
Solving the N-Body Problem with
the ALiCE Grid System

Dac Phuong Ho1, Yong Meng Teo2 and Johan Prawira Gozali2

1Department of Computer Network, Vietnam National University of Hanoi
144 Xuan Thuy Street, Hanoi, VIETNAM

hdphuong@vnuh.edu.vn
2Department of Computer Science, National University of Singapore

3 Science Drive 2, SINGAPORE 117543
teoym@comp.nus.edu.sg

Abstract. The grid enables large-scale aggregation and sharing of
computational resources. In this paper, we introduce a method for solving the
N-body problem on a cluster-grid using our grid system, ALiCE (Adaptive and
scaLable internet-based Computing Engine). The modified Barnes-Hut
algorithm allows the N-body problem to be solved adaptively using compute
resources on-demand. The N-body program is written using ALiCE object
programming template. Our experiments varying the number of bodies per task
and the number of computation nodes demonstrate the feasibility of exploiting
parallelism on a grid system.

1 Introduction

The grid [4, 5] promises to change the way we tackle complex problems. It enables
large-scale aggregation and sharing of computational, and data resources across
institutional boundaries. As technologies, networks, and business models mature, it is
expected to become commonplace for small and large communities of scientists to
create "Science Grids" linking their various resources to support human
communication, data access and computation.

The N-body problem is the study of how n number of particles will move under one
of the physical forces. Modern physics has found that there are only four fundamental
physical forces, namely: gravity, electro-magnetic, strong nuclear, and weak nuclear.
These forces have a few things in common: they can be expressed by using simple
formulas, they are all proportional to some properties of a particle (mass, electrical
charge, etc.), and they get weaker the further apart the particles are from each other
[3]. However, very small differences in initial conditions of an N-body problem can
lead to unpredictably differing results.

The simplest and most straightforward manner of modeling the N-body problem is the
direct method. Here, each pair of particles is visited in turn to calculate and
accumulate the appropriate forces. Conceptually, this solution is implemented as two

dcsteoym
Asian Computing Science Conference, Lecture Notes in Computer Science xxx, pp. x-xx, Springer-Verlag, Hanoi, Vietnam, December 2002.

nested loops, each running over all particles. This algorithm scales as N-squared, and
cannot be considered sufficiently efficient to enable the solution of interesting (large
N) problems. A galaxy might have, to say 1011 stars. This suggests repeating 1022
calculations. Even using an efficient approximate algorithm, which requires Nlog2N
calculations, the number of calculations is still enormous (1011log21011). It would
require significant time on a single processor system. Even if each calculation takes
one microsecond, it would take 109 years for N2 algorithm and almost a year for
Nlog2N algorithm. Therefore, there is a need for a better and faster way to solve the
N-body problem.

This paper presents a distributed object-oriented method for solving the N-body
problem using our grid system ALiCE (the Adaptive and scaLable internet-based
Computing Engine). ALiCE also makes it possible to solve the N-body problem
adaptively, using resources on-demand. Our experiments showed a reduction in
parallel execution times as we increase the number of available compute resources.

This paper is organized as follows. Section 2 presents the Barnes-Hut algorithm - an
algorithm that uses a divide-and-conquer strategy to recursively sub-divide the N-
body problem space to facilitate calculation of inter-particle distances. Section 3
presents ALiCE – our Java-based grid computing system [6]. The mapping of the N-
body problem onto the ALiCE framework is presented in Section 4. We present our
experimental results in Section 5, and the summary of our work in Section 6.

2 Barnes-Hut Algorithm

Suppose we compute the gravitational force on the earth from the known stars and
planets. A glance skyward on a clear night reveals a dauntingly large number of stars
that must be included in the calculation, each one contributing a term to the force sum.

D

D

Andromeda

Earth

r = distance to center of mass
 location of center of mass

x =

Figure 1: Viewing the Andromeda Galaxy from Earth

One of those dots of light we might want to include in our sum is, however, not a
single star (particle) at all, but rather the Andromeda galaxy, which itself consists of
billions of stars. These stars appear so close that they appear as a single dot to the
naked eye. We model the Andromeda galaxy as a single point, located at the center of

mass of the Andromeda galaxy and with a mass equal to the total mass of the
Andromeda galaxy. This is indicated in Figure 1, with an “x” marking the center of
mass.

Since the ratio
r
D, is so small, we can accurately replace the sum over all stars in

Andromeda with one term at their center of mass. D denotes the width and height of
the box containing Andromeda, and r is the distance between Andromeda and Earth
centre of masses. We explain this in more detail below.

D

D

Andromeda

Earth

r = distance to center of mass
= location of center of mass

D1

D1

Vulcan

r1

x

Figure 2: Replacing Clusters by their Centers of Mass Recursively

This idea is hardly new. Indeed, Newton modeled the earth as a single point mass
located at its center of mass in order to calculate the attracting force on the falling
apple, rather than treating each tiny particle making up the earth separately. What is
new is applying this idea recursively. First, it is clear that from the point of view of
an observer in the Andromeda galaxy that our Milky Way galaxy can also be
approximated by a point mass at its center of mass. But more importantly, within the
Andromeda (or Milky Way) galaxy itself, this geometric picture repeats itself as
shown below: As long as the ratio D1/r1 is also small, the stars inside the smaller box

can be replaced by their center of mass in order to compute the gravitational force on,
say, the planet Vulcan. This nesting of boxes within boxes can be repeated recursively
(see Figure 2).

Details of Barnes-Hut algorithm can be found at [2]. This algorithm consists of two
main phases:

a. Creating a data structure to represent the space. For example, in 3D this can be
modeled as the OctTree, and in 2D using the QuadTree.

b. Traversing the tree to carry out the force calculations. This is accomplished by a

simple post-order traversal of the tree, i.e., the child nodes are processed before
their parent node. Since the primary objective is to maximize efficiency in
calculating inter-particle distances, a group of particles "far away enough” is
treated as a single particle with a composite mass, located at the center of mass of
the array. Thus, for each particle in turn, the tree is traversed starting from the
topmost "universe" node. The spatial extent of the node is divided by the
distance from the center of mass of the node to the particle. If this quotient is less
than a specified quantity called the theta parameter, the particles in the node are
"far away enough" to be considered as a single particle. If the quotient is greater
than theta, the tree is recursively descended.

2.1 Task Partitioning

With the Barnes-Hut algorithm mentioned above, the first phase of creating tree and
calculating the center of mass and total mass must be done serially. But, with the
QuadTree created, new positions for each body can be calculated independently.
Thus, second phase of the algorithm can be done in parallel.

Another important aspect of the algorithm is that execution time for the first phase is
much lower than that of the second phase. In Table 1 below, we can see the greater
the number of bodies, the lower the ratio of time between the first stage and the total
of time. Therefore, we can reduce total execution time by calculating positions for
each body in parallel.

Number of bodies First Phase
Execution Time (s)

Total Sequential
Execution Time (s)

1000 1 23
2000 4 193
4000 5 403
8000 9 1537

10000 11 2401
15000 17 5349
20000 23 9428

Table 1: Sequential Execution Time Varying the Number of Bodies

3 The ALiCE Grid System

ALiCE (Adaptive and scaLable internet-based Computing Engine) is a portable
software technology for developing and deploying general-purpose grid applications
and systems [5]. It virtualizes computer resources on the Internet/intranet into one
computing environment through a platform-independent consumer-producer resource-
sharing model, and harnesses idle resources for computation to increase the usable
power of existing systems on the network.

3.1 ALiCE Consumer-producer Model

Figure 3 shows our ALiCE consumer-producer model. Applications are submitted by
the consumer for execution on idle computers (referred to as producers) through a
resource broker residing on another computer. The resource broker regulates
consumer’s resource demand and producer idle cycles, and dispatches tasks from its
task pool for execution at the producers. A novel application-driven task-scheduling
algorithm allows a consumer to select the performance level for each application.

ALiCE supports sequential or parametric computer applications to maximize
computer throughput. For parallel computer applications, ALiCE breaks down large
computations into smaller tasks and distribute for execution among producers tied to a
network to exploit parallelism and speedup.

Parallel programming models are supported through a programming template library.
Task and result objects are exchanged between consumers and producers through the
resource broker.

ALiCE is scalable and is implemented in Java, Java Jini [1] and JavaSpaces [7] for
full cross-platform portability, extensibility and scalability. To the best of our
knowledge, ALiCE is the first grid-computing implementation in the world developed
using Sun’s Java Jini and JavaSpaces.

Efficient task scheduling on a non-dedicated distributed computing environment is a
critical issue especially if the performance of task execution is important. The main
contributing factors include dynamic changes in computer workload and variations in
computing power and network latency. ALiCE’s load distribution technology is based
on a novel application-driven, adaptive scheduling strategy.

 interface to users
 launch point for

applications
 collection point for results

 and visualization
 …

CCoonnssuummeeCCoonnssuummeerr

 provide computing power
 executes tasks
 …

PPrroodduucceePPrroodduucceerr

Internet /
Intranet

 authentication
 application execution control
 resource management

 scheduling
 load balancing

 …

RReessoouurrccee BBrrookkeerr

tasks results

Figure 3: ALiCE Architecture

3.2 ALiCE Components

ALiCE consists of the following main components:

• A programming model consisting of class libraries and a set of design patterns to
support both sequential and parallel computer applications.

• A user interface supports the submission of task by consumers.

• A generic computing engine at each producer supports a number of functions. It
notifies the resource broker of its availability, monitors and sends its performance

to the resource broker, accepts tasks from the resource broker for execution and
estimates its execution performance and returns the result to the resource broker.

• A resource broker that hides the complexities of distributed computing, and
consists of three main components:

o Task Manager – This includes a consumer list containing all registered
consumers, a task pool containing computer applications submitted by
consumers, a task monitor that monitors the progress of task execution,
and for storing the application’s data and computed results.

o Resource Manager – This includes a producer list containing all
registered producers, a performance monitor containing workload and
performance information received from producers, and a security
manager.

o Task Scheduler – Based on the information supplied by the task
manager and resource manager, the scheduler performs task assignments
by matching the consumer’s computational requirement with the
available resources in the network.

3.3 ALiCE Object-based Programming Model

The ALiCE Programming Template in Figure 4 implements our TaskGenerator-
ResultCollector model. This model describes the basic components of a parallel
ALiCE application.

The TaskGenerator-ResultCollector model defines two entities: TaskGenerator and
ResultCollector. The TaskGenerator is executed at the Resource Broker, and is
responsible for generating new tasks. The Resource Broker distributes these tasks to
the Producers for execution. The Producers upon completion will send back the
results to the Resource Broker which in turn will send the results back to the
ResultCollector. The ResultCollector is executed at the Consumer, and it is
responsible for collecting results from the Resource Broker.

There are four components that make up the ALiCE programming template:
TaskGenerator, ResultCollector, Task, and Result. TaskGenerator component allows
application to be invoked at the resource broker by invocation of the user’s main
method. ResultCollector component allows application to be invoked at the
Consumer node, waiting for results to be returned from the Resource Broker. Task
component allows the producer nodes to return a Result object to the Resource Broker
upon completing the execution. Result component provides an interface for producer
to instantiate and returns any evaluated or intermediate data.

result

Consumer Resource
Broker

Producer 1

Producer 2

Producer n

task

.

.

.

Visualizer

task

task

results

4. ResultCollector at the
visualizer collects
results returned by
Resource Broker

1. TaskGenerator at
Resource Broker
initiates application and
produces a pool of task

2. The TaskExecute method is
run at the Producers

3. Result objects produced
are returned to the
Resource Broker

Figure 4: ALiCE Execution Model

4 Mapping the N-Body Problem onto ALiCE

In our implementation, the Consumer reads data for each body consisting of its
position, velocity, and mass, from a file. Data is transferred to the Resource Broker to
construct the QuadTree.

The Resource Broker would then send the tree and the body data to the Producers.
Each Producer will calculate the new position and velocity of body assigned to it.
The result of each calculation is returned to the Consumer.

However, if Producers calculate new positions one body at a time, the volume of data
transferred through network is very large, making the network’s latency as a possible
bottleneck for performance. This is true especially when the number of bodies is
large; thus, the ratio between computation time and data transfer time is small.

We can overcome this problem by calculating not only one but many (say m) body at
each Producer. As the result, we will save (m-1) network latency delays as the data for
the m bodies is sent to each producer in bulk.

Figure 5 shows the mapping of the application onto the ALiCE architecture.

Consumer
• Read data from file
• Receive results

Resource Broker
• Receive data from Consumer
• Create QuadTree
• Create Tasks
• Send Tasks to Producers

Producer

Producer

.

.

.

.

Producer
• Receive tasks
• Execute tasks
• Return results

tasks

results

dataConsumer
• Read data from file
• Receive results

Consumer
• Read data from file
• Receive results

Resource Broker
• Receive data from Consumer
• Create QuadTree
• Create Tasks
• Send Tasks to Producers

Resource Broker
• Receive data from Consumer
• Create QuadTree
• Create Tasks
• Send Tasks to Producers

ProducerProducer

ProducerProducer

.

.

.

.

Producer
• Receive tasks
• Execute tasks
• Return results

tasks

results

data

Figure 5: Mapping N-Body onto ALiCE Architecture

Our algorithm takes the number of bodies (N) as an argument. The number of tasks
that the Task Generator creates is N/M, where M is the number of bodies executed on
a producer. Section 2.1 discussed the partitioning algorithm. We cannot implement
the distributed Barnes-Hut trees because with the current version of ALiCE, producers
cannot communicate with each other. The N-body program is outline in Figure 6.

TASK_GENERATOR
1: A ←new Tree
2: Initialize (A) //Compute particle mass & center of mass
3: for i in 1 to N/M
4: T ←new TASK containing (Tree A, NodeID body[M])
5: send T to Resource Broker
6: endfor

RESULT_COLLECTOR
1: for i in 1 to N
2: RESULT R ←incoming Result from Resource Broker
3: Write R to the file
4: endfor

TASK_EXECUTE (Tree A, NodeID i)
1: Calculate the total force of all bodies to node i
2: Calculate the new position of M bodies in array body[M]
3: Result R ← new Result
4: Insert new positions into R
5: Return R

Figure 6: N-Body Problem Algorithm in ALiCE

5 Experiments

Our experiments were conducted on a cluster of 24 nodes consisting of eight Intel
Pentium III 866MHz with 256MB of RAM, and sixteen Intel Pentium II 400MHz
with 256MB of RAM running Red Hat Linux 7.0. Nodes are inter-connected via a
100Mbps switch.

5.1 Varying the Number of Bodies

In this experiment, we compare the sequential run with ALiCE (with only one
producer). The Producer, Consumer, and Resource Broker are run on Pentium III
nodes.

#Bodies Sequential Execution Time
(second)

ALiCE Execution Time for One
Producer (second)

100 1 4
200 2 4
500 13 6

1000 23 12
2000 193 41
4000 403 125
8000 1537 1427

10000 2401 4357
15000 5349 33457
20000 9428 43721

Table 2: Sequential and ALiCE (one Producer) Execution Time

0

5000

10000

15000

20000
25000

30000

35000

40000

45000

50000

0 5000 10000 15000 20000 25000

Number of Bodies

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sequential
1 Producer

Figure 7: Sequential versus ALiCE with one Producer

We observe that a single producer runs significantly slower than the sequential
version. We attribute this slow-down to the communication overhead between the
various components of the ALiCE system, i.e. the Resource Broker, the Producer and
the Consumer. Such communication overheads do not exist in the sequential version.

5.2 Varying Task Sizes and the Number of Tasks

We vary the numbers of producers and we partitioned the problem into different
number of bodies per ALiCE task yielding different number of tasks. The problem
size is 25,000 bodies.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15

Number of Producers

Ex
ec

ut
io

n
Ti

m
e

(s
)

Task size = 100
Task size = 200
Task size = 500

Figure 7: Grid Computation Time for 25,000 Bodies

Task size (#Bodies/task) #Tasks #Producers Execution Time (s)
100 250 2 72951
200 125 2 16574
500 50 2 4218
1000 25 2 1582
100 250 4 23673
200 125 4 2044
500 50 4 932
1000 25 4 957
100 250 6 6476
200 125 6 1900
500 50 6 713
1000 25 6 731
100 250 8 3350
200 125 8 1178
500 50 8 1141
1000 25 8 1239
100 250 10 2910
200 125 10 1100
500 50 10 980
1000 25 10 789

Table 7: Varying the Number of Bodies per Task and Task Size

As shown in Figure 7, the communication overheads due to data transfer and the
overhead of ALiCE can be amortized over task of larger granularity. For example,
the sequential execution time of over three hours is reduced to 16 minutes on four
producers with 25 tasks (1000 bodies per task).

6 Conclusion

We have discussed a distributed object-oriented method for solving N-body problems
on a cluster-based grid system using ALiCE that can be extended to include resources
in a wide-area distributed computing environment. The method provides on-demand
computing, i.e. the ability for applications to dynamically adapt to the computing
resources available. Our experiments show that our method reduces the time required
for solving N-body problems.

References

1. Arnold, K., O’Sullivan, B., Scheifler, W., Waldo, J., and Wollrath, A.: The Jini
Specification. The Java Technology Series. Addison-Wesley (1999)

2. Barnes, J. and Hut, P.: A Hierarchical O(N log N) force calculation algorithm.
Nature (1986) 324:446—449

3. Feynman, R.: The Character of Physical Law. The MIT Press (1965)
4. Foster I. and Kesselman C., editors.: The Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann Publishers (1999)
5. Foster, I., Kesselman, C., and Tuecke, S.: The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International J. Supercomputer Applications
(2001) 15

6. Gozali, J.P., ALiCE: Java-based Grid Computing System.: Honours Year Thesis.
National University of Singapore (2001)

7. Sun Microsystems: JavaSpaces Specification (1998)

	Barnes-Hut Algorithm
	2.1 Task Partitioning
	ALiCE Consumer-producer Model
	ALiCE Components
	ALiCE Object-based Programming Model
	Varying the Number of Bodies
	Varying Task Sizes and the Number of Tasks

