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Abstract 
Recent advances in DNA analysis, 

global climate modeling and computational 
fluid dynamics have increased the demand for 
supercomputing resources.  Through increasing 
the efficiency and throughput of existing 
supercomputing centers, additional 
computational power can be provided for these 
applications.  Backfill has been shown to 
increase the efficiency of supercomputer 
schedulers for large, homogenous machines[3].  
Utilizations can still be as low as 60% for 
machines with heterogeneous resources and 
strict administrative requirements.  Preemption 
based backfill allows the scheduler to be more 
aggressive in filling up the schedule for a 
supercomputer[2].  Utilization can be increased 
and administrative requirements relaxed if it is 
possible to preempt a running job to allow a 
higher priority task to run. 

 

1 Introduction 
The last few years have witnessed an 

explosion in supercomputing applications.  
Biologists, who have traditionally performed 
most of their analysis by hand, are now able to 
analyze the complete human genome.  
Although this information promises to 
revolutionize the way research is performed in 
several disciplines, the corresponding 
computational requirements are increasing at a 
rate that surpasses funding increases for 
supercomputing resources.   

The supercomputing infrastructure 
landscape is also changing rapidly in response 

to the demand for computational resources.  
Many researchers are creating clusters of 
workstations to run computationally intense 
workloads.  These clusters often grow at an 
incremental rate with additional machines 
being added to the cluster as new funding for 
research is received.  Additions to existing 
clusters often have different memory 
capabilities and may have licenses that allow 
software to run on only a subset of the 
processors in the cluster.  These additions 
invariably cause the cluster to become more 
heterogeneous.  This complicates the job of a 
scheduler since tasks that require a certain set 
of resources may only be schedulable on a 
small subset of the nodes in the system. 

Another cause of heterogeneity arises 
due to administrative policies.  As new 
infrastructure is purchased by a particular 
organization, the organization may impose 
scheduling policies intended to insure that their 
community has priority access to the resources.  
Other users are normally welcome to use the 
nodes if they are available, but should not delay 
the execution of users in the community.  These 
administrative policies cause a normal 
scheduler to be overly conservative in 
scheduling low priority jobs and computational 
resources will often be wasted in order to 
insure the priority of community tasks. 

1.1 Backfill 
Backfill is performed when the highest priority 
job requires more resources than are currently 
available on the supercomputer.  A lower 
priority task that is guaranteed to complete 
before the anticipated initiation time of a high 



priority job is allowed to run. Since these 
resources are not usable by the highest priority 
job, throughput and efficiency are increased on 
the machine.  In some cases, there will be no 
lower priority task that will fit in the idle time 
slot.  In this case, processing time will be 
wasted in order to guarantee that the high 
priority task will run as soon as possible. 

Preemptive backfill allows the 
scheduler to start lower priority jobs even if 
they are not assured of completion before 
higher priority users require the resource.  In 
the majority of cases, the low priority task will 
finish and have no impact on the high priority 
schedule.  If the low priority job takes longer 
than the available idle slot, it will be preempted 
by suspending it or killing it.  This research 
addresses the following questions with respect 
to preemptive backfill: 

• Which jobs are the best candidates for 
preemptive backfill?  Users normally 
provide an estimate of execution time 
when they submit a job.  If this time 
limit is exceeded, the job is killed.  As a 
result, users often submit estimates that 
are far greater than the real time used by 
a task.  By looking at the accuracy of 
past estimates, the scheduler is able to 
select tasks for preemptive backfill that 
have the highest probability of 
completion in the allotted time. 

• Which preemption policies provide the 
best utilization and throughput on the 
machine?  Many supercomputer 
operating systems do not provide the 
ability to suspend a parallel task.  This 
is due to the fact that all threads and 
spawned processes must be suspended 
along with the main task.  The operating 
system must also implement security 
measures so that a running task does not 
have access to data and files used by 
suspended jobs.  When a job must be 
preempted, all of the progress that the 
job has made toward completion will be 
lost.  This is the main downside of 

preemption-based backfill.  In order to 
minimize this negative effect, 
appropriate policies must be adopted.  
Possible  policies for determining which 
jobs to preempt include: 

o Most Recently Started 
o Furthest From Wall Clock Limit 
o Furthest From Historical 

Information Scaled Wall Clock 
Limit 

o Minimum Work Completed 
 
Supercomputer schedulers that do not 

perform backfill are typically limited to 
significantly lower utilization and throughput 
than classical backfill systems, but priority jobs 
are guaranteed to run as soon as resources are 
available.  Classical backfill improves the 
efficiency of the machine by filling idle time 
with lower priority tasks, but without 
preemption, high priority jobs may be delayed.  
Preemption based backfill provides for high 
utilization, while guaranteeing that 
prioritization is preserved.  

 

2 Background 
Several different backfill strategies have 

been employed in the past to improve 
utilization in supercomputing systems.  This 
section outlines important concepts and 
existing strategies for improving 
supercomputer utilization. 

When a user submits a job, several 
attributes are included with the submission.  
These attributes include: 

• Resources required– This includes 
memory, network and software licenses. 

• Number of Processors – The job will 
not be scheduled until this number of 
processors is available.  These 
processors may be scheduled in a 
contiguous block, or may be distributed 
across the machine.  Some submission 
systems may allow the user to specify 
that processors should be allocated in 



groups that share the same memory. 
• Wallclock Time Limit – After the job 

has been running for this amount of 
time, the job will be killed.  Users will 
often overestimate this parameter.  The 
IBM SP2 at the Cornell Theory Center 
was examined in prior research.  Of the 
jobs submitted, 38% used less than 4% 
of their wall clock limit.  Less than 5% 
of the jobs used 40% of the wall clock 
limit [4]. 

2.1 Non-backfill 
All of the jobs that are submitted will be 

accounted for in a scheduling queue.  The 
scheduler prioritizes jobs in the queue 
according to several different policies.  Jobs 
that are associated with certain users and 
projects may be given higher priority.  As jobs 
wait in the queue, their priority will normally 
increase so that indefinite postponement is 
avoided.  When a job completes, the scheduler 
will attempt to start the highest priority job in 
the queue.  If resources are not available for 
this job, processors may remain idle waiting for 
another job to complete that will allow the 
highest priority job to run.  Figure 1 shows this 
wasted processing power with Non-backfill 
scheduling. 
 

2.2 Classical Backfill 
With classical backfill, the scheduler 

may attempt to backfill jobs with lower priority 

into this wasted processor space.  If the 
backfilled jobs can complete before Job 1 
completes, then Job 2 will not be delayed.  
Classical backfill will only select jobs with a 
wallclock time estimate such that the backfilled 
job will complete before the end time of Job 1.  
There may be many jobs that will actually 
complete in this time, but none of them will be 
scheduled into this time if the user estimate is 
longer than the available space.  This 
conservative backfill policy causes lower 
utilization.  If preemption is allowed, the 
scheduler can run jobs that have a high priority 
of completing before Job 1 completes.  If Job 1 
completes early, the scheduler can preempt 
these backfilled jobs and run Job 2, increasing 
the overall efficiency of the machine. 

Even when no jobs are backfilled that 
have wallclock estimates greater than available 
time, backfill can cause high priority jobs to be 
delayed longer than they would have been on a 
non-backfill system.  Figure 2 shows a 
Classical backfill schedule with wallclock 
estimates and actual runtimes.  When a High 
priority job completes early, jobs that have 
been backfilled may prevent the next high 
priority job from running.  This increases the 
expansion factor for these jobs.  Expansion 
factor is defined as the total time from 
submission to completion, divided by the actual 
runtime of a job.  Administrators can disallow 
backfilled jobs on their resources in order to 
eliminate this expansion in the runtime for their 
high priority jobs. 
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2.3 Preemptive Backfill 
The wasted processors in Figure 2 are 

present because there were no jobs in the queue 
that matched the available resources.  
Preemptive backfill will run jobs in these slots 
that have a high probability of completion in 
the available time, even if their wallclock 
estimate exceeds the backfill space.  Figure 3 
shows the same set of tasks with preemptive 
backfill.  The expansion factor for high priority 
jobs is minimized because backfilled jobs are 
preempted when resources become available 
for the next high priority job.  Efficiency is 
higher because backfill slots can be filled, even 
if no job exists in the queue with small enough 
resource requirements. 

 

2.4 Gang Scheduling 
 
 Gang Scheduling provides some of the 

same advantages as preemptive backfill.  With 
Gang Scheduling, all of the processes 
associated with a task are suspended 
periodically so that more than one task can be 
time sliced on the same set of processors.  A 
lower priority job can be backfilled into a slot 
using gang scheduling and if resources become 
available to let a higher priority job run, the 
backfilled job can be preempted by the higher 

priority job and may only run when the high 
priority job completes.   

Several problems arise with gang 
scheduling.  

• Migration - It may be better to run the 
backfilled job in some other processor 
space than to wait for the high priority 
task to complete.  Some Gang 
Scheduling systems allow jobs to 
migrate to processors where they can 
complete more quickly, but since data 
files and memory must be migrated 
with the process, migration can lead to 
inefficiency in supercomputing systems 
[6]. 

• Memory Contention – Many 
supercomputing applications require 
large amounts of memory.  When time 
slicing occurs, the caches and memory 
may have to be swapped out to disk, 
causing significant performance 
degradation [1]. 

• Security – As mentioned previously, 
each job must be isolated from the file 
space and environment of other tasks.  
This is difficult to implement when 
more than one job is being time-sliced 
on a machine.  This occurs because in a 
meta-scheduling environment, each user 
may not have a separate account. 

• Availability – Gang scheduling is not 
available on many operating systems.  
Even when it is available, preemptive 
backfill may provide higher 
performance for many applications. 
 

3  Preemptive Backfill 
This research was performed using the 

Maui Scheduler [5,7].  The Maui Scheduler is 
used in many supercomputing sites throughout 
the world and provides for a simulation mode 
as well as production mode.  Extensive trace 
data is available from production runs of large 
jobs over a long period of time.  This trace data 
is used to evaluate different options for 
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preemptive scheduling. 

3.1 Preemption 
Several forms of preemption are 

possible.  The form used is dependent on 
operating system functionality.  For this 
research we assume the minimal functionality 
of being able to kill a job and all of its spawned 
processes.  Several other forms may be 
available depending on the operating system 
used: 

• stop/restart – All supercomputer 
operating systems provide functionality 
to stop a parallel job and to start it over 
again at a later time.  All preliminary 
results are lost and the task must be able 
to remove any changes that have been 
made to input files so that the second 
invocation of the task will have exactly 
the same environment as the first.  Once 
the job has been stopped, it will return 
to the queue and backfilled onto another 
set of processors or run as a priority job 
when it reaches the head of the queue.  
Any partial results will be lost and any 
time spent running a job that is stopped 
is wasted. 

• suspend/resume – Many operating 
systems provide functionality that 
allows a task to be suspended and then 
resumed at a later time.  All of the 
processes associated with this task are 
made non-runnable, but they retain 
process state and any file system 
changes remain in place so that the job 
can continue when it is resumed.  The 
operating system must insure that jobs 
do not have access to each others files 
and memory will need to be transferred 
to a swap file before the new task can 
start.  This may cause some additional 
delay in the start time of the high 
priority task when compared to 
stop/restart.  When the job is resumed, 
it must run on the same set of 
processors that is was suspended on.  

This may cause a large expansion factor 
for jobs that are backfilled in this way. 

• checkpoint/restart – Many applications 
perform checkpoint operations to save 
their intermediate state.  Once a 
checkpoint is performed, the job can be 
terminated and restarted with the same 
state present when the checkpoint was 
performed.  This preemption form has 
an advantage over suspend/resume 
since the task can be migrated to 
another set of processors for continued 
execution after preemption.  It also has 
an advantage over stop/restart since 
intermediate computations performed 
before preemption are not wasted. The 
principle disadvantage of this option 
lies in the fact that in most operating 
systems, the application itself must 
perform checkpoints.  Most operating 
systems do not support checkpointing 
because it is  difficult for an operating 
system to determine which parts of the 
memory space should be saved in order 
to restart effectively. 

  
Many parallel processing systems do not 
have support for suspend/resume or 
checkpoint/restart.  The results presented in 
this paper are all based on stop/restart 
program semantics.  If additional 
functionality is available, preemption 
becomes even more advantageous in 
scheduling resources. 

     

3.2 Backfill Options 
Several factors must be considered in 

determining the implementation of a 
preemptive backfill scheduler.  The user and 
system administrator have different goals in 
mind, and these goals must all be addressed in 
order to provide optimal service.  Three distinct 
goals must be considered: 

• Priority scheduling Goal:  The 
scheduler should run the most important 



job (based on value of job) first.  In 
many cases one organization will own 
computing resources, but will be willing 
to have other jobs serviced if the 
resources are idle.  When a high priority 
job is submitted, it should be given 
preferential treatment, or the owner of 
the resource will not be willing to allow 
lower priority jobs to run at all. 

• Backfill scheduling Goal:  The 
scheduler should run the greatest 
aggregate sum of jobs with the greatest 
likelihood of successful completion. 
(based on the value of the job, 
probability of successful completion).  
This goal translates into high utilization 
from the system administrator’s 
perspective.  Possible priorities for this 
goal include: 

o Backfill jobs using the most 
resources first 

o Backfill the jobs that are most 
likely to complete first 

o Backfill highest priority jobs 
first.  High priority jobs may not 
be candidates for backfill since 
they may be preempted if an 
existing job finishes early, or the 
predicted completion time is 
inaccurate. 

• Job Preemption Goal:  The scheduler 
should stop the minimum set of jobs 
required to allow priority jobs to run 
immediately (based on the value of 
jobs, probability of successful 
completion and the value of the 

completed work). 
   
Experiments performed in this research 

indicate that preemptive backfill provides lower 
delay for users and higher utilization for system 
administrators.  By giving more weight to each 
of the backfill goals, the scheduling algorithm 
can favor the goal that is most important to the 
user community.   

 

4 Experimental Results 

Several Experiments were performed to 
determine the impact of preemptive backfill on 
system performance.  These experiments were 
performed on the Maui Scheduler[5] with job 
trace files from the Center for High 
Performance Computing at the University of 
Utah.  The trace files included 11,445 jobs 
ranging from 1 to 32 processors, lasting up to 
68 hours.  Figure 4 shows the job mix present 
in the trace.  There are a large number of jobs 
requiring less than 8 processors, providing a 
large opportunity for backfill.  Figure 5 shows 
the percentage of processor hours used in each 
job classification.  Although there are a large 
number of jobs with small numbers of 
processors and a short duration, they account 
for a small percentage of the overall runtime on 
the machine.  Jobs with duration of more than 
17 hours and more than 8 processors dominate 
in this area.  Any preemptive backfill scheme 
should not hurt the performance of these jobs. 
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Figure 4: Job Characterization of trace data.  Many of the jobs are in the 8 processor range and can be backfilled 
effectively. 
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4.1 Non-prioritized Schedule 
Analysis 
Several experiments were run to 

determine the impact of preemption on the 
performance of jobs in the trace when no 
priority was used.  The scheduling algorithm 
was changed so that jobs could be backfilled 
even if their wallclock estimate of completion 
time was after the start time of the next normal 
job.  When a scheduling iteration occurs and 
backfilled jobs are preventing normal jobs from 
running, a set of the backfilled jobs will be 
preempted or terminated (under the current 
model where restart is not available. 

Metrics used in evaluating the 
algorithms were Queue Time and Expansion 
factor.  An effective preemptive backfill 
algorithm will decrease idle time for processors 
since jobs with a wallclock estimate precluding 
them from backfill under normal circumstances 
can be scheduled if they can be preempted 
when a higher priority job must be run.  It is 
expected that queue time will be reduced with 
preemptive backfill.  Expansion factor 

considers the percentage of additional time that 
a job has to wait because of queuing delay 
(Xfactor=[QueueTime+RunTime]/RunTime).  
A job with a 5 minute run time that is queued 
for 100 minutes will notice the delay much 
more than a job with a 1000 minute run time 
and the same delay.  The expansion factor for 
the 5 minute job would be 21, where the 
expansion factor for the 1000 minute job would 
be 1.1.  Optimal expansion factors are close to 
1. 

Figure 6 shows expansion factor results 
for several algorithms that were used to select 
which jobs to preempt.  In one case a random 
set of jobs were selected to preempt.  This will 
often result in a job being terminated when it is 
nearly complete.  The random plot is presented 
to show the worst case behavior of a naïve 
algorithm.  The First Fit plot shows the 
behavior of the normal backfill algorithm 
without preemption.  Notice that the random 
algorithm behavior has significantly higher 
Expansion factor and queue time than the non-
preemption firstfit algorithm.   

Figure 6: Expansion factor for several preemption strategies.  Intelligent preemption backfill strategies 
outperform random strategies and in most cases also perform better than First Fit without preemption. 
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The duration-consumed algorithm 
selects a set of jobs to preempt that have been 
running for the shortest length of time.  This 
strategy attempts to waste the minimum 
number of node-hours in the preemption.  The 
duration-remaining plot results from 
preempting the jobs that have the most time left 
to run.  By preempting these jobs, the scheduler 
will free up larger slots of time for each job 
preempted, and may be able to preempt a 
smaller number of jobs. 

Each job has a Wall Clock prediction of 
execution time that is an estimate provided by 
the user.  When this Wall Clock time expires, 
the job will be terminated.  As a result, users 
tend to overestimate the time for their jobs, but 
the estimates can still provide information as to 
which jobs to preempt.  The wcduration plot 

represents results from preempting the job with 
the longest estimate of duration and the 
wcduration-percentresusage plot shows the 
results of preempting the job using the largest 
percentage of resources on the machine. 

The strategies resulting in the best 
expansion factor are duration-remaining and 
duration-consumed.  These strategies 
consistently outperform First Fit.  Similar 
results can be observed in queue time analysis. 

Figure 7 shows the average queue times 
for each of the strategies.  The average queue 
time for all of the preemption strategies is less 
than the First Fit non-preemption scheduling 
algorithm.  It is difficult to select a clear 
winner, but duration-remaining and duration-
consumed both achieve good performance. 
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Figure 7: Average queue time for each of the preemption strategies.  All of the strategies achieve lower queue times 
than First Fit due to a reduction in wasted node-hours since slots can be filed with jobs that wouldn’t normally be 
backfilled due to their estimated run time. 



4.2 Prioritized Schedule 
Analysis 

Although non-prioritized jobs seem to 
benefit from preemption, one of the goals of 
preemption is to insure that high priority jobs 
receive preferential treatment.  If the owner of a 
supercomputer can be assured that his jobs will 
always preempt jobs of other users, he will be 
more willing to allow low priority jobs to 
utilize idle node-hours when he doesn’t have an 
active jobs.  In our experiments high priority 
jobs can always preempt low priority jobs.  
High priority jobs can preempt backfilled 
medium priority jobs. 

Figure 8 shows expansion factor when 
80% of the jobs were marked as medium 
priority and 20% high priority.  The high 
priority jobs achieve an expansion factor near 
unity, indicating that they have a queue time 
near zero.  The expansion time is greater than 

one for the 32 processor case since high 
priority jobs only preempt medium priority jobs 
when they are backfilled.  Medium priority jobs 
that are scheduled normally will not be 
preempted.  Figure 9 shows the queue times for 
this case.  Medium priority jobs achieve queue 
times that are very similar to First Fit. 

Similar results were obtained for a 
combination of high and low priority jobs.  
Figure 10 shows the expansion factor with a 
mix of high priority and low priority jobs.  
Since preemption is possible, the high priority 
jobs are only queued behind other high priority 
jobs.  When a low priority job is running and a 
high priority job arrives, the low priority job is 
preempted immediately.  Figure 11 shows the 
queue time for this configuration.  In this case 
low priority jobs with 32 processors received a 
higher average queue time than First Fit, but un 
most cases the queue time was similar to First 
Fit even for low priority jobs. 
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Figure 8: Expansion factor for a mix of high and medium priority jobs.  High priority jobs are able to achieve near-
optimal performance even though medium priority jobs are present. 
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Figure 9: Queue time for a mix of high and medium priority jobs.  High priority jobs are able to achieve low queue 
times and medium priority jobs have queue times similar to First Fit. 
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Figure 10: Expansion factor for a mix of high and low priority jobs.  High priority jobs are able to achieve near-
optimal performance even though low priority jobs are present. 
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Figure 11: Queue time for a mix of high and low priority jobs.  High priority jobs are able to achieve low queue 
times and low priority jobs have queue times similar to First Fit. 

5 Conclusions 
This paper examines the impact of 

preemption on the performance of the Maui 
supercomputer scheduler.  If jobs can be 
preempted once they are started, more efficient 
use can be made of processor time that is to 
small for any eligible backfill jobs.  Jobs that 
are larger than a backfill window can be started 
with the hope that they will complete before the 
window expires.  Priority markings on lower 
priority jobs can allow high priority jobs to 
achieve a much higher quality of service than 
low priority jobs that run in idle time on a 
supercomputer.  These priority markings allow 
users to share resources while maintaining 
preferential treatment for jobs submitted by 
privileged users. 

The duration-remaining and duration-
consumed preemption strategies result in the 
best average queue time and expansion factor 
for non-prioritized jobs.  The queue time and 
expansion factor resulting from any of the 
strategies results in improved performance over 

First Fit without preemption.   
This research shows that preemptive 

backfill algorithms can improve the 
performance of supercomputer schedulers.  
These results should make resource owners 
more willing to share their computing resources 
and will increase the utilization of 
supercomputing centers. 
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