
Solving Regression Problems Using Competitive
Ensemble Models

Yakov Frayman, Bernard F. Rolfe, and Geoffrey I. Webb

School of Information Technology
Deakin University

Geelong, VIC, Australia
{yfraym,brolfe,webb}@deakin.edu.au

Abstract. The use of ensemble models in many problem domains has increased
significantly in the last few years. The ensemble modeling, in particularly boosting,
has shown a great promise in improving predictive performance of a model. Com-
bining the ensemble members is normally done in a co–operative fashion where
each of the ensemble members performs the same task and their predictions are
aggregated to obtain the improved performance. However, it is also possible to
combine the ensemble members in a competitive fashion where the best prediction
of a relevant ensemble member is selected for a particular input. This option has
been previously somewhat overlooked. The aim of this article is to investigate and
compare the competitive and co–operative approaches to combining the models in
the ensemble. A comparison is made between a competitive ensemble model and
that of MARS with bagging, mixture of experts, hierarchical mixture of experts
and a neural network ensemble over several public domain regression problems
that have a high degree of nonlinearity and noise. The empirical results show a sub-
stantial advantage of competitive learning versus the co–operative learning for all
the regression problems investigated. The requirements for creating the efficient
ensembles and the available guidelines are also discussed.

1 Introduction

The main motivation for combining models in ensembles is to improve their generaliza-
tion ability. The idea of combining models in order to achieve a better prediction has a
long history, and has emerged independently in a number of different areas. For exam-
ple, in econometrics, better forecasting results can be achieved by combining forecasts
(model mixing) than by choosing the best model [2]. In machine learning this can be
traced back to evidence combination [1].

Recently there was a resurgence of interest in model aggregation particularly in ma-
chine learning and data mining. One of the aggregation methods, bagging, is aimed at
reducing the variance of predictive models [5]. Another one, stacking [24], attempted to
decrease prediction bias in addition to variance. But the most popular ensemble method
is boosting [20], aimed on transforming a collection of weak models into one strong
model. The recently developed AdaBoost algorithm [11] sequentially fits weak models
to different weighting of the observations in a data set. The observations that are predicted
poorly receive greater weighting on the next iteration. The resulting AdaBoost model is

R.I. McKay and J. Slaney (Eds.): AI 2002, LNAI 2557, pp. 511–522, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



512 Y. Frayman, B.F. Rolfe, and G.I. Webb

a weighted average of all the weak predictors. The AdaBoost is shown to be effective
for reducing bias and variance in a wide range of classification problems [3]. However,
the recent work on boosting [13] have shown that AdaBoost algorithm is an optimiza-
tion method for finding a model that minimizes a particular exponential loss function,
namely the Bernoulli likelihood. Recent investigations of the boosting algorithm from
the statistical viewpoint [18] have found that while boosting algorithm appears complex
on surface, it is similar to the ways linear models are fitted in statistics. This opens the
possibility to unite seemingly different, but essentially similar approaches to ensemble
modeling from machine learning and statistical and engineering viewpoints.

The current trend in boosting with major developments in boosted regression [9] is
going in a direction similar to the statistical approach to model mixing. The boosted
regression approach follows the spirit of AdaBoost algorithm by repeatedly performing
weighted tree regression followed by increasing weighting of the poorly predicted ob-
servations and decreasing the weighting of the better predicted samples. The work on
Gradient Boosting Machine [14] uses the connection between boosting and optimization
more explicitly. At each iteration the algorithm determines the direction, the gradient,
in which it needs to improve the fit to the data and selects a particular model from the
available class of functions that is most in agreement with the direction. While this is a
significant improvement on the approach of AdaBoost, the Gradient Boosting Machine
algorithm is, however, increasingly similar to other non–parametric regression models
such as neural networks. As such the Gradient Boosting Machine still does not provide
a reliably guidance to selection of ensemble members and effective means of combining
such ensemble members. This leads us to analysis of the available methods for creation
of ensemble members and their combination for efficient ensembles.

2 Ensemble Modeling

The effectiveness of an ensemble can be measured by the extent to which the members
are error–independent (show different patterns of generalization) [19]. The ideal would
be a set of models where each of the models generalize well, and when they do make
errors on new data, these errors are not shared with any other models [19].

2.1 Creating Ensemble Members

In order to create efficient ensembles we need to consider the relative merits of methods
of creating ensemble members, and to choose and apply one that is likely to result
in models that generalize differently. There are several possible ways to achieve this
objective that include the following:

Sampling data:A set of models for an ensemble is commonly created by using some
form of sampling, such that each model in the ensemble is trained on a different sub–
sample of the training data. Re-sampling methods which have been used for this purpose
include cross-validation, and bootstrapping [5]. In bagging [5], a training set containing
N cases is perturbed by sampling with replacement (bootstrap) N times from the training
set. The perturbed data set may contain repeats. This procedure can be repeated several
times to create a number of different, although overlapping, data sets. A method similar



Solving Regression Problems Using Competitive Ensemble Models 513

to the sampling is the use of disjoint training sets, that is sampling without replacement.
There is then no overlap between the data used to train different models.

However, the presence of correlation between the errors of the ensemble members
could reduce the effectiveness of the ensemble [15]. While sampling the data might be
an effective way of producing models that generalize differently, this will not neces-
sarily result in low error correlations as it requires a representative training set where a
function being inferred is similar to that which generated the test set [8]. However, two
representative training sets could lead to very similar functions being inferred, so their
pattern of errors on the new data would be very similar.

On the other hand, if ensemble members are trained using unrepresentative training
sets, the resulting generalization performance would be poor. Each member might show
different patterns of generalization, but as the amount of errors increases so does the
probability that their errors will overlap.

Boosting and adaptive resampling:In boosting, as discussed previously, a series of
weak learners could be converted to a strong learner as a result of training the members of
an ensemble on patterns that have been filtered by previously trained members [20], [23].
AdaBoost algorithm [11] has training sets adaptively resampled, such that the weights in
the resampling are increased for those cases which are most often predicted incorrectly.

Varying the learning method employed:The learning method used to train the models
could be varied while holding the data constant when creating ensemble members. An
ensemble might be constructed from models generated by a combination of learning
techniques such as various statistical methods, linear regression, neural networks, k–
nearest neighbors, decision trees, and Markov chains [7].

While this approach is not commonly used, in our opinion, it is a very promising
approach to ensemble learning, as the use of different learning methods for ensemble
members is more likely to result in different patterns of generalization than sampling the
data. Furthermore, there is a possibility to combine varying both the learning method
and the data, for example, with adaptive re–sampling of the data.

In this paper we will investigate the approach of varying the learning method for
creation of ensemble members and compare it with approaches that use sampling the
data.

2.2 Combining Ensemble Members

The next step in ensemble learning is to find an effective way of combining model
outputs. While there exists several possible ways of combining models in an ensemble,
the co–operative combination is the most dominant one. In co–operative combination
it is assumed that all of the ensemble members will make some contribution to the
ensemble decision, even though this contribution may be weighted in some way.

Methods of combining the models in co–operative fashion include the following:
Averaging and weighted averaging:Linear combination of the outputs of the en-

semble members are one of the most popular aggregation methods. A single output can
be created from a set of model outputs via simple averaging, or by means of a weighted
average that takes account of the relative accuracy of the models to be combined.

Stacked generalization:Stacked generalization [24] uses an additional model that
learns how to combine the models with weights that vary over the feature space. The



514 Y. Frayman, B.F. Rolfe, and G.I. Webb

outputs from a set of level 0 generalizers are used as the input to a level 1 generalizer,
which is trained to produce the appropriate output. It is also possible to view other
methods of combining, such as averaging, as instances of stacking with a simple level 1
generalizer.

In competitive combination, on the other hand, it is assumed that for each input only
the most appropriate ensemble member will be selected based on either the inputs or
outputs of the models [21].

The two main methods for a competitive combination (selection) are:
Gating: Under the divide and conquer approach employed by mixtures-of-experts

[16] and hierarchical mixtures-of-experts [17] the complex problem is decomposed into
a set of simpler problems. The data is partitioned into regions and the simple surfaces are
fitted to the data into each region. The regions have soft boundaries where data points
may lie simultaneously in multiple regions. Such decomposition ensures that the errors
made by the expert models will not be correlated as they deal with different data points.
A gating model is used to output a set of scalar coefficients that weights the contributions
of the various inputs.

Rule–based switching:In this case, the switching between the models can be trig-
gered on the basis of the input or the output of one of the models. For example, in the
study on the diagnosis of myocardial infarction (heart attack), two models were opti-
mized separately by varying the proportion of high risk and low risk patients in the
training sets. The first model was trained to make as few positive errors as possible, and
the second model was trained to make as few negative errors as possible [4]. The output
of the first model was used unless it exceeds a threshold in which case the output of the
second model was used.

There exists other examples of rule–based switching, for example, switching of
control to the most appropriate model depending on the current situation as it is exploited
in behavior–based robotics [6].

Our empirical observation [10] has been that the better results can be obtained through
the use of a more explicit rule–based switching between models.

3 Computational Experiments

3.1 Experimental Set Up

To evaluate the performance of a competitive ensemble model, several public domain
regression data sets were selected from DELVE (Data for Evaluating Learning in Valid
Experiments) (see http://www.cs.toronto.edu/∼delve/). DELVE is a standardized envi-
ronment designed to evaluate the performance of methods that learn relationships based
primarily on empirical data. DELVE makes it possible for users to compare their learning
methods with other methods on many data sets. The DELVE learning methods and eval-
uation procedures are well documented, such that meaningful comparisons can be made.
Since our approach involves ensembles, we compared the performance of our compet-
itive ensemble model to that of multivariable adaptive regression splines (MARS) with
bagging, mixture of experts, hierarchical mixture of experts, neural network ensemble
and also with a standard linear regression as a baseline method. The competitive ensem-
ble model was used in accordance with DELVE guidelines. The performance of other



Solving Regression Problems Using Competitive Ensemble Models 515

methods are available from DELVE. The splitting of data sets into training and testing
was done using a DELVE software environment, which allows to manipulate data sets
and do statistical analysis of method’s performance.

We have selected from DELVE environment all the regression data sets where there
are results available of the MARS with bagging, the mixture of experts, the hierarchical
mixture of experts, the neural network ensemble and the linear regression as follows:

a) Boston Housing data-set.The Boston Housing data-set is a small but widely used
data-set derived from information collected by the U.S. Census Service concerning
housing in the Boston, Massachusetts area. It has been used extensively throughout
the literature to benchmark algorithms. The task is to predict the median value of a
home (price).

b) Pumadyn family of data sets.The Pumadyn family of data sets is a realistic simulation
of the dynamics of a Puma 560 robot arm. The task is to predict angular acceleration
of one of the robot arm’s links. The inputs include angular positions, velocities
and torques of the robot arm. The family has been specifically generated for the
DELVE environment and so the individual data sets span the corners of a cube
whose dimensions represent: (a) number of inputs (8 or 32), (b) degree of non-
linearity (fairly linear or non-linear), (c) amount of noise in the output (moderate or
high).

c) Kin family of data sets.The Kin family of data sets is a realistic simulation of the
forward dynamics of an 8 link all–revolute robot arm. The task is to predict the
distance of the end–effector from a target. The inputs are factors like joint positions
and twist angles. The family has been also specifically generated for the DELVE
environment and has the same dimensions as Pumadyn family of data sets.

We have considered both dimensionalities of the input (8 or 32) and have chosen high
amount of noise and a large amount of non–linearity to make the tasks similar to other
real–world tasks we have investigated. In addition, we have only considered the larger
size of training and testing sets (1024 for pumadyn and kin, and 128 for boston housing)
out of that available in the DELVE environment. Training and testing sets were generated
randomly from the respective data sets using a DELVE software environments. Thus,
there are 2 different training and testing sets for Boston Housing data set, and 4 for all
the Pumadyn and Kin data sets. Table 1 summarizes the data characteristics.

Table 1. Data Characteristics.

Name Size Train Test Inputs Noise Non-Linearity
Boston Housing 506 128 128 13 – –
Pumadyn-8nh 8192 1024 1024 8 high non–linear

Pumadyn-32nh 8192 1024 1024 32 high non–linear
Kin-8nh 8192 1024 1024 8 high non–linear
Kin-32nh 8192 1024 1024 32 high non–linear



516 Y. Frayman, B.F. Rolfe, and G.I. Webb

3.2 Regression Methods Used

The competitive (selection) model used in this paper was created following the guidelines
discussed previously.

A non–linear model (neural network) was trained to select the appropriate output of
the ensemble members as a final output of the ensemble model based on the performance
of ensemble members on a particular data tuple. The aim here is basically to create a
global model (ensemble model) where each of the ensemble members is acting as a local
predictor in the area of its best performance. In such a rule–based switching [22], the
control is switched between the ensemble members depending on the output of one of
the members.

For the ensemble members (level 0 generalizers) we have selected a linear method
(linear regression), an efficient nonlinear method (multilayer perceptron (MLP) with
two hidden layers with 20 nodes each), a logistic regression (MLP with a single hidden
node) and a clustering algorithm (KNN) with k equal 10. The reasons for selecting these
learning methods for creation of the ensemble members are that these methods are very
different in nature and as such have different learning biases. In our experience, these
learning methods have a different pattern of generalization and as such can produce an
efficient ensemble.

As a level 1 generalizer (selector model) another MLP consisting of 2 hidden layers
of 20 hidden nodes each was used. All MLPs were fully connected with hyperbolic
tangent hidden units and linear output units. All ensemble members were trained using
the back–propagation learning algorithm with early stopping to avoiding over–fitting.
The pattern (on–line) learning was used. The learning rate of 0.05 and momentum of
0.99 were used for all MLPs to avoid local minima. The structure and the parameters
of both MLPs and the KNN were selected based on our experience with other data sets
and no attempt was made to optimize the level 0 models to the data sets considered.

The structure of the competitive model is in Fig 1. In this case all the available inputs
in a training set were supplied to the level 0 models and the selection model. Selection
model also receives the output of the level 0 models. In the learning phase a binary
value is assigned to the output of the selection model that represents the best model
or otherwise for a particular data tuple. The selection model is solving a classification
problem which is to choose the appropriate output of the one of the level 0 models as
the final output of the ensemble. Supplying the input data to the selection model is not
strictly necessary as the MLP with 2 hidden layers is a very efficient classifier, but may
help the selection model to distinguish between the level 0 models in some cases.

For comparison with our selection model we have used several popular regression
methods: multivariable adaptive regression splines with bagging, mixture–of-experts,
hierarchical mixture–of-experts and ensemble of neural networks. We have already dis-
cussed mixture–of-experts and hierarchical mixture–of-experts methods. In the follow-
ing, we will briefly describe the rest of the methods.

Multivariable adaptive regression splines (MARS) [12] were created to provide the
advantages of tree based regression methods without the disadvantages of the response
being discontinuous along the boundaries. Here each step basis function in the predictor
space is replaced by a pair of linear basis functions. The new splits are not required to



Solving Regression Problems Using Competitive Ensemble Models 517

Outputs

Inputs

(Selection) Level 1 model

Level 0 models

Fig. 1. Selection Model.

depend on the previous splits. The final solution is made smooth by replacing the linear
functions with cubic functions after backward deletion of unnecessary basic functions.

Table 2. Results from Boston data-set.

Standardized Standard error Significance
Method estimated for difference of difference

expected loss estimate (F-test)
Selection ensemble 0.05663 – –
Linear regression 0.28123 0.02920 < 0.05

HME (ensemble learning) 0.16204 0.01416 < 0.05
HME (early stopping) 0.17312 0.02075 < 0.05

HME (growing and early stopping) 0.17623 0.02063 < 0.05
MARS version 3.6 with Bagging 0.15713 0.02104 < 0.05

ME (ensemble learning) 0.15937 0.02431 < 0.05
ME (early stopping) 0.16006 0.01464 < 0.05

MLP (early stopping) 0.21014 0.01697 < 0.05

MARS was used in conjunction with the bagging procedure [5]. Using this method
one trains MARS on a number of bootstrap samples of the training set and averages
the resulting predictions. The bootstrap samples are generated by sampling the original
training set with replacement. Samples of the same size as the original training set are
used.

The ensemble of neural networks from DELVE repository trains ensembles of MLPs
using early stopping to avoiding over–fitting. The networks all have identical architec-
ture: fully connected with a single hidden layer of hyperbolic tangent units and linear
output units. The minimization algorithm is based on conjugate gradients.

A fraction of the training examples are held out for validation, and performance on
this set is monitored while the iterative learning procedure is applied. The learning is
stopped as soon as minimum in validation error is achieved.



518 Y. Frayman, B.F. Rolfe, and G.I. Webb

The number of hidden units is chosen to be the smallest such that the number of
weights is at least as large as the total number of training cases after removal of the
validation cases. One third of the training examples were used for validation and the rest
for training.

Table 3. Results from Kin-8nh and Kin-32nh data sets.

Kin-8nh
Standarized Standard error Significance

Method estimated for difference of difference
expected loss estimate (T-test)

Selection ensemble 0.22896 – –
Linear regression 0.62930 0.00929 0.00002

HME (ensemble learning) 0.52120 0.00987 0.00008
HME (early stopping) 0.50874 0.01167 0.00016

HME (growing and early stopping) 0.54611 0.01005 0.00007
MARS version 3.6 with Bagging 0.57910 0.00827 0.00003

ME (ensemble learning) 0.45127 0.01050 0.00023
ME (early stopping) 0.46433 0.01149 0.00025

MLP (early stopping) 0.40543 0.00701 0.00013
Kin-32nh

Standarized Standard error Significance
Method estimated for difference of difference

expected loss estimate (T-test)
Selection ensemble 0.57230 – –
Linear regression 0.81556 0.00948 0.00013

HME (ensemble learning) 0.79264 0.00750 0.00003
HME (early stopping) 0.78321 0.01413 0.00065

HME (growing and early stopping) 0.79076 0.01591 0.00084
MARS version 3.6 with Bagging 0.84432 0.01551 0.00040

ME (ensemble learning) 0.80461 0.00894 0.00002
ME (early stopping) 0.78322 0.01413 0.00065

MLP (early stopping) 0.79613 0.01170 0.00031

3.3 Experimental Results and Discussion

For each of the data sets the attribute variables were normalized to a median of zero and
an average absolute deviation from the median of one. This enabled each level 0 model
to learn from the same set of data as certain models have limits on the input and output
data ranges.

A standard squared loss function between the target output value and the predicted
value was used to calculate the error for each ensemble member. The predicted values
were then un–normalised before they were compared to the target values.

We have only run the competitive model once over each training and testing sets using
the same parameters for the ensemble members, in accordance with DELVE guidelines.
All the results obtained are thus the averages of these runs.



Solving Regression Problems Using Competitive Ensemble Models 519

DELVE uses an ANOVA (ANalysis Of VAriance) model to estimate the statistics
in evaluating the performance of different models. Tables 2–6 contain the resulting
statistical values from the competitive (selection) ensemble model and other ensemble
models on the five data sets considered. Each table includes the standardized estimated
squared error loss that is calculated against a simple baseline method within DELVE.
The second statistic is the standard error of the estimated expected difference. This gives
an indication of the variability of the estimated expected difference between the two
methods. The final statistic is either F–test or T–test value which is a probability that the
null–hypothesis (no difference between the expected loss of the two methods) is true.
This means that high values of the F–test or of the T–test would indicate the two methods
are probably similar, and low values of the tests indicate that the difference between the
performances of different methods are statistically significant.

Table 4. Results from Pumadyn-8nh and Pumadyn-32nh data sets.

Pumadyn-8nh
Standardized Standard error Significance

Method estimated for difference of difference
expected loss estimate (F-test)

Selection ensemble 0.21343 – –
Linear regression 0.63146 0.01172 0.00005

HME (ensemble learning) 0.36389 0.01085 0.00081
HME (early stopping) 0.44881 0.01749 0.00089

HME (growing and early stopping) 0.51206 0.02107 0.00076
MARS version 3.6 with Bagging 0.33650 0.00705 0.00041

ME (ensemble learning) 0.36034 0.00950 0.00059
ME (early stopping) 0.40625 0.01084 0.00039

MLP (early stopping) 0.34271 0.01358 0.00246
Pumadyn-32nh

Standarized Standard error Significance
Method estimated for difference of difference

expected loss estimate (T-test)
Selection ensemble 0.26010 – –
Linear regression 0.86604 0.01413 0.00002

HME (ensemble learning) 0.88020 0.01460 0.000002
HME (early stopping) 0.87137 0.01600 0.00004

HME (growing and early stopping) 0.85896 0.01397 0.00002
MARS version 3.6 with Bagging 0.34236 0.00711 0.00139

ME (ensemble learning) 0.88173 0.01489 0.000002
ME (early stopping) 0.86792 0.01426 0.00003

MLP (early stopping) 0.70891 0.02542 0.00040

In Tables 2–6, HME (ensemble learning) is a Hierarchical mixture of experts trained
using Bayesian methods, HME (early stopping) is a Hierarchical mixtures of experts
trained using early stopping, HME (growing and early stopping) is a Hierarchical mix-
tures of experts trained using growing and early stopping, ME (ensemble learning) is
a Mixtures of experts trained using Bayesian methods, ME (early stopping) is a Mix-



520 Y. Frayman, B.F. Rolfe, and G.I. Webb

0

10

20

30

40

50

60

70

0 20 40 60 80 100

M
e
d
i
a
n
 
H
o
u
s
e
 
P
r
i
c
e

Samples

Boston Target
Selection Ensemble

MARS Prediction

Fig. 2. First 100 samples of the Boston data, plot of the selection ensemble model and the MARS
model version 3.6 with bagging versus the actual target.

tures of experts trained using early stopping and MLP (early stopping) is a Multilayer
perceptron ensembles trained with early stopping.

The actual predictions of a competitive model and the best of the comparison models
are shown in Figs 2–4. For clarity only the first 100 samples of testing set are shown for
respective data sets.

Tables 2–6 show that the competitive (selection) model is significantly better, to
a confidence of 95% (p = 0.05), than any of the other methods. This demonstrates
that the competitive (selection) combination in conjunction with varying the learning
method approach for creating ensemble members is working better than the co–operative
combination in conjunction with sampling the data approach for creating ensemble
members.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

D
i
s
t
a
n
c
e
 
t
o
 
E
n
d
-
E
f
f
e
c
t
o
r

Samples

Kin-8nh Target
Selection Ensemble

MLP Ensemble

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

D
i
s
t
a
n
c
e
 
t
o
 
E
n
d
-
E
f
f
e
c
t
o
r

Samples

Kin-32nh Target
Selection Ensemble

Mixture of Experts Prediction

Fig. 3. First 100 samples of the (a) Kin-8nh data, plot of the selection ensemble model and the
MLP ensemble model with early stopping versus the actual target (b) the Kin-32nh data, plot of
the selection ensemble model and the mixture-of-experts model with early stopping versus the
actual target.



Solving Regression Problems Using Competitive Ensemble Models 521

-10

-5

0

5

10

15

0 20 40 60 80 100

A
n
g
u
l
a
r
 
A
c
c
e
l
e
r
a
t
i
o
n

Samples

Pumadyn-8nh Target
Selection Ensemble

MARS Prediction

-0.05

0

0.05

0.1

0 20 40 60 80 100

A
n
g
u
l
a
r
 
A
c
c
e
l
e
r
a
t
i
o
n

Samples

Pumadyn-32nh Target
Selection Ensemble

MARS Prediction

Fig. 4. First 100 samples of the (a) Pumadyn-8nh data, plot of the selection ensemble model and
the MARS model version 3.6 with bagging versus the actual target, (b) the Pumadyn-32nh data,
plot of the selection ensemble model and the MARS model version 3.6 with bagging versus the
actual target.

However, while the competitive model is much better than the other models, there
is still much room for improvement considering the actual prediction accuracy. The
prediction of the competitive (selection) model for Boston Housing data set can be
considered good, as seen in Fig. 2, even though there are some predictions that are not
quite accurate. In case of Figs. 3 and 4, the results of the selection model are not as good,
especially in case of Fig. 3(b), even though the selection model out–performs the other
ensemble models.

We obviously need to keep in mind that we explicitly selected the most difficult
data sets of that available in DELVE. However, based on our experience with real data
sets [10] the selected regression problems are no more difficult than the many real non–
linear problems with a high degree of noise. This just shows that the ultimate goal of
the prediction is not just to achieve better results than the competing methods, but to
achieve the best possible prediction.

References

1. Barnett, J. A. “Computational methods for a mathematical theory of evidence”, Proceedings
of IJCAI, pp. 868–875, 1981.

2. Bates, J. M. and C. W. J. Granger. “The combination of forecasts”. Operations Research
Quaterly, 20:451–468, 1969.

3. Bauer, E. and Kohavi, R. “An empirical comparison of voting classification algorithms: bag-
ging, boosting and variants”. Machine Learning, 36(1,2), 105–139, 1999.

4. Baxt, W. G. “Improving the accuracy of an artificial neural network using multiple differently
trained networks”. Neural Computation, 4:772–780, 1992.

5. Breiman, L. “Bagging predictors”. Machine Learning, 26(2):123–140, 1996.
6. Brooks, R. A. “A robust layered control system for a mobile robot”. IEEE Journal of Robotics

and Automation, 2:14–23, 1986.
7. Catfolis, T. and Meert, K. “Hybridization and specialization of real–time recurrent learning–

based neural networks”, Connectionist Science, 9(1):51–70, 1997.



522 Y. Frayman, B.F. Rolfe, and G.I. Webb

8. Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L. and Hopfield, J. “Large
automatic learning, rule extraction and generalisation”. Complex Systems, 1:877–922, 1987.

9. Drucker, H. “Improving regressors using boosting techniques”. Proceedings of the 14th In-
ternational Conference on Machine Learning, pp. 107–115, 1997.

10. Frayman, Y., Rolfe B. F., Hodgson, P. D. and Webb G. I. “Predicting the rolling force in
hot steel rolling mill using an ensemble model”. Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications (AIA 2002), 2002. (in press).

11. Freund, Y. and R.Schapire. “A decision–theoretic generalization of on–line learning and an
application to boosting”. Journal of Computer and System Sciences, 55(1):119–139, 1997.

12. Friedman J. “Multivariate adaptive regression splines (with discussion)”. Annals of Statistics,
19(1), 1–82, 1991.

13. Friedman, J., Hastie, T., and Tibshirani, R. “Additive logistic regression: a statistical view of
boosting (with discussion)”, Annals of Statistics, 28(2), 337–374, 2000.

14. Friedman, J. “Greedy function approximation: a gradient boosting machine”. Annals of Statis-
tics, 29(4). 2001.

15. Hashem, S. “Optimal linear combinations of neural networks”. Neural Networks, 10(4):599–
614, 1997.

16. Jacobs, R. A, Jordan, M. I., Nowlan, S. J., and Hinton, G. E. “Adaptive mixtures of local
experts”. Neural Computation, 3:79–97, 1991.

17. Jordan, M. I. and Jacobs R. A. “Hierarchical mixtures of experts and the em algorithm”.
Neural Computation, 6(2):181–214, 1994.

18. Ridgeway, G. “The state of boosting”. Computing Science and Statistics, 31:172–7181, 1999.
19. Rogova, G. “Combining the results of several neural network classifiers”. Neural Networks,

7(5):777–781, 1994.
20. Schapire, R. E. “The strength of weak learnability”. Machine Learning, 5:197–227, 1990.
21. Sharkey, A.J.C. (Ed.) Combining artificial neural nets: ensemble and modular multi-net sys-

tems,Springer-Verlag, 1999.
22. Ting, K. M. “The characterisation of predictive accuracy and decision combination”. Pro-

ceedings of the 13th International Conference on Machine Learning, pp. 498–506, 1996.
23. Webb, G. “MultiBoosting: a technique for combining boosting and wagging”. Machine Learn-

ing, 40(2): 159–196, 2000.
24. Wolpert, D.H. “Stacked generalization”. Neural Networks, 5:241–259, 1992.


	Introduction
	Ensemble Modeling
	Creating Ensemble Members
	Combining Ensemble Members

	Computational Experiments
	Experimental Set Up
	Regression Methods Used
	Experimental Results and Discussion


