×, we choose a random bit b and give (−1)bh as input to
A. Since A receives the same input distribution as usual, it outputs a non-trivial
root of (−1)bY or −(−1)bY with good probability. Since A’s choice of the sign
cannot be correlated to our choice of b, we obtain a root of Y with non-negligible
probability.

Note that a special case of this construction of n is when n = pq is a safe
prime product, i.e., (p−1)/2, (q−1)/2 are primes, but evidently the construction
covers a much larger class of moduli.

3 Some Definitions

We will often use the concepts of zero-knowledge and computational/statistical
indistinguishability. For definitions of these, refer to [16]. The definitions below
are all in the exact security style. It is straightforward to derive asymptotic type
definitions from the exact-security style ones.

We then define the type of commitment scheme we will look at. Our commit-
ments will be statistically (unconditionally) hiding and computationally binding.
Concretely, a commitment scheme consists of a probabilistic polynomial time
key generator H, which on input 1k outputs a public key pk and a witness w.
We let LH be the set of public keys that H can produce as an output, w is

A Statistically-Hiding Integer Commitment Scheme 131

an NP-witness to the fact that pk ∈ LH . The scheme also defines an algorithm
commit that takes as inputs pk, a string s to be committed to, and a random
string r, both of lengths that are fixed polynomials in k. The output is a com-
mitment to s, commitpk(s, r) and a string u. Finally we have an algorithm verify
that takes inputs pk, commitment c, and strings s, u, where the output (denoted
verifypk(c, s, u)) is accept or reject.

Such a scheme can be used by a committer C and a receiver R as follows:
in the set-up phase, R runs H to get pk, w, sends pk and uses w to give a zero-
knowledge interactive proof [16] that pk ∈ LH . C can commit to s by running
commit on pk, s and random input r, sending c = commitpk(s, r) to R and
keeping r secret. Opening takes place by revealing s, r to R, who can then check
that verifypk(c, s, r) = accept.

We then require the following:

Hiding: For pk ∈ LH , uniform r, r′ and any s, s′, we have that the distributions
of commitpk(s, r) and commitpk(s′, r′) are (statistically) indistinguishable (as
defined in [16]).

Binding: We say that binding is (t(k), ε(k))-secure if it holds that for any C
running in time at most t(k), the probability that C on input pk computes
s, r, s′, r′ such that commitpk(s, r) = commitpk(s′, r′) and s �= s′, is at most
ε(k).

We will also need to consider proofs of knowledge in the following. For this,
we use a modification of the definition of Bellare and Goldreich, in the version
for computationally convincing proofs of knowledge [6]. Let a binary relation R
be given, where a prover P and a verifier V are both probabilistic polynomial
time interactive Turing machines. Intuitively, the prover’s claim is that for a
given common input c, he knows w such that (c, w) ∈ R.

To define this in our setting, we cannot use the original definition in [6]
without change. This is because it asks that the soundness of the protocol holds
for all (large enough) instances c. In our scheme, this is more than we can
reasonably ask for: in our case, one may think of c as a commitment and w as
the string P can use to open c. Furthermore, the scenario is that P sees the public
key of the scheme, produces the commitment and then tries to prove he knows
how to open it. But this proof is only computationally convincing in our case, so
a cheating prover may have some chance of producing, based on the public key, a
commitment he cannot open, but where the proof nevertheless is successful with
large probability. This can typically happen if the prover manages to compute
some trapdoor information associated with the public key. This information
can always be guessed with non-zero probability and so the problem cannot be
completely avoided, but we can at least require that it occurs with only small
probability. In our definition of soundness, therefore, we first let the prover see
a public piece of information, he then produces c and conducts the proof. A
cheating prover P ∗ wins if the standard soundness requirement fails for this c,
and we are satisfied with the proof system if within some time bound P ∗ can
only win with some bounded (small) probability.

132 Ivan Damg̊ard and Eiichiro Fujisaki

For the above definition we need to consider a relation generator, algorithm
R, that takes 1k as an input and produces as an output a description of a binary
relationR. By this we mean a string containing information is sufficient to sample
efficiently random pairs (c, w) ∈ R and to test membership in R efficiently. We
will use R to denote both this description and the relation itself. For instance,
R might be the key generator for a commitment scheme, and we can think of
the public key pk as defining a relation consisting of pairs (c, (s, r)) for which
verifypk(c, s, r) = accept.

A prover in our setting is a machine P who gets R as an input, outputs a
string c and finally conducts the interactive proof with a verifier V using R, c
as common input. For convenience, we want to be able to refer to P ’s strategy
when executing the proof as a separate machine. Therefore, from P we define
a machine Pview which starts in the state P is in after having seen view view
and having produced c. Pview then conducts the protocol with V following P ’s
algorithm. The view view contains all inputs, messages exchanged and random
coins so in particular c is determined by view. Note that the distribution of view
is taken over the random coins of both P and R. We let εview,P be the probability
with which Pview makes V accept, i.e. εview,P is P ’s probability to make V accept,
conditioned on view.

An extractor will be a machine M that gets R, c as an input, has black-box
access to Pview for some view consistent with c. and computes a witness w such
that (c, w) ∈ R. The intuition is that the prover “knows” w if we can use M to
extract it from him. To measure this, we need a knowledge error function κ().
Intuitively, κ(k) is the probability that the prover can cheat on input generated
from security parameter value k, i.e., make V accept while knowing nothing
about w.

Definition 1. For some given cheating prover P ∗, extractor M and polynomial
p(), we say M fails on view view if εview,P∗ > κ(k), if the expected running time
of M using P ∗

view as oracle, is greater than p(k)
εview,P ∗ −κ(k) .

This definition is motivated by the fact that the standard knowledge soundness
requirement from [6] says that the extractor must run in expected time at most
the bound in the definition. Note that in any situation where P ∗ has produced c
having seen view, it is well defined whether M fails or not. Intuitively, one may
think of this as saying that ifM does not fail in a given situation, then P ∗ really
“must know” a witness for c, in order to make V accept with a probability better
than κ(k).

Definition 2. Let R be a probabilistic polynomial time relation generator, and
let a protocol (P, V), a knowledge extractor M , polynomial p() and knowledge
error function κ() be given. Consider the following experiment with input k:
R := R(1k), c := P ∗(R) (this defines view view). We define the advantage of
P ∗, Advκ,M,p(P ∗, k) as the probability that M fails on the view generated by this
experiment. This probability is taken over the random coins of R, P ∗.

Finally, for a relation R, we let, as usual, LR = {c| ∃w : (c, w) ∈ R}. We are
now ready to define computationally convincing proofs of knowledge:

A Statistically-Hiding Integer Commitment Scheme 133

Definition 3. Let R be a probabilistic polynomial time relation generator. We
say that (P, V) is a computationally convincing proof of knowledge for R, with
knowledge error κ(), failure probability ν() and time bound t(), if the following
hold:

Knowledge Completeness. The honest prover P receives R ← R(1k), pro-
duces (c, w) ∈ R, sends c to V and finally conducts the protocol with V , who
accepts with overwhelming probability in k.

Knowledge Soundness. There exists a polynomial p() and an extractor M ,
such that for all provers P ∗ running in time at most t(k), Advκ,M,p(P ∗, k) ≤
ν(k).

4 The Commitment Scheme

Based on the above model, the goal is to make a commitment scheme with
protocols to verify various claims on committed values. The basic scheme is that
the verifier V (the receiver of commitments) will run G and send descr(G) (and
more information to be described later) to the prover P (the committer).

Set-Up. V runs G(1k) and chooses a random element h ∈ G, such that ord(h)
is C(k)-rough (this can be done by raising a random element to power lG).
Now V sets g = hα, where α is randomly chosen in [0..22B+k]. V sends
descr(G), g, h to P and proves that g ∈ 〈h〉, by the standard zero-knowledge
discrete log protocol with binary challenges: in one iteration of this, V sends
a = hR for a random R ∈ [0..22B+2k]. P selects a random bit b, and V replies
with z = R + bα. P checks that hz = agb. Repeating this k times results
in a soundness error of 2−k, and the protocol is easily seen to be statistical
zero-knowledge. This is not a very efficient solution, but it only needs to be
done once and only in the set-up phase.

Commit. To commit to an integer x, P chooses r at random in [0..2B+k], sends
c = gxhr to V , and stores x, r for later use.

Open. To open a commitment, P must send x, r, µ such that c = µgxhr and
µlG = 1. An honest prover can always use µ = 1. Although this gives a dis-
honest prover extra freedom, this in no way makes the commitment scheme
weaker: the binding property still holds, as we argue below. Indeed, recalling
our comments on the root assumption, one may think of the scheme as taking
place in the quotient group G/U where U is the subgroup in G consisting of
all elements of C-smooth order. From this point of view, the opening condi-
tion simply ensures that the prover opens something representing the same
element as c in G/U (The quotient group is defined canonically so that c ≡ c̄
(mod U) iff there is a µ ∈ U such that c̄ = µc ∈ G).
As for hiding, note that P verifies initially that g ∈ 〈h〉. Hence, since r is

chosen with bit length at least k+log2(ord(h)), c is statistically close to uniform
in 〈h〉, for any value of x.

As for binding, we consider any prover P ∗ who can create c and the corre-
sponding valid distinct openings, (µ, x, r) and (µ′, x′, r′). It follows that we get

134 Ivan Damg̊ard and Eiichiro Fujisaki

µgxhr = c = µ′gx
′
hr

′
. Recall that V creates g as g = hα. Plugging this in and

raising both sides of the equation to lG, we get that hlG(α(x−x′)+(r−r′)) = 1. We
can write α = q · ord(h) + res for integers q, res with 0 ≤ res < ord(h). Then
from P ∗’s point of view, res is uniquely determined from g, whereas there is an
exponentially small amount of information on q (the only source of information
is the proof that g ∈ 〈h〉 which is statistical zero-knowledge). So P ∗’s choice of
x, x′, r, r′ is (almost) independent of q. It follows l(α(x− x′) + (r − r′)) = 0 (as
an integer) with probability exponentially small in k. Assuming this number is
indeed non-zero, ord(h) must divide M := α(x − x′) + (r − r′) (since the order
is C(k)-rough).

We can now use P ∗ to break the root assumption as follows: given input
descr(G), h ∈ G, we choose g as V would have done it, send descr(G), h, g to
P ∗ and execute in the normal way the proof that g ∈ 〈h〉. With probability
of at least 1/l(k), h will have C(k)-rough order and everything has the same
distribution as in a normal execution of the commitment scheme. Given that
P ∗ breaks the binding property as described above, this allows us (except with
negligible probability) to compute M , a multiple of the order of h. Now choose
any t that is relatively prime to M and output ht

−1 mod M and t.
Summarizing, we have:

Theorem 1. Under the root assumption, the above scheme is an unconditionally
hiding and computationally binding commitment scheme. If the root assumption
is (t(k), ε(k))-secure, then the binding property is

(
t(k), ε(k)l(k)

1−2−γk

)
-secure for some

constant γ.

5 Associated Protocols

5.1 Proving You Know How to Open

The following protocol can be used by P to show that he can open a given
commitment c = gxhr.

We will assume that x is in [−T..T] where T (> 0) is a public constant. T can
be chosen arbitrarily large, and is only used to control the size of the prover’s
random choices, this allows an honest prover to ensure that the protocol hides
the value of x, whenever −T ≤ x ≤ T . In any application of the scheme, one
simply chooses T large enough to accommodate any choice of x an honest prover
would need to make in the given scenario. The protocol guarantees an honest
verifier that −TC(k)(2k + 2) ≤ x ≤ TC(k)(2k + 2). To prove x is in some other
(smaller) interval, other techniques exist, see e.g. [4].

1. P chooses y ∈ [0..TC(k)2k[, s ∈ [0..C(k)2B+2k[at random and sends d =
gyhs to V .

2. V chooses at random e ∈ [0..C(k)[and sends to P .
3. P sends u = y + ex, v = s + er ∈ Z. V checks that guhv = dce and that

[−TC(k)..TC(k)(2k + 1)].

A Statistically-Hiding Integer Commitment Scheme 135

Define a relation generator R as follows: run G(1k) to get G, choose h ∈ H
with C(k)-rough order, set g = hα and output descr(G), g, h. Then define the
relation R = {(c, (µ, x, r))| c, b ∈ G, c = µgxhr, µlG = 1, x ∈ [−TC(k)(2k +
2)..TC(k)(2k + 2)]}.

We now analyze to what extent the protocol above satisfies our definition of
knowledge soundness, in particular for which knowledge error functions is the
definition satisfied. Accordingly, let κ() be any knowledge error function, such
that κ(k) ≥ 4/C(k) for all k. We then must define an extractor M . Let a poly-
nomial time prover P ∗ be given and let view be any view P ∗ may have after
having produced a commitment c. Now, it can be shown that since there are
C(k) different challenges, then if εview,P∗ > κ(k) ≥ 4/C(k), standard rewinding
techniques allow us to obtain in expected polynomial time a situation where, for
a given d, P ∗ has correctly answered two different values e and e′ with numbers
u, v and u′, v′, so we get gu−u′

hv−v
′
= ce−e

′
. Let Rewind be a (probabilistic) pro-

cedure that creates e, e′, u, v, u′, v′ in this way. A concrete algorithm for Rewind
is given in Appendix A. It runs in expected time 56/εview,P∗ , counting the time
to do the protocol once with P ∗ as one step1.

Assume without loss of generality that e > e′ and suppose that (e−e′) divides
both (u − u′) and (v − v′). We now see that the element µ = g

u−u′
e−e′ h

v−v′
e−e′ c−1

satisfies that µe−e
′
= 1. Since e − e′ < C(k), it follows that ord(µ) is C(k)-

smooth so that µlG = 1. So c can be correctly opened by sending (u− u′)/(e−
e′), (v − v′)/(e − e′), µ. Moreover, V ’s check on the size of u, u′ implies that
(u− u′)/(e− e′) is in the required interval. A set of values e, e′, u, u′, v, v′ is said
to be bad if e−e′ does not divide both u−u′ and v−v′. The extractorM simply
repeats calling Rewind (for this same c) until it gets a set of good values. We
will analyze knowledge soundness with thisM and the polynomial p(k) from the
definition set to the constant of 112. We start with a lemma that gives an exact
bound on the security.

Lemma 1. Let R, (P, V), κ, M and p() be as defined above. Given any prover
P ∗, there exists an algorithm A(P ∗) that solves the root problem defined by G(1k)
with probability Advκ,M,p(P∗,k)

9l(k) if k ≥ 6, and runs in time 448 · tP∗(k)/κ(k) where
tP∗(k) denotes the running time of P ∗ (1/l(k) is an lower bound on the proba-
bility that a random element in G has C(k)-rough order).

Proof. The algorithm claimed does the following: receive G, h as an input. Set
g = hα for random α ∈ [0..22B+k]. We send g, h to the adversary, call Rewind
and hope that we get get a set of bad values. However, we will only allow Rewind
to do the protocol with the prover at most 448/κ(k) times. If Rewind runs longer
than this, we abort it and stop. If we obtained a set of bad values, we attempt
to compute a root of h as described below.

1 Note that this is not completely trivial, as P ∗ is probabilistic: although its average
success probability is εview,P ∗ , it may not be equally successful for all choices of
random coins. It is essential to get the claimed expected time that εview,P ∗ > 4/C(k),
and not just > 1/C(k)

136 Ivan Damg̊ard and Eiichiro Fujisaki

It is immediately clear that this algorithm has the claimed running time.
We now look at the success probability. We will assume that h has C(k)-rough
order. Since this happens with probability of at least 1/l(k), it is enough to show
that the success probability under this assumption is at least the bound claimed
times l(k).

Note that the distribution of G, h, g that P ∗ receives here is exactly the same
as in the real commitment scheme. Hence the probability of producing a view
for whichM fails, is exactly Advκ,M,p(P ∗, k). Note also that given any view view
where M fails, it must be the case that the values produced by Rewind are bad
with probability of at least 1/2. If this was not the case, then M could expect
to find a way to open c after calling Rewind twice, which takes expected time
112/εview,P∗ ≤ p(k)/(εview,P∗ − κ(k)) so this would contradict the fact that M
fails on view. So let E be the event thatM fails on view and Rewind has returned
a set of bad values. We now make the following
Claim: Given that E occurs, we can solve the root problem with probability of
at least 1/2− 2−k.
To see this, recall that Rewind returns e, e′, u, u′, v, v′ such that gu−u′

hv−v
′
=

ce−e
′
, and we have that e− e′ does not divide both u− u′ and v− v′. If we plug

in that g = hα, we get
hα(u−u′)+v−v′

= ce−e
′

We then split in two cases:

Case 1: e− e′ does not divide α(u− u′) + (v − v′).
In this case, let β = gcd(e − e′, α(u − u′) + (v − v′)) (where by assumption
β < e− e′ ≤ C(k)). Choose γ, δ such that

γ(e− e′) + δ(α(u− u′) + (v − v′)) = β

We then get that

hβ = hγ(e−e′)+δ(α(u−u′)+(v−v′)) = (hγcδ)e−e
′
.

If we set µ̃ = (hγcδ)(e−e
′)/βh−1, it is clear that µ̃β = 1, so since β < C(k),

ord(µ̃) is C(k)-smooth so that µ̃lG = 1. Furthermore

hµ̃ = (hγcδ)(e−e
′)/β

So in this case, we may output hγcδ, (e− e′)/β, µ̃, which is a solution to the
root problem as we defined it earlier.

Case 2: e− e′ divides α(u− u′) + (v − v′).
Note that even in this case, we still have that e−e′ does not divide both u−u′

and v− v′. The goal will be to show that since the adversary does not know
full information about our choice of α, this case happens with probability at
most (1/2 − 2−k), given that E occurs. Hence the previous case where we
could solve the root problem happens with large probability, given E. Let q
be some prime factor in e− e′ such that qj is the maximal q-power dividing
e − e′, and at least one of u − u′, v − v′ are non-zero modulo qj (such a q

A Statistically-Hiding Integer Commitment Scheme 137

must exist since e− e′ does not divide both of u− u′, v− v′). Note that if qj

divides u−u′, it would have to divide v−v′ as well, which is a contradiction.
So u − u′ �= 0 mod qj . We can then write α = y + z · ord(h), where y =
α mod ord(h). Note that g represents all information the adversary has about
α and y is uniquely determined from g, whereas z is completely unknown.
Now, if indeed qj divides α(u− u′) + (v − v′), we have

α(u− u′) + (v − v′) = z(u− u′)ord(h) + y(u− u′) + (v − v′) = 0 mod qj

Note that since q < C(k) we have ord(h) �= 0 mod q. Now, from the adver-
sary’s point of view, z is chosen uniformly among at least 2B+k values, and
must satisfy the above equation in order for the bad case to occur. The num-
ber of solutions modulo qj of this equation is at most gcd((u−u′)ord(h), qj).
This number is a power of q, but is at most qj−1. Then, since 2B+k is larger
than qj by a factor of at least 2k, it follows that the distribution of z mod qj

is statistically close to uniform in Z/qjZ. In fact, the probability that z sat-
isfies the equation is at most 1/q − 2−k ≤ 1/2− 2−k. The claim above now
follows.

Summarizing, we therefore have that for every view view where M fails,
running Rewind will fail to solve the root problem with probability at most
1 − (1/2 − 2−k)/2 = 3/4 + 2−k−1. The expected number of executions of P ∗

needed to run rewind is at most 56/εview,P∗ ≤ 56/κ(k). Thus Rewind is allowed
to run for at least 8 times its expected running time, and so by the Markov rule
it will run for longer with probability at most 1/8. Since the probability that
view is bad in the first place is Advκ,M,p(P ∗, k), the success probability of A(P ∗)
is Advκ,M,p(P ∗, k)(1 − 1/8 − 3/4 − 2−k−1) ≥ Advκ,M,p(P ∗, k)/9 if k ≥ 6. This
finishes the proof.

Next we have:

Theorem 2. If the root assumption is (t′(k), ε(k))-secure, the above protocol is a
computationally convincing proof of knowledge for R with knowledge error κ(k),
time bound t(k) and failure probability ν(k), where ν(k) = 9ε(k)l(k), t(k) <
t′(k)/448 and κ(k) = max(4/C(k), 448t(k)/t′(k)). If −T ≤ x ≤ T (as it will
be when the prover is honest), the protocol is honest verifier statistical zero-
knowledge.

Remark 1. There are a number of known techniques by which a protocol that
is zero-knowledge in general can be constructed from an honest verifier zero-
knowledge protocol.

Remark 2. Note that a prover playing against the commitment scheme as defined
above will see both the public key pk and a zero-knowledge proof from V that
pk was correctly chosen, whereas a prover in the proof of knowledge definition
only sees the public key. This makes no difference, however, since the proof is
statistical zero-knowledge and could always be simulated.

138 Ivan Damg̊ard and Eiichiro Fujisaki

Proof. Completeness of this protocol is clear. It is honest verifier statistical
zero-knowledge: to simulate we can choose at random u ∈ [0..TC(k)2k[, v ∈
[0..C(k)2B+2k[, e ∈ [0..C(k)[and set d = guhv. The rest follows immediately
from the preceeding lemma.

5.2 A Multiplication Protocol

Using techniques similar to those above, we can also get a protocol for proving
that three given commitments c1, c2, c3 contain numbers x1, x2, x3 such that x3 =
x1x2. We assume that ci = gxihri , and as before that the xi’s are numerically
smaller than T . Note that then we have c3 = cx2

1 h
r3−x2r1 , i.e., using c1 as the

“base element” for the commitment c3, it will contain the same value as does c2
using g as base. So if the prover can convince us of this and also that he can open
c1, it will follow that x3 = x1x2. This is the idea behind the protocol below:

1. P chooses at random y1, y ∈ [0..C(k)T2k[, s1, s2 ∈ [0..C(k)2B+2k[, s3 ∈
[0..C(k)T2B+2k[and sends d1 = gy1hs1 , d2 = gyhs2 , d3 = cy1h

s3 to V .
2. V chooses at random e between 0 and C(k) and sends to P .
3. P sends u1 = y1 + ex1, u = y + ex2, v1 = s1 + er1, v2 = s2 + er2 and
v3 = s3 + e(r3 − x2r1). V checks that gu1hv1 = d1c

e
1, g

uhv2 = d2c
e
2, and

cu1h
v3 = d3c

e
3.

Define a relation generator Rmult as follows: run G(1k) to get G, choose
h ∈ G with C(k)-rough order, set g = hα and output descr(G), g, h. Then define
the relation Rmult = {((c1, c2, c3), (x1, r1, b1, x2, r2, b2, x3, r3, b3)) | ci, bi ∈ G,
ci = µig

xihri , µli = 1, i = 1, 2, 3}. This leads to:
Theorem 3. If the root assumption is (t′(k), ε(k))-secure, the above protocol
is a computationally convincing proof of knowledge for R with knowledge error
κ(k), time bound t(k) and failure probability ν(k), where ν(k) = 9ε(k)l(k), t(k) <
t′(k)/448 and κ(k) = max(4/C(k), 448t(k)/t′(k)). If −T ≤ x1, x2, x3 ≤ T (as
they will be when the prover is honest), the protocol is honest verifier statistical
zero-knowledge.

For the space limitation, we omit the proof, which can be easily derived from
the proof of Theorem 2.

6 What Is the Major Difference from the Earlier Proof
in [14]?

For completeness, we briefly indicate here what is mainly different from the
earlier work [14] in terms of the proof of soundness. As mentioned above, the
main gap we fill here does not appear in the proofs in related works [8,3,10,4].
This is because the gap only appears in the proofs for protocols associated with
commitment using plural bases (i.e., c = gshr such as in [14]).

These protocols suggested in [14] are very similar to the ones we suggest here,
in particular they have the same 3-move form, with a challenge e from the verifier

A Statistically-Hiding Integer Commitment Scheme 139

as the second message. So [14] uses a rewinding argument as we do here, to obtain
correct answers from the prover to challenges e, e′. However, a problem occurs in
the last part of the proof, which corresponds to the last case in our analysis, that
is, Case 2: “(e−e′) divides α(u−u′)+(v−v′)”. Translated into our notation, we
have now (e− e′), u− u′, and v − v′ such that hα(u−u′)+(v−v′) = ce−e

′
. If e− e′

divides both of (u− u′) and (v− v′), we are essentially done since we then have
c = µg(u−u′)/(e−e′)h(v−v′)/(e−e′) where µe−e

′
= 1. In the earlier work [14], it is

claimed that the adversary can make Case 2 occur only with negligible probability
unless e− e′ divides both of (u−u′) and (v− v′), because he doesn’t have enough
information about α, where g = hα. However, if e − e′ is a small number, then
this case may in fact happen with significant probability, even without e − e′
dividing both u−u′ and v−v′. This problem was not taken into account in [14].
Later in the full paper version of [14], it was shown that when the knowledge
extractor rewinds P ∗ and makes him output e, e′, it only happens with negligible
probability that e− e′ is small, see [15]. However, even if e− e′ is large, there is
still a problem: if e − e′ has a small prime factor p, there may be a significant
probability that p divides α(u − u′) + (v − v′) whereas it does not divide both
u− u′ and v − v′. The additional idea we provide here essentially fills this gap,
and indeed seems necessary for this type of proof to go through.

As for [8,3,10,4], what corresponds to Case 2 is the event “(e − e′) divides
(u− u′)”; there is no gap to go to c = µg(u−u′)/(e−e′), where µe−e

′
= 1. Hence,

the related works above do not suffer from the problem we need to consider.

7 Applying the Scheme in Class Groups and Beyond

We do not give any detailed introduction to class groups here – or more precisely,
class groups of quadratic number fields. It is enough to know, that each such
group is defined by a single number, the discriminant ∆. Given this number,
one can choose elements in the group and compute the group and inversion
operations. Finding the order of the class group (the class number) from ∆
appears to be a hard problem, and is at least as hard as factoring ∆ (if ∆ is
composite). Therefore, root extraction also appears to be a hard problem, and
it seems reasonable to conjecture that if ∆ is chosen randomly from a large set
of values, then the class number will contain large and random prime factors,
and will not have a very large factor consisting of only small primes. Various
heuristics (but no proofs) supporting this are known. All of this together makes
it a reasonable conjecture that class groups constructed from large, random
discriminants would satisfy the assumptions we made in the beginning, for some
appropriate choice of C(k)2.

There is one difficulty, however: we have assumed that G can be generated
such that lG, the order of the subgroup U of C(k)-smooth elements is known.
Unfortunately, there is no known way to do this for class groups.

2 There are some heuristics known that describe how the factorization of a class num-
ber can be expected to behave, C(k) should be chosen with this in mind.

140 Ivan Damg̊ard and Eiichiro Fujisaki

One way to solve this is to observe that we have only used lG in order to
verify membership in U . So we can do the following: assume we can choose C(k)
and l(k) such that C(k) > l(k) and (as usual) such that l(k) is a polynomial and
the order of U is less than l(k). Now we replace lG in all descriptions and proofs
by l(k)!. This works because l(k)! is guaranteed to be a multiple of lG and all
its prime factors are at most l(k), and so are less than C(k).

Another possibility is to rely on an additional intractability assumption,
namely that given descr(G), it is hard to find a non-trivial element in U . This
seems to be a reasonable assumption in many settings: indeed U is an extremely
small subgroup, so a random choice will succeed with negligible probability.
Moreover, in the case of class groups with a composite discriminant, finding an
element of order 2 is equivalent to factoring the discriminant. With this assump-
tion, all the cases where we needed to know lG occur with negligible probability,
and can be ignored.

References

1. F. Bao: An efficient verifiable encryption scheme for encryption of discrete loga-
rithm, In CARDIS’98, LNCS 1820, pp.213–220, 2000.

2. N. Baric and B. Pfitzmann: Collision-Free Accumulators and Fail-Stop Signature
Schemes Without Trees, In EUROCRYPT’97, LNCS 1233, pp.480–494, 1997.

3. F. Boudot and J. Traoré. Efficient publicly verifiable secret sharing schemes with
fast or delayed recovery. In 2nd ICICS, LNCS 1726, pp.87–102. 1999.

4. F. Boudot: Efficient Proof that a Committed Number Lies in an Interval, In Euro-
crypt LNCS 1807, Springer, 2000.

5. Boudot: presentation at the rump session of Eurocrypt 2000.
6. M. Bellare and O. Goldreich: Defining proofs of knowledge, In Crypto 92.
7. R. Cramer and I. Damg̊ard: Zero-Knowledge Proofs for Finite Field Arithmetic or:
Can Zero-Knowledge be for Free?, In Crypto 98, LNCS 1462, 1998.

8. A. Chan, Y. Frankel and Y. Tsiounis: Easy Come - Easy Go Divisible Cash, In
EUROCRYPT’98, pp.561–575 LNCS 1403, 1998.

9. J. Camenisch and M. Michels: Proving in Zero-Knowledge that a Number Is the
Product of Two Safe Primes, In Eurocrypt’99 pp.107–122 LNCS 1592, 1999.

10. J. Camenisch and M. Michels: Separability and Efficiency for Generic Group Sig-
nature Schemes, In CRYPTO’99 pp.413–430, LNCS 1666, 1999.

11. J. Camenisch and M. Michels: Proving in Zero-Knowledge that a Number Is the
Product of Two Safe Primes, Tech. Report RS-98-29, BRICS, 1999.

12. I. Damård: Practical and Provably Secure release of a Secret and Exchange of
Signatures, J.Cryptology, vol. 8, pp.201-222, 1995.

13. E. Fujisaki: A simple Approach to Secretly Sharing a Factoring Witness in a
Publically-Verifiable Manner, IEICE Trans. Fund., E85-A, vol.5, May 2002.

14. E. Fujisaki and T. Okamoto: Statistical Zero-Knowledge Protocols to prove Modular
Polynomial Relations, In Crypto 97, LNCS 1294, 1997.

15. E. Fujisaki and T. Okamoto: Statistical Zero-Knowledge Protocols to Prove Modular
Polynomial Relations, in IEICE Trans. Fund., E82-A, vol.1 pp. 81–92, Jan. 1999.

16. Goldwasser, Micali and Rackoff: The knowledge complexity of interactive proof sys-
tems, SIAM J.Computing, vol. 18, pp.186-208, 1989.

A Statistically-Hiding Integer Commitment Scheme 141

17. T. Pedersen: Non-Interactive and Information Theoretic Secure Verifiable Secret
Sharing, In Crypto 91, LNCS 576, pp. 129–140.

18. P. Paillier:Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes, In Eurocrypt’99, LNCS 1592, pp. 223–238, 1999.

19. T. Okamoto and S. Uchiyama: A New Public-Key Cryptosystem as Secure as Fac-
toring In Eurocrypt 98, LNCS 1403, 1998.

A The Rewind Procedure

We are given a prover P ∗ who sends a message d, receives a challenge chosen
randomly among C possibilities, and returns an answer z that may or may not
be correct. We are given that the probability of a correct answer taken over P ∗

coins and the choice of e is at least ε > 4/C. We want to find correct answers to
two different e-values for a given d as efficiently as possible.

Of course, the idea is to run the prover, and use rewinding to try to make
him answer two different challenges correctly. But to run him, we need to supply
random coins. Although we know that the average success probability is ε, we do
not know that P ∗ is equally successful with any random input. To get a better
view of this, let H be a matrix with a row for each possible set of random coins
for P ∗, and one column for each possible challenge value. Write 1 in an entry if
P ∗ answers correctly with the corresponding random choices and challenge, and
0 otherwise. Using P ∗ as black-box, we can probe any entry we want in H, and
our goal can be rephrased to: find two 1’s in the same row. What we know is
that the ε equals the fraction of 1-entries in H.

It is now apparent that we cannot just search for a 1-entry and then keep
looking for another 1 in the same row: if we stumbled across the only 1 in that
row, we will never finish. Consider instead the following algorithm Alg:
1. Probe random entries in H until a 1 is found.
2. Then start the following two processes in parallel, and stop when either one

stops:
Pr1. Probe random entries in the row in which we found a 1 before, until

another 1-entry is found.
Pr2. Repeatedly flip a coin that comes out heads with probability ε/w, for

some constant integer w (we show how to choose w later), until you get
heads. This can be done by probing a random entry in H and choosing
a random number among 1, 2, ..., w - you output heads if the entry was
a 1 and the number was 1.

This algorithm runs in expected time at most w/ε, recall that we count access
to P ∗ as one step. Define a row to be heavy if it contains a fraction of at least
ε/2 1’s. By a simple counting argument, you can see that at least half of the 1’s
are located in heavy rows. Given that Pr1 runs in a heavy row, the probability
that a probe will succeed is at least Cε/2−1

C so the expected number of probes
it makes is T (ε) = C/(Cε/2 − 1). If ε ≥ 4/C, then T (ε) ≤ 2/ε. Moreover, the
probability that Pr1 runs for more time than 2T (ε) is at most 1/2. Assume we
choose w large enough, so that Pr2 finishes later than 2T (ε) with probability
of at least 1/2. It is straightforward to see that w = 7 is sufficient. Then, given

142 Ivan Damg̊ard and Eiichiro Fujisaki

that the row we use is heavy, we have probability of at least 1/4 of success, and
hence overall probability 1/8.

Therefore, our Rewind procedure simply repeats Alg until there is success,
the expected number of times it will have to do so is 8, and hence the expected
total time is 56/ε.

B Further Extensions

There are many possible variants or extensions with some differences: For ex-
ample, when T0 < |x| is public, we can reduce the computational amount for
the protocol by using T − T0 instead of T . In the rest of this section, we briefly
mention to extensions, though not many due to the space limitation, to non-
Abelian groups and verifiable encryptions, where we think the latter might not
be so trivial.

For non-Abelian group G, we can get a similar result if the assumptions are
modified as follows: (1) there is a element h in G such that its order is C-rough
whereas lG � [G : 〈h〉] is C-smooth, and (2) given descr(G) and random Y ∈ G, it
is difficult to find e > 1, X ∈ G such that Y = µ1X

eµ2 and µlG1 = µlG2 = 1. Define
commitpk(s, r) = gshr for g ∈ 〈h〉, but allow the committer to send (s′, r′) when
opening commitment c so long as (gs

′
hr

′
/c)lG = 1. The proofs above similarly

goes through considering lG-th power of any element in G belongs to 〈h〉.
To make verifiable encryption, we use the Okamoto-Uchiyama encryption [19].

Suppose that p, q are primes such that (p− 1)/2, (q − 1)/2 are C-rough. Define
QR(X) � {x ∈ Z | ∃y ∈ Z s.t. y2 = x (mod X)}. Let H = QR(n) ⊂ G =
QR(q) ⊂ (Z/nZ)× where n = p2q. Since (xn) = (xp)

2(xq), one can efficiently check
that x belongs to G by computing the Jacobian symbols over n. Then g, h are
chosen as follows: Pick up at random h0 ∈ H such that p|ord(h). Set g = hα0
and h = hn0 . We have lG = 4. The commitment c = gxhr (0 < x < p) is not
statistical hiding but one can still think of it as computational hiding (so long as
the OU encryption is semantically secure). The associated protocols above can
be applied to this new commitment without any modification, which makes this
verifiable. Actually in this case, the verifier can be convinced that the commit-
ter can only open commitments that belong to H (because if the committer can
show any non-trivial µ such that µ4 = 1, he can factor n).

An application of this verifiable encryption appears in [13]. A “light” version
of this verifiable encryption, using c = gs mod n, appears in [1].

	1 Introduction
	1.1 Statistically-Hiding Commitment and Associated Protocols
	1.2 The Earlier Scheme with Statistically-Hiding Commitment
	1.3 Other Related Works
	1.4 Our Scheme

	2 Model
	3 Some Definitions
	4 The Commitment Scheme
	5 Associated Protocols
	5.1 Proving You Know How to Open
	5.2 A Multiplication Protocol

	6 What Is the Major Difference from the Earlier Proof in [14]?
	7 Applying the Scheme in Class Groups and Beyond
	References
	A The Rewind Procedure
	B Further Extensions

