
Preemption Based Backfill

Quinn O Snell, Mark J Clement David B Jackson
 Fulton Supercomputing Center Center for HPC Cluster Resource Management,
 Brigham Young University Supercluster.org
 [snell,clement]@cs.byu.edu

Abstract
Recent advances in DNA analysis,

global climate modeling and computational
fluid dynamics have increased the demand for
supercomputing resources. Through increasing
the efficiency and throughput of existing
supercomputing centers, additional
computational power can be provided for these
applications. Backfill has been shown to
increase the efficiency of supercomputer
schedulers for large, homogenous machines[3].
Utilizations can still be as low as 60% for
machines with heterogeneous resources and
strict administrative requirements. Preemption
based backfill allows the scheduler to be more
aggressive in filling up the schedule for a
supercomputer[2]. Utilization can be increased
and administrative requirements relaxed if it is
possible to preempt a running job to allow a
higher priority task to run.

1 Introduction
The last few years have witnessed an

explosion in supercomputing applications.
Biologists, who have traditionally performed
most of their analysis by hand, are now able to
analyze the complete human genome.
Although this information promises to
revolutionize the way research is performed in
several disciplines, the corresponding
computational requirements are increasing at a
rate that surpasses funding increases for
supercomputing resources.

The supercomputing infrastructure
landscape is also changing rapidly in response

to the demand for computational resources.
Many researchers are creating clusters of
workstations to run computationally intense
workloads. These clusters often grow at an
incremental rate with additional machines
being added to the cluster as new funding for
research is received. Additions to existing
clusters often have different memory
capabilities and may have licenses that allow
software to run on only a subset of the
processors in the cluster. These additions
invariably cause the cluster to become more
heterogeneous. This complicates the job of a
scheduler since tasks that require a certain set
of resources may only be schedulable on a
small subset of the nodes in the system.

Another cause of heterogeneity arises
due to administrative policies. As new
infrastructure is purchased by a particular
organization, the organization may impose
scheduling policies intended to insure that their
community has priority access to the resources.
Other users are normally welcome to use the
nodes if they are available, but should not delay
the execution of users in the community. These
administrative policies cause a normal
scheduler to be overly conservative in
scheduling low priority jobs and computational
resources will often be wasted in order to
insure the priority of community tasks.

1.1 Backfill
Backfill is performed when the highest priority
job requires more resources than are currently
available on the supercomputer. A lower
priority task that is guaranteed to complete
before the anticipated initiation time of a high

priority job is allowed to run. Since these
resources are not usable by the highest priority
job, throughput and efficiency are increased on
the machine. In some cases, there will be no
lower priority task that will fit in the idle time
slot. In this case, processing time will be
wasted in order to guarantee that the high
priority task will run as soon as possible.

Preemptive backfill allows the
scheduler to start lower priority jobs even if
they are not assured of completion before
higher priority users require the resource. In
the majority of cases, the low priority task will
finish and have no impact on the high priority
schedule. If the low priority job takes longer
than the available idle slot, it will be preempted
by suspending it or killing it. This research
addresses the following questions with respect
to preemptive backfill:

• Which jobs are the best candidates for
preemptive backfill? Users normally
provide an estimate of execution time
when they submit a job. If this time
limit is exceeded, the job is killed. As a
result, users often submit estimates that
are far greater than the real time used by
a task. By looking at the accuracy of
past estimates, the scheduler is able to
select tasks for preemptive backfill that
have the highest probability of
completion in the allotted time.

• Which preemption policies provide the
best utilization and throughput on the
machine? Many supercomputer
operating systems do not provide the
ability to suspend a parallel task. This
is due to the fact that all threads and
spawned processes must be suspended
along with the main task. The operating
system must also implement security
measures so that a running task does not
have access to data and files used by
suspended jobs. When a job must be
preempted, all of the progress that the
job has made toward completion will be
lost. This is the main downside of

preemption-based backfill. In order to
minimize this negative effect,
appropriate policies must be adopted.
Possible policies for determining which
jobs to preempt include:

o Most Recently Started
o Furthest From Wall Clock Limit
o Furthest From Historical

Information Scaled Wall Clock
Limit

o Minimum Work Completed

Supercomputer schedulers that do not

perform backfill are typically limited to
significantly lower utilization and throughput
than classical backfill systems, but priority jobs
are guaranteed to run as soon as resources are
available. Classical backfill improves the
efficiency of the machine by filling idle time
with lower priority tasks, but without
preemption, high priority jobs may be delayed.
Preemption based backfill provides for high
utilization, while guaranteeing that
prioritization is preserved.

2 Background
Several different backfill strategies have

been employed in the past to improve
utilization in supercomputing systems. This
section outlines important concepts and
existing strategies for improving
supercomputer utilization.

When a user submits a job, several
attributes are included with the submission.
These attributes include:

• Resources required– This includes
memory, network and software licenses.

• Number of Processors – The job will
not be scheduled until this number of
processors is available. These
processors may be scheduled in a
contiguous block, or may be distributed
across the machine. Some submission
systems may allow the user to specify
that processors should be allocated in

groups that share the same memory.
• Wallclock Time Limit – After the job

has been running for this amount of
time, the job will be killed. Users will
often overestimate this parameter. The
IBM SP2 at the Cornell Theory Center
was examined in prior research. Of the
jobs submitted, 38% used less than 4%
of their wall clock limit. Less than 5%
of the jobs used 40% of the wall clock
limit [4].

2.1 Non-backfill
All of the jobs that are submitted will be

accounted for in a scheduling queue. The
scheduler prioritizes jobs in the queue
according to several different policies. Jobs
that are associated with certain users and
projects may be given higher priority. As jobs
wait in the queue, their priority will normally
increase so that indefinite postponement is
avoided. When a job completes, the scheduler
will attempt to start the highest priority job in
the queue. If resources are not available for
this job, processors may remain idle waiting for
another job to complete that will allow the
highest priority job to run. Figure 1 shows this
wasted processing power with Non-backfill
scheduling.

2.2 Classical Backfill
With classical backfill, the scheduler

may attempt to backfill jobs with lower priority

into this wasted processor space. If the
backfilled jobs can complete before Job 1
completes, then Job 2 will not be delayed.
Classical backfill will only select jobs with a
wallclock time estimate such that the backfilled
job will complete before the end time of Job 1.
There may be many jobs that will actually
complete in this time, but none of them will be
scheduled into this time if the user estimate is
longer than the available space. This
conservative backfill policy causes lower
utilization. If preemption is allowed, the
scheduler can run jobs that have a high priority
of completing before Job 1 completes. If Job 1
completes early, the scheduler can preempt
these backfilled jobs and run Job 2, increasing
the overall efficiency of the machine.

Even when no jobs are backfilled that
have wallclock estimates greater than available
time, backfill can cause high priority jobs to be
delayed longer than they would have been on a
non-backfill system. Figure 2 shows a
Classical backfill schedule with wallclock
estimates and actual runtimes. When a High
priority job completes early, jobs that have
been backfilled may prevent the next high
priority job from running. This increases the
expansion factor for these jobs. Expansion
factor is defined as the total time from
submission to completion, divided by the actual
runtime of a job. Administrators can disallow
backfilled jobs on their resources in order to
eliminate this expansion in the runtime for their
high priority jobs.

 Time

Processor
 Number Job 1 Job 2 Job 3

Backfill #2

Backfill #1

Wallclock estimate

Actual Runtime

P
ro

ce
ss

or
s

Figure 2 Classical Backfill

Job 2

P
ro

ce
ss

o
rs

Job 1

Figure 1 Non-backfill Scheduling

Wasted
Processors

Time

2.3 Preemptive Backfill
The wasted processors in Figure 2 are

present because there were no jobs in the queue
that matched the available resources.
Preemptive backfill will run jobs in these slots
that have a high probability of completion in
the available time, even if their wallclock
estimate exceeds the backfill space. Figure 3
shows the same set of tasks with preemptive
backfill. The expansion factor for high priority
jobs is minimized because backfilled jobs are
preempted when resources become available
for the next high priority job. Efficiency is
higher because backfill slots can be filled, even
if no job exists in the queue with small enough
resource requirements.

2.4 Gang Scheduling

 Gang Scheduling provides some of the

same advantages as preemptive backfill. With
Gang Scheduling, all of the processes
associated with a task are suspended
periodically so that more than one task can be
time sliced on the same set of processors. A
lower priority job can be backfilled into a slot
using gang scheduling and if resources become
available to let a higher priority job run, the
backfilled job can be preempted by the higher

priority job and may only run when the high
priority job completes.

Several problems arise with gang
scheduling.

• Migration - It may be better to run the
backfilled job in some other processor
space than to wait for the high priority
task to complete. Some Gang
Scheduling systems allow jobs to
migrate to processors where they can
complete more quickly, but since data
files and memory must be migrated
with the process, migration can lead to
inefficiency in supercomputing systems
[6].

• Memory Contention – Many
supercomputing applications require
large amounts of memory. When time
slicing occurs, the caches and memory
may have to be swapped out to disk,
causing significant performance
degradation [1].

• Security – As mentioned previously,
each job must be isolated from the file
space and environment of other tasks.
This is difficult to implement when
more than one job is being time-sliced
on a machine. This occurs because in a
meta-scheduling environment, each user
may not have a separate account.

• Availability – Gang scheduling is not
available on many operating systems.
Even when it is available, preemptive
backfill may provide higher
performance for many applications.

3 Preemptive Backfill
This research was performed using the

Maui Scheduler [5,7]. The Maui Scheduler is
used in many supercomputing sites throughout
the world and provides for a simulation mode
as well as production mode. Extensive trace
data is available from production runs of large
jobs over a long period of time. This trace data
is used to evaluate different options for

Wallclock estimate

Actual Runtime
P

ro
ce

ss
or

s

Figure 3 Preemptive Backfill

Time

Jo
b

2

Jo
b

1

Jo
b

3

preemptive scheduling.

3.1 Preemption
Several forms of preemption are

possible. The form used is dependent on
operating system functionality. For this
research we assume the minimal functionality
of being able to kill a job and all of its spawned
processes. Several other forms may be
available depending on the operating system
used:

• stop/restart – All supercomputer
operating systems provide functionality
to stop a parallel job and to start it over
again at a later time. All preliminary
results are lost and the task must be able
to remove any changes that have been
made to input files so that the second
invocation of the task will have exactly
the same environment as the first. Once
the job has been stopped, it will return
to the queue and backfilled onto another
set of processors or run as a priority job
when it reaches the head of the queue.
Any partial results will be lost and any
time spent running a job that is stopped
is wasted.

• suspend/resume – Many operating
systems provide functionality that
allows a task to be suspended and then
resumed at a later time. All of the
processes associated with this task are
made non-runnable, but they retain
process state and any file system
changes remain in place so that the job
can continue when it is resumed. The
operating system must insure that jobs
do not have access to each others files
and memory will need to be transferred
to a swap file before the new task can
start. This may cause some additional
delay in the start time of the high
priority task when compared to
stop/restart. When the job is resumed,
it must run on the same set of
processors that is was suspended on.

This may cause a large expansion factor
for jobs that are backfilled in this way.

• checkpoint/restart – Many applications
perform checkpoint operations to save
their intermediate state. Once a
checkpoint is performed, the job can be
terminated and restarted with the same
state present when the checkpoint was
performed. This preemption form has
an advantage over suspend/resume
since the task can be migrated to
another set of processors for continued
execution after preemption. It also has
an advantage over stop/restart since
intermediate computations performed
before preemption are not wasted. The
principle disadvantage of this option
lies in the fact that in most operating
systems, the application itself must
perform checkpoints. Most operating
systems do not support checkpointing
because it is difficult for an operating
system to determine which parts of the
memory space should be saved in order
to restart effectively.

Many parallel processing systems do not
have support for suspend/resume or
checkpoint/restart. The results presented in
this paper are all based on stop/restart
program semantics. If additional
functionality is available, preemption
becomes even more advantageous in
scheduling resources.

3.2 Backfill Options
Several factors must be considered in

determining the implementation of a
preemptive backfill scheduler. The user and
system administrator have different goals in
mind, and these goals must all be addressed in
order to provide optimal service. Three distinct
goals must be considered:

• Priority scheduling Goal: The
scheduler should run the most important

job (based on value of job) first. In
many cases one organization will own
computing resources, but will be willing
to have other jobs serviced if the
resources are idle. When a high priority
job is submitted, it should be given
preferential treatment, or the owner of
the resource will not be willing to allow
lower priority jobs to run at all.

• Backfill scheduling Goal: The
scheduler should run the greatest
aggregate sum of jobs with the greatest
likelihood of successful completion.
(based on the value of the job,
probability of successful completion).
This goal translates into high utilization
from the system administrator’s
perspective. Possible priorities for this
goal include:

o Backfill jobs using the most
resources first

o Backfill the jobs that are most
likely to complete first

o Backfill highest priority jobs
first. High priority jobs may not
be candidates for backfill since
they may be preempted if an
existing job finishes early, or the
predicted completion time is
inaccurate.

• Job Preemption Goal: The scheduler
should stop the minimum set of jobs
required to allow priority jobs to run
immediately (based on the value of
jobs, probability of successful
completion and the value of the

completed work).

Experiments performed in this research

indicate that preemptive backfill provides lower
delay for users and higher utilization for system
administrators. By giving more weight to each
of the backfill goals, the scheduling algorithm
can favor the goal that is most important to the
user community.

4 Experimental Results

Several Experiments were performed to
determine the impact of preemptive backfill on
system performance. These experiments were
performed on the Maui Scheduler[5] with job
trace files from the Center for High
Performance Computing at the University of
Utah. The trace files included 11,445 jobs
ranging from 1 to 32 processors, lasting up to
68 hours. Figure 4 shows the job mix present
in the trace. There are a large number of jobs
requiring less than 8 processors, providing a
large opportunity for backfill. Figure 5 shows
the percentage of processor hours used in each
job classification. Although there are a large
number of jobs with small numbers of
processors and a short duration, they account
for a small percentage of the overall runtime on
the machine. Jobs with duration of more than
17 hours and more than 8 processors dominate
in this area. Any preemptive backfill scheme
should not hurt the performance of these jobs.

0:
02

0:
04

0:
08

0
:1

6

0:
32

1
:0

4

2:
08

4:
16

8
:3

2

17
:0

4

3
4:

08

1 2 4
8

16
32

0

200

400

600

800

1000

1200

1400

Number of Jobs

Job Duration (hh:mm)

Number of
Processors

Job Characterization 1

2

4

8

16

32

Figure 4: Job Characterization of trace data. Many of the jobs are in the 8 processor range and can be backfilled
effectively.

1 2 4 8 16 32

4:16

17:040

5

10

15

20

25

Percentage of
processor hours

Number of processors

Job Duration in
Hours

Percentage of Processor Hours

Figure 5: Distribution of job processor hours. Most of the time in the trace is spent with jobs that take more than 17
hours and have more than 8 processors.

4.1 Non-prioritized Schedule
Analysis
Several experiments were run to

determine the impact of preemption on the
performance of jobs in the trace when no
priority was used. The scheduling algorithm
was changed so that jobs could be backfilled
even if their wallclock estimate of completion
time was after the start time of the next normal
job. When a scheduling iteration occurs and
backfilled jobs are preventing normal jobs from
running, a set of the backfilled jobs will be
preempted or terminated (under the current
model where restart is not available.

Metrics used in evaluating the
algorithms were Queue Time and Expansion
factor. An effective preemptive backfill
algorithm will decrease idle time for processors
since jobs with a wallclock estimate precluding
them from backfill under normal circumstances
can be scheduled if they can be preempted
when a higher priority job must be run. It is
expected that queue time will be reduced with
preemptive backfill. Expansion factor

considers the percentage of additional time that
a job has to wait because of queuing delay
(Xfactor=[QueueTime+RunTime]/RunTime).
A job with a 5 minute run time that is queued
for 100 minutes will notice the delay much
more than a job with a 1000 minute run time
and the same delay. The expansion factor for
the 5 minute job would be 21, where the
expansion factor for the 1000 minute job would
be 1.1. Optimal expansion factors are close to
1.

Figure 6 shows expansion factor results
for several algorithms that were used to select
which jobs to preempt. In one case a random
set of jobs were selected to preempt. This will
often result in a job being terminated when it is
nearly complete. The random plot is presented
to show the worst case behavior of a naïve
algorithm. The First Fit plot shows the
behavior of the normal backfill algorithm
without preemption. Notice that the random
algorithm behavior has significantly higher
Expansion factor and queue time than the non-
preemption firstfit algorithm.

Figure 6: Expansion factor for several preemption strategies. Intelligent preemption backfill strategies
outperform random strategies and in most cases also perform better than First Fit without preemption.

Average XFactor

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32

Job Size (in processors)

E
xp

an
si

o
n

 F
ac

to
r

(r
u

n
+

q
u

eu
e)

/r
u

n

First Fit

duration-consumed

random

duration-remaining

wcduration-percentresusage

wcduration

The duration-consumed algorithm
selects a set of jobs to preempt that have been
running for the shortest length of time. This
strategy attempts to waste the minimum
number of node-hours in the preemption. The
duration-remaining plot results from
preempting the jobs that have the most time left
to run. By preempting these jobs, the scheduler
will free up larger slots of time for each job
preempted, and may be able to preempt a
smaller number of jobs.

Each job has a Wall Clock prediction of
execution time that is an estimate provided by
the user. When this Wall Clock time expires,
the job will be terminated. As a result, users
tend to overestimate the time for their jobs, but
the estimates can still provide information as to
which jobs to preempt. The wcduration plot

represents results from preempting the job with
the longest estimate of duration and the
wcduration-percentresusage plot shows the
results of preempting the job using the largest
percentage of resources on the machine.

The strategies resulting in the best
expansion factor are duration-remaining and
duration-consumed. These strategies
consistently outperform First Fit. Similar
results can be observed in queue time analysis.

Figure 7 shows the average queue times
for each of the strategies. The average queue
time for all of the preemption strategies is less
than the First Fit non-preemption scheduling
algorithm. It is difficult to select a clear
winner, but duration-remaining and duration-
consumed both achieve good performance.

Average Queue Time

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32

Job Size (in processors)

Q
u

eu
e

ti
m

e
in

 h
o

u
rs First Fit

duration-consumed

random

duration-remaining

wcduration-percentresusage

wcduration

Figure 7: Average queue time for each of the preemption strategies. All of the strategies achieve lower queue times
than First Fit due to a reduction in wasted node-hours since slots can be filed with jobs that wouldn’t normally be
backfilled due to their estimated run time.

4.2 Prioritized Schedule
Analysis

Although non-prioritized jobs seem to
benefit from preemption, one of the goals of
preemption is to insure that high priority jobs
receive preferential treatment. If the owner of a
supercomputer can be assured that his jobs will
always preempt jobs of other users, he will be
more willing to allow low priority jobs to
utilize idle node-hours when he doesn’t have an
active jobs. In our experiments high priority
jobs can always preempt low priority jobs.
High priority jobs can preempt backfilled
medium priority jobs.

Figure 8 shows expansion factor when
80% of the jobs were marked as medium
priority and 20% high priority. The high
priority jobs achieve an expansion factor near
unity, indicating that they have a queue time
near zero. The expansion time is greater than

one for the 32 processor case since high
priority jobs only preempt medium priority jobs
when they are backfilled. Medium priority jobs
that are scheduled normally will not be
preempted. Figure 9 shows the queue times for
this case. Medium priority jobs achieve queue
times that are very similar to First Fit.

Similar results were obtained for a
combination of high and low priority jobs.
Figure 10 shows the expansion factor with a
mix of high priority and low priority jobs.
Since preemption is possible, the high priority
jobs are only queued behind other high priority
jobs. When a low priority job is running and a
high priority job arrives, the low priority job is
preempted immediately. Figure 11 shows the
queue time for this configuration. In this case
low priority jobs with 32 processors received a
higher average queue time than First Fit, but un
most cases the queue time was similar to First
Fit even for low priority jobs.

Average Xfactor with 80% of the jobs set to medium priority

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

Job Size (in processors)

E
xp

an
si

o
n

 F
ac

to
r

(q
u

eu
e+

ru
n

)/
ru

n

Firstfit

High Priority Jobs

Medium Priority Jobs

Figure 8: Expansion factor for a mix of high and medium priority jobs. High priority jobs are able to achieve near-
optimal performance even though medium priority jobs are present.

Average Queue time with 80% of the jobs set to medium priority

0.01

0.1

1

10

100

1 2 4 8 16 32

Job Size (in processors)

Q
u

eu
e

T
im

e
in

 H
o

u
rs

Firstfit

High Priority Jobs

Medium Priority Jobs

Figure 9: Queue time for a mix of high and medium priority jobs. High priority jobs are able to achieve low queue
times and medium priority jobs have queue times similar to First Fit.

Average Xfactor with 80% of the jobs set to low priority

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32

Job Size (in processors)

E
xp

an
si

o
n

 F
ac

to
r

(q
u

eu
e+

ru
n

)/
ru

n

Firstfit

High Priority Jobs

Low Priority Jobs

Figure 10: Expansion factor for a mix of high and low priority jobs. High priority jobs are able to achieve near-
optimal performance even though low priority jobs are present.

Average Queue time with 80% of the jobs set to low priority

0.01

0.1

1

10

100

1 2 4 8 16 32

Job Size (in processors)

Q
u

eu
e

T
im

e
in

 H
o

u
rs

Firstfit

High Priority Jobs

Low Priority Jobs

Figure 11: Queue time for a mix of high and low priority jobs. High priority jobs are able to achieve low queue
times and low priority jobs have queue times similar to First Fit.

5 Conclusions
This paper examines the impact of

preemption on the performance of the Maui
supercomputer scheduler. If jobs can be
preempted once they are started, more efficient
use can be made of processor time that is to
small for any eligible backfill jobs. Jobs that
are larger than a backfill window can be started
with the hope that they will complete before the
window expires. Priority markings on lower
priority jobs can allow high priority jobs to
achieve a much higher quality of service than
low priority jobs that run in idle time on a
supercomputer. These priority markings allow
users to share resources while maintaining
preferential treatment for jobs submitted by
privileged users.

The duration-remaining and duration-
consumed preemption strategies result in the
best average queue time and expansion factor
for non-prioritized jobs. The queue time and
expansion factor resulting from any of the
strategies results in improved performance over

First Fit without preemption.
This research shows that preemptive

backfill algorithms can improve the
performance of supercomputer schedulers.
These results should make resource owners
more willing to share their computing resources
and will increase the utilization of
supercomputing centers.

6 Acknowledgements
We appreciate the comments and

suggestions we received from Brian Haymore
and Julio Facelli from the Center for High
Performance Computing at the
University of Utah. They also provided us with
job trace files from an environment where
preemption could make a big difference. We
also appreciate comments from
Scott M Jackson from the Molecular Science
Computing Facility at Pacific Northwest
National Laboratory. Many of the features
currently implemented in the Maui Scheduler
were implemented in response to suggestions
from PNNL.

7 References
[1] Anat Batat and Dror G. Feitelson, "Gang

Scheduling with Memory Considerations",
Proceedings of the 14th International
Parallel and Distributed Processing
Symposium (IPDPS'00)

[2] G. Berry, “Preemption in concurrent
systems. In Proc. FSTTCS'93, Lecture
Notes in Computer Science, volume 761,
pages 72--93. Springer-Verlag, 1993.

[3] Dror G. Feitelson and L. Rudolph. “Parallel
job scheduling: Issues and approaches”,
IPPS'95 Workshop: Job Scheduling
Strategies for Parallel Processing, pages 1-
18. Springer{Verlag, Lecture Notes in
Computer Science LNCS 949, 1995.

[4] Dror G. Feitelson and Morris Jette,
“Improved Utilization and Responsiveness
with Gang Scheduling”, Proceedings of the
IPPS '97 Workshop on Job Scheduling
Strategies for Parallel Processing, 1997.

 [5] David Jackson, Quinn Snell, Mark

Clement. “Core Algorithms of the Maui
Scheduler”, Job Scheduling Strategies for
Parallel Processing, Editors Dror G.
Feitelson and Larry Rudolph, Springer
Verlag, LNCS Vol. 2221, pages 87-102,
June 2001

[5] David Jackson, "The Maui Scheduler",
http://supercluster.org/projects/maui, May
6, 2002.

[6] Uwe Schwiegelshohn, "Preemptive
weighted completion time scheduling of
parallel jobs", 4th European Symp.
Algorithms, pp. 39-51, Springer-Verlag,
Sep 1996. Lecture Notes in Computer
Science Vol. 1136.

 [7] Q. Snell, M. Clement, D. Jackson and C.
Gregory, "The Performance Impact of
Advance Reservation Metascheduling",
Lecture Notes in Computer Science: Job
Scheduling Strategies for Parallel
Processing, Springer-Verlag, volume 1911.

