SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Automatic Wrapper Generation for Multilingual
Web Resources

Yamada, Yasuhiro
Graduate School of Information Science and Electrical Engineering, Kyushu University

Ikeda, Daisuke

Computing and Communications Center, Kyushu University

Hirokawa, Sachio
Computing and Communications Center, Kyushu University

https://hdl.handle. net/2324/6077

HhRI1EZR : Lecture Notes in Computer Science. 2534, pp.107-113, 2002-11. Springer
N—=2 3

VEFIRS(% : © 2002 Springer

Automatic Wrapper Generation for Multilingual
Web Resources

Yasuhiro Yamada', Daisuke Ikeda?, and Sachio Hirokawa?

! Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 812-8581, Japan
yshiro@matu.cc.kyushu-u.ac. jp
2 Computing and Communications Center,

Kyushu University, Fukuoka 812-8581, Japan
{daisuke, hirokawa}@cc.kyushu-u.ac.jp

Abstract. We present a wrapper generation system to extract contents
of semi-structured documents which contain instances of a record. The
generation is done automatically using general assumptions on the struc-
ture of instances. It outputs a set of pairs of left and right delimiters sur-
rounding instances of a field. In addition to input documents, our system
also receives a set of symbols with which a delimiter must begin or end.
Our system treats semi-structured documents just as strings so that it
does not depend on markup and natural languages. It does not require
any training examples which show where instances are. We show exper-
imental results on both static and dynamic pages which are gathered
from 13 Web sites, markuped in HTML or XML, and written in four
natural languages. In addition to usual contents, generated wrappers ex-
tract useful information hidden in comments or tags which are ignored by
other wrapper generation algorithms. Some generated delimiters contain
whitespaces or multibyte characters.

1 Introduction

There are useful information hidden in enormous pages on the Web. It is difficult,
however, to extract and restructure them because these pages do not have an
explicit structure like database systems. To use pages on the Web like a database
system, it is necessary to extract contents of pages as records or fields.

A wrapper is a procedure to extract instances of records and fields from Web
pages. A database consists of some records, and a record consists of some fields.
An instance is an instantiated object of a record or field. For example, in result
pages of a typical search engine, a record is a tuple (page title, caption, URL),
a field is an element of a record.

Thinking of the enormous pages on the Web, it is hard to generate wrappers
manually. Basically, there are three approaches to generate wrappers. The first
approach is based on machine learning [6, 7] using training examples. A problem
of machine leaning approaches is that making training examples is too costly.

The second approach is to assume input documents are only HTML and
use knowledge on HTML [2,4]. In [4], record boundaries are determined by

combination of heuristics one of which is a boundary is near some specific tags.
This approach does not require any training examples, but this is not applicable
to other markup languages.

The third approach exploits regularity of input documents instead of back-
ground knowledge or training examples. IEPAD [3] tries to find record separators
using the maximum repeat of a string. The data extraction algorithm in [8] also
finds regularity of lists in input HTML files. Our system, similarly, determines
common parts in given documents, then finds delimiters on common parts. A
superiority of our system is to find common parts roughly and to be applicable
to data with some irregularity.

The authors developed a prototype of contents extraction system, called
SCOOP [9]. It is based on a very simple idea that frequent substrings of in-
put documents are useless and are not contents. Like other wrapper generation
systems, SCOOP also has problems in Section 1.1. The main contribution of
this paper is to propose, based on SCOOP, a full automatic wrapper generation
system without any training examples. An input for the system is a set of sym-
bols, called enclosing symbols, and a set of semi-structured documents containing
instances of a record. A generated wrapper is an LR wrapper [6, 7].

We show experimental results in Section 3. Input files are HTML and XML
files gathered from 13 sites, and contents of them are written in four languages
(Chinese, English, German, and Japanese). A generated wrapper extracts in-
stances of fields with high accuracy. It also extracts useful information hidden
in comments or tags which are ignored by other wrapper generation algorithms.

1.1 Owur Contributions

Multilingual System: Although Web resources are written in many languages,
many other wrapper generation systems are mono- or bilingual. Our system
treats input semi-structured documents just as strings, so that it is multilingual®
in two meanings, for markup and natural languages. In the near future, XML files
will become widespread on the Web. But a wrapper from XML files has not been
considered because they have explict structures by nature. Since restructuring
of semi-structured documents is an important goal of wrapper generation, it is
important to generate wrappers from XML files.

Dynamic and Static Pages: The target of other wrapper generation algo-
rithms is a set of dynamic pages. Dynamic pages are created automatically by
some database programs or search facilities. Dynamic pages ideally have com-
pletely the same template, so that such pages seem to be easy to generate wrap-
pers. But, in practice, dynamic pages of a site have some irregularities. This is
one of most difficult problem of wrapper generation systems.

Since static pages usually have larger irregularities than dynamic ones, a
wrapper generation system which works well for static pages also can be expected
to work well for dynamic pages with some irregularities. Therefore, wrappers are
important for both static and dynamic pages. SCOOP [9] can make a wrapper

% S0 is SCOOP [9], but its implementation is bilingual (English and Japanese).

from such static pages, but it can not handle dynamic pages. The presented
system is good at both static and dynamic pages.

The Number of Instances: In an address book, for example, some does not
have an email address, and other have some email addresses. More generally, we
must consider the case that some instances of a record have different number of
instances of a field. In SCOOP[9], instances in a field must be instantiated from
different fields. In other words, all people in the address book must have at most
one email address. The presented system overcomes this problem.

2 Main Algorithm

Our wrapper generation algorithm receives a set of semi-structured documents
including some instances of a record. It treats each semi-structured document
as just string. It also receives F; and E,, where F; and F, are sets of symbols
called enclosing symbols. It outputs a set of rules extracting instances of each
field.

The algorithm consists of three stages, contents detection, rule extraction,
and deleting and integrating rules. In contents detection stage, it divides roughly
each input string into common and uncommon parts.

In rule extraction stage, it extracts a set of rules. Roughly speaking, a rule is
a pair of delimiters, called a left delimiter and a right delimiter. A left delimiter
is a string ending with a symbol in F; and a right delimiter is a string beginning
with a symbol in E,.. We define the length of a delimiter to be the number of
enclosing symbols. A rule is a pair (I,r) of left and right delimiters such that [
and r have the same number of occurrences on each input string.

In deleting and integrating rules stage, it deletes useless rules. It is difficult
to decide whether a field is useful or not. So we assume that a field is useless if
only less than half of input documents have instances of it. Finally, it integrates
rules extracting the same string and treats them as a rule.

2.1 Contents Detection

In this stage, our wrapper generation algorithm divides each input string into
two parts roughly, common and uncommon parts. It utilizes the algorithm
FindOptimal developed in [5]. Our algorithm makes full use of the fact that
uncommon parts of semi-structured documents well cover contents [5].

In [5], it is experimentally shown that, given news articles written in English
or Japanese gathered from a news site, FindOptimal extracts contents with high
accuracy — more than 97%.

The original FindOptimal preprocesses given strings. It converts successive
whitespaces into a space because whitespaces are ignored when HTML files are
displayed by a browser. The current version uses given strings as they are.

2.2 Rule Extraction

In this stage, the algorithm receives a set of strings, a set of common and un-
common divisions of strings, and a set of enclosing symbols.

For each uncommon part, the algorithm finds two enclosing symbols . and
such that they cover whole the uncommon part and they are the nearest from
the uncommon part. The first candidate of a left delimiter ends with [, and
begins with the previous enclosing symbol. Similarly, the first candidate of a
right delimiter begins with 7, and ends with the next enclosing symbol.

If two candidates have different numbers of occurrences, then the algorithm
increases the length of the frequent candidate. If I, (r;) is more frequent than ry
(le), then it increases the length of the left (right) candidate until the previous
(next) enclosing symbol. It continues this until the occurrence of left and right
candidates (I,r) are the same.

If [and r are the same string or they are corresponding tags (e.g., I =
<tagA><tagB> and r = </tagB></tagA>), the algorithm increases the
length of both candidates and checks the number of their occurrences.

2.3 Deleting and Integrating Rule

Let R be a set of candidates for rules. It is necessary to delete and integrate
candidates in R because some of them extract the same string or other of them
are useless.

In our setting, a rule is allowed to extract no instances of a field from some
input strings. We put a restriction on a rule such that it must extract instances
from more than half of input strings. Otherwise the algorithm deletes it from R.

Next, it integrates candidates on R extracting the same string from each
string. For example, if these two candidates, (<P><P>, </P>\n) and (uuu
<P><P> , </P>\n,), extract the same string from each input string, it in-
tegrates these two candidates and treats them as a rule.

3 Experiments

We implement the algorithm described in the previous section in Python. Input
files are HTML and XML files, and contents of them are written in four languages
(Chinese, English, German, and Japanese). They are gathered from 13 sites (see
Table 1) and the number of all gathered files is 1197. We set E; and E, are
sets of “>” and a whitespace (space, tab, newline characters), and “<” and a
whitespace, respectively.

To evaluate the results, for each site the authors see some HTML/XML
sources in advance and create a wrapper manually. Then we compare two ex-
traction results from wrappers created manually and automatically.

Table 2 and Table 4 have results of static and dynamic pages. The second
column “Field (Accuracy)” has attribute names of fields in hand-coded wrappers,
that is, the fields expected to be extracted and their accuracies. Fv; shows the
number of fields which authors overlook when they created wrappers manually.
FEvy shows the number of fields extracted wrongly, so we want Fvy to be small.

Table 1. URL list of 13 sites described in this section. The fourth column stands for the
number of files. We gathered 1197 files from the sites. “Search” and “Mail” in Type
column mean that these pages are result pages of search engines and mail archives,
respectively. “News” pages are gathered from online news sites. “Manual” stands for
online manual pages. “Database” means that we got data from some public database.
“kyushu-u” is now under-construction and not public yet

IID [URL [Language[#[Type ‘
HTML
altavista |http://www.altavista.com/ English | 17 |Search
freebsd http://docs.freebsd.org/mail/ English | 49 |Mail
ftd http://www.ftd.de/ German [101 [News
java http://java.sun.com/j2se/1.3/docs/ English | 30 [Manual
lycos http://www.lycos.com/ English 50 |Search
peopledaily |http://www.peopledaily.co.jp/ Chinese [127 |News
redhat http://www.redhat.com/mailing-lists/ English | 50 |Mail
reuters http://www.reuters.de/ German | 50 [News
sankei http://www.sankei.co.jp/main.htm Japanese [108 |News
yahoo http://www.yahoo.com/ English | 45 |Search
XML
kyushu-u — Japanese | 50 |Database
mainichi http://www.mainichi.co.jp/digital/newsml/ |Japanese |470 |News
sigmod http://www.acm.org/sigmod/record/xml/ |English | 50 |Database

3.1 Static Pages

As described in Section 1.1, most of other wrapper generation algorithms as-
sume that input documents are created dynamically. Such dynamic pages are
created by filling a template so that common parts created by one template are
completely same. So, it is difficult to create wrappers from static pages than
from such dynamic ones. Table 2 shows results of static pages and our algorithm
works well for such pages.

Table 3 shows the wrapper created on “mainichi” which is a set of XML
files. We can see that tags in the table are completely different from those of
HTML. Our algorithm finds rules for two “date” and two “keyword” fields. We
can see in rules whitespaces which are just for readability of XML sources. In [5,
9], successive whitespaces are compressed into a space, so SCOOP in [9] can not
find such a rule.

The algorithm fails to find a rule for “Body text” field. A body text in
“mainichi” is in between “\n<p>" and “\n<p>". They are the same, so the
system tries to find delimiters with longer lengths. However, the right delimiter
is followed by date which is variable, so that the system fails to find a good right
delimiter. Other 0% fields in Table 2 also occur by similar problems.

Our system succeeds to find the field “second headline” from “sankei” al-
though there are variations of the number of its instances: 26 files have no in-

Table 2. Results of static pages

1D Field (Accuracy) Evi|Evs
ftd page title (0%), headline (100%), summary of article| 6 | 5

(100%), body (100%)
java |classname (90%), date (100%), return (100%), body| 1 | 2
(100%)
mainichi |headline (100%), date (100%), keyword (100%), body| 1 | 0
(0%), related word (100%), other headline (100%)
peopledaily|page title (100%), date (100%), headline (98.4%), body| 4 | 2
(99.2%)
reuters |headline (100%), date (100%), body (100%) 413
sankei |headline (100%), second headline (100%), body (100%) | 0 | 0

stances of “second headline”*, 21 files have two instances, 2 files have three
instances, and the other files have one instance. Our system does not mind the

Table 3. A part of wrapper created by our system from “mainichi”

Field [Wrapper

Datel </HeadLine>\n\t\t\t\t<DateLine>
< /DateLine>\n\t\t\t\t</CreditLine_xml:lang="ja”’ >
Date2 ulu
u)</p>
t\t\t\t<KeywordLine>
. Wy
eyword < /KeywordLine>\n\t\t\t\t</NewsLines>
Kevword? <midasi>\n\t\t\t\t\t\t</kanrenmidasi>
Y < /kanrenmidashi>\n\t\t\t\t\t\t</midasibun>
Body text|can not extract rule

number of instances of a field (see Section 1.1). From this data set, the sys-
tem finds a rule whose left delimiter contains a multibyte character, “m< /font>", where “@’ is a multibyte character and
used for the header symbol for a headline.

Some useful contents hidden in meta tags or comments are extracted. An
article in “ftd” contains a brief summary of the article in a meta tag, and the
date of the article in a comment tag.

In Table 2, there are some fields whose accuracies are high but not perfect.
The reason of partial failure is in input files. We assume instances of a field
are surrounded by the same pair of strings. But, sometimes there are some files
which have instances surrounding by other strings. For example, most instances
of a field are followed by “<abc” but the other instances by “<ABC”. Our

4 In these files, there exist no delimiters for the second headline.

algorithm fails to extract contents from the latter instances because it searches
strings case-sensitively.

3.2 Dynamic Pages

A typical dynamic page is a search result. We select three major search engines
and two mail archives (see Table 4). A search result contains the title of a found
page, URL, and brief description of the page. A typical page of mail archives
contains the body of a found mail, subject, and some mail headers. Table 4

Table 4. Results of dynamic pages

1D Field (Accuracy) FEuvi|Evs
altavista|title of page (100%), caption (100%), URL (100%) 714
lycos |title of page (100%), caption (95.5%), URL (100%) 513
yahoo |title of page (100%), caption (100%), URL (100%) 711
freebsd |Date (100%), From (100%), To (93.9%), Subject| 0 | 2
(100%), Message-ID (100%), content (100%)
redhat |Subject (100%), content (98%) 318

shows the presented algorithm treats such pages well although SCOOP [9] failed
to find rules.

We also have results of the following two databases: “sigmod” and “kyushu-
u.” They consist of XML files. “sigmod” is gathered from “OrdinarylssuePage”
in “ACM SIGMOD Record: XML Version.” A record has following fields: title
of the article, author name(s), volume, number, year, start and end pages. All
of these fields are completely found by our algorithm. It also successfully finds
unique ID number in an XML tag and created time in a comment.

“kyushu-u” stands for a database of academics in Kyushu university. A file
corresponds to an academic’s record. A record contains his/her name, affiliation,
major, mail address, publications, classes and so on. An XML file of this data set
has tags including Japanese characters, but it is not a problem for our system.
It found rules containing tags of Japanese characters.

4 Conclusion

We presented a simple wrapper generation algorithm. Any additional inputs are
not necessary except that enclosing symbols each of which is the first or last
letter of a delimiter. The system is suitable for any semi-structured documents.
This is due to simplicity of our system: it treats input documents just as strings
and utilizes regularity of instances.

Extraction is successful for both dynamic and static pages while SCOOP
in [9] failed to find rules from dynamic pages because SCOOP depends heav-
ily on FindOptimal in [5] and FindOptimal fails to divide dynamic pages well

into common and uncommon parts. Our system also found useful information
hidden in comments and attribute values of tags, such as meta tags. Presented
experiments show that whitespaces play an important role for structuring data.
These results contrast to other wrapper generation algorithms because they ig-
nore inside of tags and comments, and whitespaces.

However, sometimes the system failed to find delimiters. Typically, this hap-
pens when instances of a field are surrounded by simple corresponding tags, such
as, “” and “". Such corresponding tags frequently appear in HTML
documents and has nothing to do with the structure we want to extract. There-
fore, we do not treat such tags as a rule. It will be a good solution to use tree
wrappers instead of string based wrappers.

An important future work is to combine extracted fields into one record.
In [8], the same problem was discussed. However, our case is more difficult be-
cause the setting in [8] is that each file must have multiple instances of a record.
Our wrapper generation system can deal with both single and multiple cases.

References

1. N. Ashish and C. Knoblock, Wrapper Generation for Semi-structured Internet
Sources, Proc. of Workshop on Management of Semistructured Data, 1997.

2. D. Buttler, L. Liu and C. Pu, A Fully Automated Object Extraction System
for the World Wide Web, International Conference on Distributed Computing
Systems, 2001.

3. C.-H. Chang and S.-C. Lui, IEPAD: Information Extraction Based on Pattern
Discovery, Proc. of the Tenth International Conference of World Wide Web
(WWW2001), pp. 4-15, 2001.

4. D. W. Embley, Y. Jiang and Y. -K. Ng, Record-Boundary Discovery in Web
Documents, Proc. of ACM SIGMOD Conference, pp. 467-478, 1999.

5. D. Tkeda, Y. Yamada and S. Hirokawa, Eliminating Useless Parts in Semi-
structured Documents using Alternation Counts, Proc. of the Fourth Interna-
tional Conference on Discovery Science, Lecture Notes in Artificial Intelligence,
Vol. 2226, pp. 113-127, 2001.

6. N. Kushmerick, D. S. Weld and R. B. Doorenbos, Wrapper Induction for Infor-
mation Extraction, Intl. Joint Conference on Artificial Intelligence, pp. 729-737,
1997.

7. N. Kushmerick, Wrapper Induction: Efficiency and Expressiveness, Artificial
Intelligence, Vol. 118, pp. 15-68, 2000.

8. K. Lerman, C. A. Knoblock and S Minton, Automatic Data Extraction from Lists
and Tables in Web Sources, Adaptive Text Extraction and Mining workshop,
2001.

9. Y. Yamada, D. Tkeda and S. Hirokawa, SCOOP: A Record Extractor without
Knowledge on Input, Proc. of the Fourth International Conference on Discovery
Science, Lecture Notes in Artificial Intelligence, Vol. 2226, pp. 428-487, 2001.

