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Abstract. Junctions provide important cues in various perceptual
tasks, such as the determination of occlusion relationship for figure-
ground separation, transparency perception, and object recognition,
among others. In computer vision, junctions are used in a number of
tasks like point matching for image tracking or correspondence analy-
sis. We propose a biologically motivated approach to junction detection.
The core component is a model of V1 based on biological mechanisms
of colinear long-range integration and recurrent interaction. The model
V1 interactions generate a robust, coherent representation of contours.
Junctions are then implicitly characterized by high activity for multiple
orientations within a cortical hypercolumn. A local measure of circular
variance is used to extract junction points from this distributed repre-
sentation. We show for a number of generic junction configurations and
various artificial and natural images that junctions can be accurately and
robustly detected. In a first set of simulations, we compare the detected
junctions based on recurrent long-range responses to junction responses
as obtained for a purely feedforward model of complex cells. We show
that localization accuracy and positive correctness is improved by recur-
rent long-range interaction. In a second set of simulations, we compare
the new scheme with two widely used junction detection schemes in com-
puter vision, based on Gaussian curvature and the structure tensor. Re-
ceiver operator characteristic (ROC) analysis is used for a threshold-free
evaluation of the different approaches. We show for both artificial and
natural images that the new approach performs superior to the standard
schemes. Overall we propose that nonlocal interactions as realized by
long-range interactions within V1 play an important role for the detec-
tion of higher order features such as corners and junctions.

1 Introduction and Motivation

Corners and junctions are points in the image where two or more edges join
or intersect. Whereas edges lead to variations of the image intensity along a
single direction, corners and junctions are characterized by variations in at least
two directions. Compared to regions of homogeneous intensity, edges are rare
events. Likewise, compared to edges, corners and junctions are rare events of
high information content. Moreover, corners and junctions are invariant under
different viewing angles and viewing distances. Both the sparseness of the signal
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and the invariance under affine transformations and scale variations establish
corners and junctions as important image features.

Corners and junctions are useful for various higher level vision tasks such as
the determination of occlusion relationships, matching of stereo images, object
recognition and scene analysis. The importance of corner and junction points for
human object recognition has been demonstrated in a number of psychophysical
experiments (Attneave, 1954; Biederman, 1985). Junctions also seem to play an
important role in the perception of brightness and transparency (Adelson, 2000;
Metelli, 1974) and have been proposed to trigger modal and amodal surface
completion (Rubin, 2001). In physiological studies in monkey visual cortex cells
have been reported which selectively respond to corners and line-ends (Hubel
and Wiesel, 1968) as well as curved patterns and angles (Pasupathy and Connor,
2001).

Recently (McDermott, 2001) studied the performance of human observers for
the detection of junctions in natural images. He found that the ability to detect
junctions is severely impaired if subjects could view the location of a possible
junction only through a small aperture. Detection performance and observers’
confidence ratings decreased with decreasing size of the aperture. The results
suggest that a substantial number of junctions in natural images cannot be
detected by local mechanisms.

In this paper we propose a new mechanism for corner and junction detection
based on a distributed representation of contour responses within hypercolumns
(Zucker et al., 1989). Unlike local approaches as proposed in computer vision
(Harris, 1987; Mokhtarian and Suomela, 1998), the new scheme is based on a
more global, recurrent long-range interaction for the coherent computation of
contour responses. Such nonlocal interactions evaluate local responses within a
more global context and generate a robust contour representation. A measure of
circular variance is used to extract corner and junctions points at positions of
large responses for more than one orientation.

The paper is organized as follows. In Sec. 2 we present the model of recurrent
colinear long-range interactions and detail the new junction detection scheme.
Simulation results for a number of artificial and natural images are presented in
Sec. 3. Section 3 concludes the paper.

2 A Neural Model for Corner and Junction Detection

Corner and junction configurations can be characterized by high responses for
two or more orientations at a particular point in the visual space. A cortical
hypercolumn is the neural representation for orientated responses at a particular
point. Corners and junctions are thus characterized by significant activity of
multiple neurons within a hypercolumn.

Multiple oriented activities as measured by a simple feedforward mechanism
are sensitive to noisy signal variations. In previous work we have proposed a
model of recurrent colinear long-range interaction in the primary visual cortex
for contour enhancement (Hansen and Neumann, 1999, 2001). During the recur-
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rent long-range interactions, the initially noisy activities are evaluated within
a larger context. In this recurrent process, only coherent orientations responses
are preserved, i.e., responses which are supported by responses in the spatial
neighborhood, while other responses are suppressed. Besides the enhancement
of coherent contours, the proposed model also preserves multiple activities at
corners and junctions. Corners and junctions are thus implicitely characterized
by a distributed representation of high multiple activity within a hypercolumn.

Such a distributed representation may suffice for subsequent neural compu-
tations. However, at least for the purpose of visualization and comparison to
other junction detection schemes an explicit representation is requested. Follow-
ing the above considerations, corners and junctions can be marked if multiple
orientations are active and high overall activity exists within a hypercolumn.

In the following we first present the proposed model of colinear recurrent long-
range interactions in V1 (Sec. 2.1), and then detail a mechanism to explicitely
mark corner and junction points (Sec. 2.2).

2.1 Coherent Contour Representation by a Model of Colinear
Recurrent Long-Range Interaction in V1

The model of colinear long-range interactions in V1 is motivated by a num-
ber of biological mechanisms. The core mechanisms of the model include local-
ized receptive fields for oriented contrast processing, interlaminar feedforward
and feedback processing, cooperative horizontal long-range integration, and lat-
eral competitive interactions. The key properties of the model are motivated
by empirical findings, namely (i) horizontal long-range connections (Gilbert and
Wiesel, 1983; Rockland and Lund, 1983) between cells with colinear aligned RFs
(Bosking et al., 1997); (ii) inhibitory, orientation-unspecific short-range connec-
tions (Bosking et al., 1997);and (iii) modulating feedback which cannot drive a
cell but modulates initial bottom-up activity (Hirsch and Gilbert, 1991, Hupé
et al., 1998). The model architecture is defined by a sequence of preprocess-
ing stages and a recurrent loop of long-range interaction, realizing a simplified
architecture of V1 (Fig. 1).

Feedforward Preprocessing. In the feedforward path, the initial luminance
distribution is processed by isotropic LGN-cells, followed by orientation-selective
simple and complex cells. The interactions in the feedforward path are governed
by basic linear equations to keep the processing in the feedforward path relatively
simple and to focus on the contribution of the recurrent interaction. In our model,
complex cell responses Cy (as output of the feedforward path, cf. (Fig. 1) provide
an initial local estimate of contour strength, position and orientation which is
used as bottom-up input for the recurrent loop. A more detailed description of
the computation in the feedforward path can be found in Hansen and Neumann
(1999).

Recurrent Long-Range Interaction. The output of the feedforward pre-
processing defines the input to the recurrent loop. The recurrent loop has two
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Fig. 1. Overview of model stages together with a sketch of the sample receptive fields
of cells at each stage for 0° orientation. For the long-range stage, the spatial weight-
ing function of the long-range filter is shown together with the spatial extend of the
inhibitory short-range interactions dashed circle.

stages, namely a combination stage where bottom-up and top-down inputs are
fused, and a stage of long-range interaction.

Combination Stage. At the combination stage, feedforward complex cell re-
sponses and feedback long-range responses are combined. Feedforward inputs Cy
and feedback inputs Wy are added and subject to shunting inhibition

Vg = —avVy + (Bv — Vi) nety where netyg = Cyp + oy Wy . (1)

Solving the equation at equilibrium 9;Vy = 0 results in a normalization of activity

nety
Vop=0y—— . 2

b= by ay + nety 2)
The weighting parameter dy = 2 is chosen so that dimensions of Cy and Wy are
approximately equal, the decay parameter ayy = 0.2 is chosen small compared
to nety, and By = 10 scales the activity to be sufficiently large for the subsequent
long-range interaction. For the first iteration step, feedback responses Wy are set
to Cy.

Long-Range Interaction. At the long-range stage the contextual influences on
cell responses are modeled. Orientation-specific, anisotropic long-range connec-
tions provide the excitatory input. The inhibitory input is given by isotropic
interactions in both the spatial and orientational domain. Long-range connec-
tions are modeled by a filter whose spatial layout is similar to the bipole filter as
first proposed by Grossberg and Mingolla (1985). The spatial weighting function
of the long-range filter is narrowly tuned to the preferred orientation, reflecting
the highly significant anisotropies of long-range fibers in visual cortex (Bosking
et al.,, 1997). The size of the long-range filter is about four times the size of
the RF of a complex cell, while the size of the short-range connections is about
2.5 times the size of the complex cell RF, as sketched in Fig. 1.



20 T. Hansen and H. Neumann

Essentially, excitatory input is provided by correlation of the feedforward
input with the long-range filter By. A cross-orientation inhibition prevents the
integration of cells responses at positions where responses for the orthogonal
orientation also exist. The excitatory input is governed by

nety = [Vo— Vye] "% By | (3)

where x denotes spatial correlation and [x]T = max{z,0} denotes half-wave
rectification.

The profile of the long-range filter is defined by a directional term D, and a
proximity term generated by a circle C,. of radius r = 25 which is blurred by an
isotropic 2D Gaussian G, 0 = 3. The detailed equations read

By aro(x,y) =Dy, - CrxGo (4)
cos(%ﬂgp) if || < a

D, = . ()
0 otherwise ,

where ¢ = () is defined as atan2 (|yg|, |zg|) and (x4, yo)T denotes the vector
(x,9)T rotated by 6. The operator - denotes the point-wise multiplication of
two filter kernels or 2D matrices. The parameter a = 10° defines the opening
angle of 2a of the long-range filter. The factor %/2 maps the angle ¢ in the
range [—a,a] to the domain [—7/2,7/2] of the cosine function with positive
range. A plot of the long-range filter for a reference orientation of 0° is depicted
in (Fig. 1) (top right inset).

Responses which are not salient in the sense that nearby cells of similar ori-
entation preference also show strong activity should be diminished. Thus an in-
hibitory term is introduced which samples activity from both orientational g, ¢,
0, = 0.5, and spatial neighborhood G, ., osur = 8:

nete_ = net;_ @ 50'079 * Gasur ’ (6)

where ) denotes correlation in the orientation domain. The orientational
weighting function g,, ¢ is implemented by a 1D Gaussian g,,, discretized on
a zero-centered grid of size onyax, normalized, and circularly shifted so that the
maximum value is at the position corresponding to 6. The spatially inhibitory
interactions G,_,, model the short-range connections.

Excitatory and inhibitory terms combine through shunting interaction

OWy = —aw Wy + Buw Vy (1 +nt netg') —n~ Wynet, . (7)

The equation is solved at equilibrium, resulting in a nonlinear, divisive interac-
tion
Vo (1 + 1T nety )

Wy =
o =bw aw + 1~ nety

®)

where ay = 0.2 is the decay parameter and n* = 5, = = 2, and By = 0.001
are scale factors.
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Activity Wy from long-range integration is gated by the activity Vy and thus
implements a modulating rather than generating effect of lateral interaction on
cell activities (Hirsch and Gilbert, 1991; Hué et al., 1998). The result of the
long-range stage is fed back and combined with the feedforward complex cell
responses, thus closing the recurrent loop. The shunting interactions governing
both the long-range interactions and the combination of feedback and feedfor-
ward input ensure rapid equilibration of the dynamics after a few recurrent cy-
cles resulting in graded responses within a bounded range of activations (“analog
sensitivity”, Grossberg et al., 1997).

The model is robust against parameter changes which is mainly caused by
the compressive transformation equations employed. For the combination of re-
sponses (Eq. 2), however, it is crucial to have activities in both streams of a
similar order of magnitude. Also the relative RF sizes must not be substantially
altered.

2.2 Junction Detection by Read-Out of Distributed Information
Using a Measure of Circular Variance

As stated above, corners and junction are characterized by points in the vi-
sual space where responses for multiple orientations are present and high overall
activity exists within a hypercolumn. For the read-out of this distributed infor-
mation a measure of circular variance is used to signal multiple orientation. The
overall activity is given by the sum across all orientation within a hypercolumn.
Thus, the junction map J for a distributed hypercolumnar representation such
as the activity of the long-range stage Wy (Eq. 8) is given by

J = circvar(W)? Z Wy , where circvar(W)=1— ’Z W exp(?iﬁ)‘/ Z Wy .
0 0 0
(9)

The function “circvar” is a measure of the circular variance within a hyper-
column. The squaring operation enhances the response if the circular variance
assumes high values. Circular variance takes values in the range [0, 1]. A circu-
lar variance of 0 denotes a single response, whereas a value of 1 occurs if all
orientations have the same activity.

To precisely localize the junction points, the junction map J is first smoothed
with a Gaussian G,, 0 = 3. Junction points are then marked as local maxima
whose strength must exceed a fraction k£ = 0.25 of the maximum response in the
smoothed junction map. Local maxima are computed within a 3 x 3 neighbor-
hood.

3 Simulation and Evaluation

In this section we show the competencies of the proposed junction detection
scheme for a variety of synthetic and natural images. In particular, the local-
ization properties of the new scheme and the detection performance on natural
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images are evaluated. In the first part of this section, we compare the detected
junctions based on recurrent long-range responses to junction responses as ob-
tained for a purely feedforward model of complex cells to demonstrate the ad-
vantages of the recurrent long-range interaction. In the second part, we compare
the new scheme with two junction detection schemes widely used in computer
vision, based on Gaussian curvature and the structure tensor. Receiver operator
characteristic (ROC) analysis (Green and Swets, 1974) is used for a threshold-
free evaluation of the different approaches (Hansen, 2002). Model parameters
as specified in Sec. 2 are used in all simulations, and 12 recurrent cycles were
computed to generate the long-range responses.

3.1 Evaluation of Junction Detection Based on Feedforward vs.
Recurrent Long-Range Processing

In order to focus on the relative merits of the recurrent long-range interactions
for the task of corner and junction detection, the proposed scheme is evaluated
using two different kinds of input, namely the activity Wy of the long-range stage
and the purely feedforward activity Cy of the complex cell stage.

Localization of Generic Junction Configurations. From the outset of cor-
ner and junction detection in computer vision, the variety of junction types has
been partitioned into distinct classes like T-, L-, and W-junctions, (Huffman,
1971), and more recently, ¥-junctions (Adelson, 2000). In the first simulation we
compare the localization accuracy of junction responses based on feedforward vs.
recurrent long-range responses for L-, T-; Y-, W- and ¥-junctions (Fig. 2). For
all junction types, the localization is considerably better for the method based
on the recurrent long-range interaction.

Processing of Images. We have also evaluated the junction detection per-
formance on real world images, such as cubes within a laboratory environment
(Fig. 3). At the complex cell stage, many false responses are detected due to
noisy variations of the initial orientation measurement. These variations are re-
duced at the long-range stage by the recurrent interaction, such that only the
positions of significant orientation variations remain. We have further employed
ROC analysis for the threshold-free evaluation of the detection performance.
The results show a better performance of the recurrent approach over the full
range of thresholds (Fig. 3, right).

3.2 Evaluation of Detection Performance Compared to Other
Junction Detection Schemes

In this section we compare the new scheme based on recurrent long-range interac-
tion with two junction detection schemes proposed in computer vision that utilize
only localized neighborhoods, namely the structure tensor (Forstner, 1986; Har-
ris, 1987; Nitzberg and Shiota, 1992) and Gaussian curvature (Beaudet, 1978;
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Fig. 2. Distance in pixels from ground-truth location ordinate for L-, T-; Y-, W- and
¥-junctions abscissa. Deviation from ground-truth position is considerably smaller for
the recurrent long-range interaction open bars compared to the complex cell responses
solid bars.
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Fig. 3. Simulation of the junction detection scheme for cube images in a laboratory
environment. The size of the images is 230 x 246 pixels. Left to right: Input image;
detected corners and junctions based on the complex cell responses (CX); based on the
long-range responses (LR); and the corresponding ROC curves (solid lines LR; dashed
lines CX). For better visualization, a cut-out of the left part of the ROC curves is
shown. The recurrent long-range interaction results in a decrease of circular variance
along object contours and thus eliminates a number of false positive responses.

Zetzsche and Barth, 1990). Both schemes compute the first- or second-order
derivatives of the image intensity values, respectively. For a fair comparison of
methods one has to ensure that all junction detectors operate on (at least ap-
proximately) the same scale (Lindeberg, 1998). The derivatives used in the two
standard methods are therefore approximated by Gaussian derivatives whose
standard deviations are parameterized to fit the successive convolution of filter
masks used to compute the complex cell responses. We show the results of the
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ROC analysis when applied to a number of artificial and natural images, partic-
ularly a series of cube images within a laboratory environment (Fig. 3), and a
second set of images containing an artificial corner test image from Smith and
Brady (1997), a laboratory scene from Mokhtarian and Suomela (1998) and an
image of a staircase (Fig. 5). For all images, the ROC curve for the new scheme
based on recurrent long-range interactions is well above the ROC curves for the
other schemes, indicating a higher accuracy of the new method.
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Fig. 4. Top row: Cube images in a laboratory environment. Bottom: ROC analysis of
junction detection performance of the new scheme solid compared to other schemes

based on Gaussian curvature dashed, and on the structure tensor dotted. For better
visualization, a cut-out of the left part of the ROC curves is shown.

4 Conclusion

We have proposed a novel mechanism for corner and junction detection based
on a distributed representation of orientation information within a cortical hy-
percolumn. The explicit representation of a number of orientations in a cortical
hypercolumn is shown to constitute a powerful and flexible, multipurpose scheme
which can be used to code intrinsically 1D signal variations like contours as well
as 2D variations like corners and junctions. Orientation responses within a hyper-
column can be robustly and reliably computed by using contextual information.
We have proposed a model of recurrent long-range interactions to compute co-
herent orientation responses. In the context of corner and junction detection
we have demonstrated the benefits of using contextual information and recur-
rent interactions, leading to a considerable increase in localization accuracy and
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Fig. 5. Top: Input images. Bottom: ROC analysis of junction detection performance of
the new scheme solid compared to other schemes based on Gaussian curvature dashed,
and on the structure tensor dotted. For better visualization, a cut-out of the left part
of the ROC' curves is shown.

detection performance compared to a simple feedforward scheme and to local
methods as proposed in computer vision. In the context of neural computation
we have shown that junctions can be robustly and reliably represented by a
suggested biological mechanism based on a distributed hypercolumnar represen-
tation and recurrent colinear long-range interactions.
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