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Abstract. The grid enables large-scale aggregation and sharing of 
computational resources. In this paper, we introduce a method for solving the 
N-body problem on a cluster-grid using our grid system, ALiCE (Adaptive and 
scaLable internet-based Computing Engine). The modified Barnes-Hut 
algorithm allows the N-body problem to be solved adaptively using compute 
resources on-demand. The N-body program is written using ALiCE object 
programming template. Our experiments varying the number of bodies per task 
and the number of computation nodes demonstrate the feasibility of exploiting 
parallelism on a grid system. 

1 Introduction 

The grid [4, 5] promises to change the way we tackle complex problems. It enables 
large-scale aggregation and sharing of computational, and data resources across 
institutional boundaries. As technologies, networks, and business models mature, it is 
expected to become commonplace for small and large communities of scientists to 
create "Science Grids" linking their various resources to support human 
communication, data access and computation.  

The N-body problem is the study of how n number of particles will move under one 
of the physical forces. Modern physics has found that there are only four fundamental 
physical forces, namely: gravity, electro-magnetic, strong nuclear, and weak nuclear. 
These forces have a few things in common: they can be expressed by using simple 
formulas, they are all proportional to some properties of a particle (mass, electrical 
charge, etc.), and they get weaker the further apart the particles are from each other 
[3]. However, very small differences in initial conditions of an N-body problem can 
lead to unpredictably differing results.  

The simplest and most straightforward manner of modeling the N-body problem is the 
direct method.  Here, each pair of particles is visited in turn to calculate and 
accumulate the appropriate forces. Conceptually, this solution is implemented as two 
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nested loops, each running over all particles.  This algorithm scales as N-squared, and 
cannot be considered sufficiently efficient to enable the solution of interesting (large 
N) problems. A galaxy might have, to say 1011 stars.  This suggests repeating 1022 
calculations.  Even using an efficient approximate algorithm, which requires Nlog2N 
calculations, the number of calculations is still enormous (1011log21011).  It would 
require significant time on a single processor system. Even if each calculation takes 
one microsecond, it would take 109 years for N2 algorithm and almost a year for 
Nlog2N algorithm.  Therefore, there is a need for a better and faster way to solve the 
N-body problem. 

This paper presents a distributed object-oriented method for solving the N-body 
problem using our grid system ALiCE (the Adaptive and scaLable internet-based 
Computing Engine). ALiCE also makes it possible to solve the N-body problem 
adaptively, using resources on-demand.  Our experiments showed a reduction in 
parallel execution times as we increase the number of available compute resources. 

This paper is organized as follows.  Section 2 presents the Barnes-Hut algorithm - an 
algorithm that uses a divide-and-conquer strategy to recursively sub-divide the N-
body problem space to facilitate calculation of inter-particle distances. Section 3 
presents ALiCE – our Java-based grid computing system [6].  The mapping of the N-
body problem onto the ALiCE framework is presented in Section 4.  We present our 
experimental results in Section 5, and the summary of our work in Section 6. 

2 Barnes-Hut Algorithm 

Suppose we compute the gravitational force on the earth from the known stars and 
planets.  A glance skyward on a clear night reveals a dauntingly large number of stars 
that must be included in the calculation, each one contributing a term to the force sum. 
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Figure 1: Viewing the Andromeda Galaxy from Earth 

One of those dots of light we might want to include in our sum is, however, not a 
single star (particle) at all, but rather the Andromeda galaxy, which itself consists of 
billions of stars. These stars appear so close that they appear as a single dot to the 
naked eye.  We model the Andromeda galaxy as a single point, located at the center of 

 



mass of the Andromeda galaxy and with a mass equal to the total mass of the 
Andromeda galaxy.  This is indicated in Figure 1, with an “x” marking the center of 
mass.  

Since the ratio 
r
D, is so small, we can accurately replace the sum over all stars in 

Andromeda with one term at their center of mass.  D denotes the width and height of 
the box containing Andromeda, and r is the distance between Andromeda and Earth 
centre of masses. We explain this in more detail below. 
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Figure 2: Replacing Clusters by their Centers of Mass Recursively 

This idea is hardly new.  Indeed, Newton modeled the earth as a single point mass 
located at its center of mass in order to calculate the attracting force on the falling 
apple, rather than treating each tiny particle making up the earth separately.  What is 
new is applying this idea recursively.  First, it is clear that from the point of view of 
an observer in the Andromeda galaxy that our Milky Way galaxy can also be 
approximated by a point mass at its center of mass. But more importantly, within the 
Andromeda (or Milky Way) galaxy itself, this geometric picture repeats itself as 
shown below: As long as the ratio D1/r1 is also small, the stars inside the smaller box 

 



can be replaced by their center of mass in order to compute the gravitational force on, 
say, the planet Vulcan. This nesting of boxes within boxes can be repeated recursively 
(see Figure 2). 

Details of Barnes-Hut algorithm can be found at [2]. This algorithm consists of two 
main phases: 

a. Creating a data structure to represent the space. For example, in 3D this can be 
modeled as the OctTree, and in 2D using the QuadTree. 

 
b. Traversing the tree to carry out the force calculations. This is accomplished by a 

simple post-order traversal of the tree, i.e., the child nodes are processed before 
their parent node.  Since the primary objective is to maximize efficiency in 
calculating inter-particle distances, a group of particles "far away enough” is 
treated as a single particle with a composite mass, located at the center of mass of 
the array.  Thus, for each particle in turn, the tree is traversed starting from the 
topmost "universe" node.  The spatial extent of the node is divided by the 
distance from the center of mass of the node to the particle.  If this quotient is less 
than a specified quantity called the theta parameter, the particles in the node are 
"far away enough" to be considered as a single particle.  If the quotient is greater 
than theta, the tree is recursively descended.  

 
 

2.1 Task Partitioning 

With the Barnes-Hut algorithm mentioned above, the first phase of creating tree and 
calculating the center of mass and total mass must be done serially. But, with the 
QuadTree created, new positions for each body can be calculated independently. 
Thus, second phase of the algorithm can be done in parallel. 

Another important aspect of the algorithm is that execution time for the first phase is 
much lower than that of the second phase. In Table 1 below, we can see the greater 
the number of bodies, the lower the ratio of time between the first stage and the total 
of time. Therefore, we can reduce total execution time by calculating positions for 
each body in parallel. 

 



 

Number of bodies First Phase  
Execution Time (s) 

Total Sequential 
Execution Time  (s) 

1000 1 23 
2000 4 193 
4000 5 403 
8000 9 1537 

10000 11 2401 
15000 17 5349 
20000 23 9428 

 
Table 1: Sequential Execution Time Varying the Number of Bodies 

3 The ALiCE Grid System 

ALiCE (Adaptive and scaLable internet-based Computing Engine) is a portable 
software technology for developing and deploying general-purpose grid applications 
and systems [5]. It virtualizes computer resources on the Internet/intranet into one 
computing environment through a platform-independent consumer-producer resource-
sharing model, and harnesses idle resources for computation to increase the usable 
power of existing systems on the network.  

3.1 ALiCE Consumer-producer Model 

Figure 3 shows our ALiCE consumer-producer model.  Applications are submitted by 
the consumer for execution on idle computers (referred to as producers) through a 
resource broker residing on another computer. The resource broker regulates 
consumer’s resource demand and producer idle cycles, and dispatches tasks from its 
task pool for execution at the producers.  A novel application-driven task-scheduling 
algorithm allows a consumer to select the performance level for each application.  

ALiCE supports sequential or parametric computer applications to maximize 
computer throughput.  For parallel computer applications, ALiCE breaks down large 
computations into smaller tasks and distribute for execution among producers tied to a 
network to exploit parallelism and speedup.  

Parallel programming models are supported through a programming template library. 
Task and result objects are exchanged between consumers and producers through the 
resource broker.  

 



ALiCE is scalable and is implemented in Java, Java Jini [1] and JavaSpaces [7] for 
full cross-platform portability, extensibility and scalability.  To the best of our 
knowledge, ALiCE is the first grid-computing implementation in the world developed 
using Sun’s Java Jini and JavaSpaces.  

Efficient task scheduling on a non-dedicated distributed computing environment is a 
critical issue especially if the performance of task execution is important. The main 
contributing factors include dynamic changes in computer workload and variations in 
computing power and network latency. ALiCE’s load distribution technology is based 
on a novel application-driven, adaptive scheduling strategy. 
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Figure 3: ALiCE Architecture 

3.2 ALiCE Components 

ALiCE consists of the following main components:  

• A programming model consisting of class libraries and a set of design patterns to 
support both sequential and parallel computer applications.  

• A user interface supports the submission of task by consumers.  

• A generic computing engine at each producer supports a number of functions. It 
notifies the resource broker of its availability, monitors and sends its performance 

 



to the resource broker, accepts tasks from the resource broker for execution and 
estimates its execution performance and returns the result to the resource broker.  

• A resource broker that hides the complexities of distributed computing, and 
consists of three main components:  

o Task Manager – This includes a consumer list containing all registered 
consumers, a task pool containing computer applications submitted by 
consumers, a task monitor that monitors the progress of task execution, 
and for storing the application’s data and computed results.  

o Resource Manager – This includes a producer list containing all 
registered producers, a performance monitor containing workload and 
performance information received from producers, and a security 
manager.  

o Task Scheduler – Based on the information supplied by the task 
manager and resource manager, the scheduler performs task assignments 
by matching the consumer’s computational requirement with the 
available resources in the network.  

3.3 ALiCE Object-based Programming Model  

The ALiCE Programming Template in Figure 4 implements our TaskGenerator-
ResultCollector model. This model describes the basic components of a parallel 
ALiCE application. 

The TaskGenerator-ResultCollector model defines two entities: TaskGenerator and 
ResultCollector.  The TaskGenerator is executed at the Resource Broker, and is 
responsible for generating new tasks.  The Resource Broker distributes these tasks to 
the Producers for execution. The Producers upon completion will send back the 
results to the Resource Broker which in turn will send the results back to the 
ResultCollector. The ResultCollector is executed at the Consumer, and it is 
responsible for collecting results from the Resource Broker. 

There are four components that make up the ALiCE programming template: 
TaskGenerator, ResultCollector, Task, and Result. TaskGenerator component allows 
application to be invoked at the resource broker by invocation of the user’s main 
method.  ResultCollector component allows application to be invoked at the 
Consumer node, waiting for results to be returned from the Resource Broker. Task 
component allows the producer nodes to return a Result object to the Resource Broker 
upon completing the execution. Result component provides an interface for producer 
to instantiate and returns any evaluated or intermediate data. 
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Figure 4: ALiCE Execution Model 

4 Mapping the N-Body Problem onto ALiCE  

In our implementation, the Consumer reads data for each body consisting of its 
position, velocity, and mass, from a file.  Data is transferred to the Resource Broker to 
construct the QuadTree. 

The Resource Broker would then send the tree and the body data to the Producers. 
Each Producer will calculate the new position and velocity of body assigned to it.  
The result of each calculation is returned to the Consumer. 

However, if Producers calculate new positions one body at a time, the volume of data 
transferred through network is very large, making the network’s latency as a possible 
bottleneck for performance. This is true especially when the number of bodies is 
large; thus, the ratio between computation time and data transfer time is small. 

We can overcome this problem by calculating not only one but many (say m) body at 
each Producer. As the result, we will save (m-1) network latency delays as the data for 
the m bodies is sent to each producer in bulk.   

Figure 5 shows the mapping of the application onto the ALiCE architecture. 
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Figure 5: Mapping N-Body onto ALiCE Architecture 

Our algorithm takes the number of bodies (N) as an argument.  The number of tasks 
that the Task Generator creates is N/M, where M is the number of bodies executed on 
a producer. Section 2.1 discussed the partitioning algorithm. We cannot implement 
the distributed Barnes-Hut trees because with the current version of ALiCE, producers 
cannot communicate with each other.  The N-body program is outline in Figure 6. 

TASK_GENERATOR 
1: A ←new Tree 
2: Initialize (A) //Compute particle mass & center of mass  
3: for i in 1 to N/M 
4:     T ←new TASK containing (Tree A, NodeID body[M]) 
5:     send T to Resource Broker 
6: endfor 
 
RESULT_COLLECTOR 
1: for i in 1 to N 
2:     RESULT R ←incoming Result from Resource Broker 
3:     Write R to the file 
4: endfor 
 
TASK_EXECUTE (Tree A, NodeID i) 
1: Calculate the total force of all bodies to node i 
2: Calculate the new position of M bodies in array body[M]  
3: Result R ← new Result 
4: Insert new positions into R 
5: Return R 

 

Figure 6: N-Body Problem Algorithm in ALiCE 

 



5 Experiments 

Our experiments were conducted on a cluster of 24 nodes consisting of eight Intel 
Pentium III 866MHz with 256MB of RAM, and sixteen Intel Pentium II 400MHz 
with 256MB of RAM running Red Hat Linux 7.0.  Nodes are inter-connected via a 
100Mbps switch.  

5.1 Varying the Number of Bodies 

In this experiment, we compare the sequential run with ALiCE (with only one 
producer).  The Producer, Consumer, and Resource Broker are run on Pentium III 
nodes. 

#Bodies Sequential Execution Time 
(second) 

ALiCE Execution Time for One 
Producer (second) 

100 1 4 
200 2 4 
500 13 6 

1000 23 12 
2000 193 41 
4000 403 125 
8000 1537 1427 

10000 2401 4357 
15000 5349 33457 
20000 9428 43721 

Table 2: Sequential and ALiCE (one Producer) Execution Time 
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Figure 7: Sequential versus ALiCE with one Producer 

We observe that a single producer runs significantly slower than the sequential 
version.  We attribute this slow-down to the communication overhead between the 
various components of the ALiCE system, i.e. the Resource Broker, the Producer and 
the Consumer. Such communication overheads do not exist in the sequential version. 

5.2 Varying Task Sizes and the Number of Tasks 

We vary the numbers of producers and we partitioned the problem into different 
number of bodies per ALiCE task yielding different number of tasks. The problem 
size is 25,000 bodies. 
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Figure 7: Grid Computation Time for 25,000 Bodies 

Task size (#Bodies/task) #Tasks #Producers Execution Time (s) 
100 250 2 72951 
200 125 2 16574 
500 50 2 4218 
1000 25 2 1582 
100 250 4 23673 
200 125 4 2044 
500 50 4 932 
1000 25 4 957 
100 250 6 6476 
200 125 6 1900 
500 50 6 713 
1000 25 6 731 
100 250 8 3350 
200 125 8 1178 
500 50 8 1141 
1000 25 8 1239 
100 250 10 2910 
200 125 10 1100 
500 50 10 980 
1000 25 10 789 

Table 7: Varying the Number of Bodies per Task and Task Size 

 



 

As shown in Figure 7, the communication overheads due to data transfer and the 
overhead of ALiCE can be amortized over task of larger granularity.  For example, 
the sequential execution time of over three hours is reduced to 16 minutes on four 
producers with 25 tasks (1000 bodies per task).    

6 Conclusion 

We have discussed a distributed object-oriented method for solving N-body problems 
on a cluster-based grid system using ALiCE that can be extended to include resources 
in a wide-area distributed computing environment. The method provides on-demand 
computing, i.e. the ability for applications to dynamically adapt to the computing 
resources available. Our experiments show that our method reduces the time required 
for solving N-body problems.  

References 

1. Arnold, K., O’Sullivan, B., Scheifler, W., Waldo, J., and Wollrath, A.: The Jini 
Specification. The Java Technology Series. Addison-Wesley (1999) 

2. Barnes, J. and Hut, P.: A Hierarchical O(N log N) force calculation algorithm. 
Nature  (1986) 324:446—449  

3. Feynman, R.: The Character of Physical Law. The MIT Press (1965) 
4. Foster I. and Kesselman C., editors.: The Grid: Blueprint for a Future Computing 

Infrastructure. Morgan Kaufmann Publishers (1999) 
5. Foster, I., Kesselman, C., and Tuecke, S.: The Anatomy of the Grid: Enabling 

Scalable Virtual Organizations. International J. Supercomputer Applications 
(2001) 15 

6. Gozali, J.P., ALiCE: Java-based Grid Computing System.: Honours Year Thesis. 
National University of Singapore (2001) 

7. Sun Microsystems: JavaSpaces Specification (1998) 


	Barnes-Hut Algorithm
	2.1 Task Partitioning
	ALiCE Consumer-producer Model
	ALiCE Components
	ALiCE Object-based Programming Model
	Varying the Number of Bodies
	Varying Task Sizes and the Number of Tasks




