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Abstract. Some 50 years have passed since Gibson drew attention to the char-
acteristic field of velocity vectors generated on the retina when an observer is 
moving through the three-dimensional world. Many theoretical, psychophysi-
cal, and physiological studies have demonstrated the use of such optic flow-
fields for a number of navigational tasks under laboratory conditions, but little 
is known about the actual flowfield structure under natural operating condi-
tions. To study the motion information available to the visual system in the real 
world, we moved a panoramic imaging device outdoors on accurately defined 
paths and simulated a biologically inspired motion detector network to analyse 
the distribution of motion signals. We found that motion signals are sparsely 
distributed in space and that local directions can be ambiguous and noisy. Spa-
tial or temporal integration would be required to retrieve reliable information on 
the local motion vectors. Nevertheless, a surprisingly simple algorithm can re-
trieve rather accurately the direction of heading from sparse and noisy motion 
signal maps without the need for such pooling. Our approach thus may help to 
assess the role of specific environmental and computational constraints in natu-
ral optic flow processing. 

1 Background 

Visual motion information is crucial for maintaining course, avoiding obstacles, esti-
mating distance, and for segmenting complex scenes into discrete objects. Active lo-
comotion generates large-scale retinal image motion that contains information both 
about observer movement – egomotion - and the three-dimensional layout of the 
world. The significance of optic flowfields has been recognised since Gibson (1950) 
illustrated the dynamic events in the image plane resulting from egomotion by sets of 
homogenously distributed velocity vectors. The actual structure of the two-
dimensional motion signal distributions experienced by the visual system under natu-
ral operating conditions, however, is not only determined by the pattern of locomo-
tion, but also by the specific three-dimensional layout of the local environment and by 
the motion detection mechanism employed. To understand the design of the neural 
processing mechanisms underlying flowfield analysis, and in particular the coding 
strategies of motion sensitive neurones, we thus need to know more about the actual 
motion signal distributions under real-life conditions.  
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An elaborate theoretical framework has been developed on how to extract egomo-
tion parameters from flowfields (Longuet-Higgins and Prazdny, 1980; Heeger, 1987; 
Koenderink and Van Doorn, 1987; Dahmen et al., 1997). Most of these models as-
sume implicitly that local motion signals are veridical, homogenously distributed, and 
carry true velocity information. Similarly, motion sensitive neurones in the visual sys-
tems of invertebrates and vertebrates that seem to be involved in flowfield processing 
(e.g., Hausen and Egelhaaf, 1989; Frost et al., 1990; Orban et al., 1992; Krapp and 
Hengstenberg, 1996) are usually investigated with coherently structured motion stim-
uli that densely cover large parts of the visual field. Franz & Krapp (2000) and Dah-
men et al. (2001) recently used simulations to assess the number and the distribution 
of motion signals that are necessary to estimate egomotion parameters. Their studies 
suggest that surprisingly few local and low fidelity flow measurements are needed, 
provided these measurements are taken at widely distributed locations throughout the 
panoramic visual field. So far, however, we do not know what kind of motion signal 
distributions visual systems are confronted with in a normal ecological and behav-
ioural context.  

To address this issue, we reconstructed a "view from the cockpit" of flying insects, 
which have become model systems for optic flow analysis because of their extraordi-
nary behavioural repertoire and because the neural machinery underlying optic flow 
processing is well understood (Hausen and Egelhaaf, 1989; Eckert and Zeil, 2001). 
We moved a panoramic imaging device along accurately defined paths in outdoor lo-
cations containing a mixture of close and distant vegetation. We then analysed the 
image sequences which we recorded during these movements with a two-dimensional 
motion detector model (2DMD) consisting of an array of correlation-type detector 
pairs for horizontal and vertical motion components (Zanker et al., 1997). The analy-
sis of movie sequences recorded on comparatively simple flight paths is intended to 
help us evaluate the image processing requirements involved in extracting egomotion 
information under realistic conditions. In particular, we can assess the density and 
spatial distribution of local motion signals normally available and the amount of noise 
that the visual system has to cope with under natural operating conditions. Eventually 
such an analysis will enable us to identify the image processing strategies the visual 
system could in principle employ. In order to cope with various sources of unreliable 
signals, obvious candidates for such processing strategies are for instance local gain 
control, spatial or temporal averaging, or the selection or combination of adequately 
tuned spatiotemporal channels. The focus of the present account is on a simple proce-
dure to estimate the quality of motion signal maps by assessing the recovery of direc-
tion of heading for purely translatory movements.  

2 The approach 

A panoramic imaging device was mounted on a computer-controlled robotic gantry 
which allowed us to move it along accurately defined trajectories within a space of 
about 1 m3. Servo-controlled DC motors moved the camera along the three orthogo-
nal axes with an accuracy of 0.1 mm (system components by Isel, Germany). The 
gantry was mounted on a trolley to be positioned in a variety of outdoor locations. For 
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the present analysis we chose a location with grass, shrubs and bushes amongst large 
Eucalyptus trees, containing a mixture of close and distant objects, which would be 
representative of a typical habitat for flying insects.  

A B

D C  

Fig. 1.  A method to study flowfields in the real world. A video camera is used to capture pano-
ramic images in polar coordinates (A) which are converted into cartesian coordinates (B; azi-
muth Φ, elevation θ). Image sequences were recorded while moving the camera through a natu-
ral scene and then used as input to a large array of motion detector pairs (one element sketched 
in C), to generate motion signal maps (D).  

The panoramic imaging device consisted of a black and white video camera (Sam-
sung BW-410CA) looking down onto a parabolic mirror which was optimised for 
constant spatial resolution (Chahl and Srinivasan, 1997). In the captured images the 
azimuth and elevation are represented in polar coordinates, as angular position and 
distance from the origin in the image centre, respectively (see figure 1A). Images 
were digitised with 8 bit greylevel resolution (Matrox Meteor framegrabber) and 
stored directly on a computer harddisk for off-line analysis. The image sequences 
were subsequently converted into cartesian coordinates, resulting in an image 450 
pixels wide and 185 pixels high, which corresponds to a visual field size of 360° of 
azimuth, Φ, by 136° of elevation, θ, (figure 1B). In the default configuration, image 
sequences of 64 consecutive frames were taken at 25 frames/s during gantry speeds of 
5 cm/s and 10 cm/s. The apparatus also allows to grab single images could at se-
quences of predefined positions, in order to generate more complex trajectories. Im-
age sequences were analysed with a two-dimensional, correlation-type motion detec-
tor model (2DMD) which has been used previously to identify the processing 
requirements faced by fiddler crabs in detecting and recognising species-specific 
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movement signals (Zeil and Zanker, 1997), to study the characteristic patterns of im-
age motion produced by wasps during their learning flights (Zeil et al., 1998), and to 
simulate a wide range of psychophysical phenomena (e.g., Zanker et al., 1997; Patz-
wahl and Zanker, 2000; Zanker, 2001). The basic building block is tha elementary 
motion detector (EMD) of the correlation type which has been shown in many behav-
ioural and physiological studies to be a very good candidate for the biological imple-
mentation of motion processing (for review, see Reichardt, 1987; Borst and Egelhaaf, 
1989). This EMD model is a representative of a variety of luminance based operators 
(Adelson and Bergen, 1985; Van Santen and Sperling, 1985; Watson and Ahumada, 
1985), and other models for local motion detection (e.g., Srinivasan, 1990; Johnston 
et al., 1999) could be used without affecting the main conclusions we draw from our 
results. Orthogonal pairs of local EMDs that detect horizontal and vertical motion 
components (sketched in figure 1C) are used to build a two-dimensional network of 
detectors, which constitutes the 2DMD model.  

In a simple implementation (figure 1C), each EMD receives input from two points 
of the spatially filtered stimulus patterns. The signals interact in a nonlinear way after 
some temporal filtering, to provide a directionally selective signal. Difference of 
Gaussians (DOGs) with balanced excitatory centre and inhibitory surround are used 
as bandpass filters in the input lines to exclude DC components from the input. The 
sampling distance between the two inputs, which is the fundamental spatial model pa-
rameter, was set to 2 pixels (approximately 1.6°) for the present study. To prevent 
aliasing, the diameter of the receptive field was set to about twice the value of the 
sampling distance. The signal from one input line is multiplied with the temporally 
filtered signal from the other line, and two antisymmetric units of this kind are sub-
tracted from each other with equal weights, leading to a fully opponent, and thus 
highly directionally selective EMD (Borst and Egelhaaf, 1989). The time constant of 
the first-order lowpass filter, which is the fundamental temporal model parameter, 
was set to 2 frame intervals (80 ms) for the present study. The time interval between 
successive image frames corresponded to 8 digital simulation steps; an increased tem-
poral resolution was used in order to improve the accuracy in calculating the dynamic 
responses of the temporal filters.  

Movie sequences were processed by two 2D-arrays of such EMDs (two sets of 450 
x 185 correlators, one pair centred at each image pixel, oriented along the horizontal 
or along the vertical axis of the cartesian-coordinate images). The result is a two-
dimensional motion signal distribution, the 2DMD response, with a horizontal and 
vertical signal component for each image point, which we call a motion signal map 
(see figure 1D). In some cases this raw 2DMD output was temporally averaged (over 
8 to 64 frames) before further analysis. To be able to plot such signal maps at high 
spatial resolution, usually a two-dimensional colour code is used to represent the di-
rection and the magnitude of local motion detector responses in terms of hue and satu-
ration (Zeil and Zanker, 1997). For purposes of black and white reproduction, in the 
present study the horizontal and vertical motion components are plotted separately in 
grey-level maps. In the vertical components map a change from black through me-
dium grey to white indicates a change from downwards motion through standstill to 
upwards motion (see figure 2A, D). Correspondingly, in the horizontal component 
map regions of motion to the left, no motion signal, and motion to the right corre-
spond to black, medium grey and white regions, respectively (see figure 2B, E). 
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3 Analysing motion signal maps 

The 2DMD response for a simple forward translation is shown in figure 2, comparing 
the output for a single displacement step (A-C) to the average of 16 consecutive steps 
(D-F). The vertical components of the motion signal maps (figure 2A & D) are char-
acterised by predominantly downwards directions in the lower half of the central im-
age region, i.e. in the parts of the map that correspond to the field of view below the 
horizon looking forwards, and faint upwards signals in the upper half of the frontal 
region. The general direction is inverted for the image regions corresponding to the 
rear field of view, close to the left and right image borders. This pattern reflects the 
vertical expansion components from the expanding and contracting poles of the flow-
field, which in the case of forward translation should be located in the centre and in 
the left/right border regions of the panoramic image. The horizontal components of 
the motion signal maps (figure 2B & E) are different in the left and the right half of 
the panoramic image, the former being dominated by dark spots that indicate leftward 
motion components, and the latter being dominated by bright spots that correspond to 
rightward motion. This distribution of local motion signals is typical for a forward 
translation of the camera which produces an expanding and contracting flowfield pole 
in the frontal and the rear field of view. Corresponding patterns of local motion sig-
nals, with different locations of the flowfield pole in the images, are found for transla-
tions in other directions (data not shown). Three peculiarities of the motion signal 
maps should be noted. 

(a) The distribution of local motion signals is noisy and sparse. To emphasize the 
overall structure of the signal maps, a nonlinear grey-scale is used in figure 2 which 
saturates at about 10% of the local response maximum, thus leading to an underesti-
mation of the sparseness of this map. To quantify the density and coherence of local 
motion signals, we focus on two typical regions extending approximately 15° by 15° 
(indicated by small frames in figure 2 A and B) just above and below the horizon in 
the left lateral field of view (-90° azimuth), where the flowfield should be character-
ised by strong, coherent motion in horizontal direction (+/- 180°). The actual sparse-
ness of the motion map in these test regions is demonstrated by the fact that on aver-
age 93% of the signals are smaller than a tenth of the maximum motion signal present 
in the map, and 31% are smaller than a hundredth of the maximum signal. This result 
is not surprising because the density of the motion signal maps is determined by the 
strength of local motion detector responses, which depends on the abundance, con-
trast, and angular velocity of local contours. Far distant objects that only cause minute 
image displacements during translation, or a cloudless blue sky, for instance, do not 
elicit any significant motion detector response. Most importantly, the image region 
around the flowfield pole is characterised by a “hole”, devoid of any clear motion sig-
nals. Furthermore, the directional noise level in the motion maps is reflected by the 
fact that the direction of no more than 17% of the motion signals in the test regions is 
found within a range of 30° (47% within a range of 90°) around the expected direc-
tion of +/- 180°. The fact that directions within small regions vary considerably can 
be attributed to fluctuations inherent to the EMD output (Reichardt and Egelhaaf, 
1988) and to variations of local contour orientations which affect the direction of mo-
tion detected for these contours (Hildreth and Koch, 1987).  
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Fig. 2.  2DMD output. Motion signal maps (vertical motion response components A, D, up: 
white, no motion: medium grey, down: black; horizontal components B, E, right: white, no mo-
tion: medium grey, left: black) and average direction profiles (C, F) for a panoramic image se-
quence recorded during forward translation; A-C: response from a single displacement step; D-
F: temporal average from 16 consecutive displacement steps.  

(b) There is a general tendency that motion signals are denser and stronger in the 
lower than in the upper image regions, because the camera is moving close to the 
ground where nearby contours generate comparatively large image motion compo-
nents. On the other hand, objects above the horizon are much further away and there-
fore generate much smaller image angular displacements during translation. To quan-
tify this effect, we compared the distribution of motion signal strengths in two test 
regions shown in figure 2 A and B with each other. Whereas 17% of the motion sig-
nals in the test region below the horizon are smaller than a hundredth of the maximum 
signal, 31% of the motion signals in the test region above the horizon fall below this 
limit.  

(c) In the temporal averages of several 2DMD response frames (figure 2D & E) 
motion signals are aligned along “motion streaks”, which reflect the trajectories of 
image contrast elements during the averaging interval. These small, oriented streaks, 
contain independent information about the structure of the motion signal map - the ra-
dial patterns in the front and the rear image regions provide a clear indication of the 
flowfield poles. Recent psychophysical experiments suggest that humans actually are 
able to use the orientation information of temporally blurred moving objects for mo-
tion processing (Geisler, 1999, Burr et al., ECVP 2002). It should be noted that such a 
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combination of orientation and motion information goes beyond the interaction be-
tween collinear direction selective motion detectors along motion trajectories (Wata-
maniuk and McKee, 1998), which would correspond to the Gestalt law of “common 
fate”. The motion signal maps presented here suggest that a combination of informa-
tion across stimulus modalities could indeed be very powerful for the extraction of 
flowfield parameters.  

 

Fig. 3.  Estimating the location of the flowfield pole. Average deviation between the expected 
direction profile function and the actual 2DMD output data plotted as function of the azimuth 
location of the expected flowfield pole for forward (black data points), sideways (light grey) 
and oblique (dark grey) translation. Minimum deviation indicate the best fit estimate of the 
flowfield pole, which are generally very close to the veridical values (indicated by vertical 
lines).  

In a next step we condensed the motion signal maps to horizontal direction profiles by 
averaging EMD outputs along image columns, i.e. for a given horizontal position in 
the panoramic image. In these profiles, the direction of the average motion vector is 
plotted as a function of azimuth (figure 2C & F). The length of the average vector, i.e. 
motion signal strength which is determined by the average contrast and the inverse of 
the direction variance at a given azimuth, is represented by the greylevel of a given 
data point in the direction profiles (values above/below the overall average are plotted 
in black/grey). The response profiles capture some significant aspects of the motion 
signal maps, and in particular give a good indication of the location of the flowfield 
poles. In the lateral image regions the average motion direction is horizontal, close to 
+/- 180 deg on the left side (around -90 deg azimuth) and close to 0 deg on the right 
side, clearly reflecting the homogenous image flow in the field of view perpendicular 
to the direction of egomotion. In the frontal and rear image regions, the profiles are 
characterised by a transition between the two horizontal motion directions. The verti-
cal average direction at the locations of the flowfield pole, downwards (about -90 
deg) in the frontal region (around 0 deg azimuth) and upwards (about +90 deg) in the 
rear image region (around +/- 180 deg), confirm the earlier observation that the signal 
maps are dominated by the regions below the horizon (where expansion and contrac-
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tion centred around the pole assumes these directions). The noise on the direction pro-
files is considerably reduced by temporal integration (compare figure 2C & F), and a 
similar effect is to be expected for spatial pooling. In summary, the directional pro-
files offer a fair account of the natural flowfield structure, as far as the location of 
poles is concerned, which indicate the direction of egomotion.  

In order to analyse the direction profiles further, we fitted a simple mathematical 
function to the data which reflects the expectation of a basic directional profile. Be-
cause this technique intends to assess the quality of the information contained in the 
direction profiles and is not meant to suggest a particular mechanism dealing with op-
tic flowfields, we made no attempt to specify anything like an optimal expectation 
function, similar to those used in matched filter approaches of estimating egomotion 
parameters (see, for instance, Franz and Krapp, 2000). Instead, we started from the 
idealised situation that in a homogenous flowfield generated by horizontal egomotion 
vertical velocity components would cancel each other, leading to a rectangular direc-
tion profile with horizontal motion to the left (+/- 180 deg) and to the right (0 deg) on 
the left and right side of the expansion pole, respectively. This simple expectation 
function was shifted relative to the direction profiles by variation of the azimuth loca-
tion of the assumed flowfield pole (‘expected pole’), and the root mean square of the 
deviation between expectation and data was calculated. The deviation should reach a 
minimum when the expected pole is closest to the direction of egomotion. The mean 
deviation between data and expectation function is plotted in figure 3 as function of 
expected pole azimuth for three individual 2DMD output frames from three different 
movie sequences. Forwards, leftwards, and oblique translation should lead to a mini-
mum at 0, -45, and -90 deg of azimuth, respectively (indicated by vertical lines). It is 
obvious that the minima are very close to the respective veridical locations, with de-
viations of -0.8, 8.4, and 6.2 deg for the three cases tested. The mean deviation curves 
are virtually indistinguishable for different 2DMD output frames of an individual se-
quence, and no further improvement is found when motion signal maps are generated 
by averaging several frames (data not shown). This result suggests that the instanta-
neous information contained in the motion signals generated by a small camera dis-
placement is comparable to the information that results from pooling signals over 
time while contours move along a trajectory, quite in contrast to the qualitative im-
pression that averaged motion signal maps provide a much clearer flowfield structure 
(compare figure 2A-C with 2D-F). Elaborate mechanisms to estimate egomotion pa-
rameters (Perrone, 1992; Franz and Krapp, 2000) may thus not always be necessary, 
because under certain circumstances fast approximate procedures may be reliable and 
accurate enough (see also Dahmen et al. 1997). 

4 Conclusions 

The structure of optic flowfields that is influenced by the type of observer locomotion 
and by the structure of the environment, but also by neural processing strategies such 
as the basic motion detection mechanism or spatiotemporal pooling. The flowfield in-
formation available under realistic operating conditions was studied here by moving a 
panoramic imaging through natural environments and using the recorded image se-
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quences as input to a biologically plausible motion detector network. The resulting 
motion signal maps have several interesting properties, which reflect specific envi-
ronmental and computational constraints of optic flow processing. Firstly, motion 
signals are sparsely distributed across the visual field, even in densely contour-
populated natural scenes. This property of motion signal maps would be predicted by 
motion detection theory, because the contrast dependence of the EMD response leads 
to irregular patterns of image regions at which the motion is clearly detectable. Sec-
ondly, local variation of motion direction is considerable, because the EMD output 
does not necessarily reflect the physical motion direction (Reichardt and Schlögl, 
1988), a constraint which is well known in human psychophysics as the “aperture 
problem” (Adelson and Movshon, 1982; Nakayama and Silverman, 1988).  

Nevertheless, panoramic motion signal maps contain sufficient information to es-
timate the direction of egomotion rather accurately, even with very simple estimation 
algorithms. This suggests that the inherent richness of flowfields in natural scenes 
might allow for fast, robust and simple mechanisms for sensing egomotion. We al-
ready know that under idealised conditions, the exact estimation of egomotion pa-
rameters requires only a small number of motion signals (Koenderink and Van Doorn, 
1987; Dahmen et al., 2001), and we show here that this is also true for natural operat-
ing conditions. Future research will need to test whether this conclusion still holds for 
a wider range of movements, including mixtures of translation and rotation, and a va-
riety of environments, including those with highly non-uniform distribution of ob-
jects. Conventional models of optic flow processing, which are able to separate trans-
lation and rotation components and control the direction of heading (Hildreth, 1984; 
Heeger, 1987; Perrone, 1992), usually rely on the assumption that dense and coherent 
motion signal maps are available. It will be essential to see how well such models 
deal with natural motion signal distributions and how the information content of natu-
ral flow fields is affected by the restricted field of view of many animals. In this con-
text, it may become necessary to re-evaluate strategies to improve the spatial structure 
of the motion signal maps, such as local spatial pooling, temporal integration, or the 
extraction of true local velocity estimates (Verri et al., 1992) and to recognise the be-
havioural, sensory and neural adaptations animals are known to have evolved in re-
sponse to the specific statistics of distance, contrast and contour orientation in their 
particular visual habitats (Nalbach and Nalbach, 1987; Nalbach, 1990; O'Carroll et 
al., 1997) (reviewed in Eckert and Zeil, 2001). It will be furthermore interesting to as-
sess the value of additional information sources such as orientation cues provided by 
motion streaks.  

To understand the evolution of behavioural and neural strategies of information 
processing and their adaptive quality, requires a more quantitative assessment of the 
natural operating conditions in which this evolution took and continues to take place. 
We hope to extend our preliminary study to a systematic and quantitative analysis of 
the motion signal distributions which are generated by different styles of locomotion 
in different environments.  
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