
Design and Implementation of a Python-Based Active
Network Platform for Network Management and

Control

Florian Baumgartner1, Torsten Braun2, and Bharat Bhargava1

1 Department of Computer Sciences and Center for Education and Research in Information
Assurance and Security (CERIAS), Purdue University, West Lafayette, IN 47907, USA

baumgart|bb@cs.purdue.edu
2 Institute of Computer Science and Applied Mathematics

University of Berne, Bern, Switzerland
braun@iam.unibe.ch

Abstract. Active networks can provide lightweight solutions for network man-
agement-related tasks. Specific requirements for these tasks have to be met, while
at the same time several issues crucial for active networks can be solved rather
easily. A system addressing especially network management was developed and
implemented. It provides a flexible environment for rapid development using the
platform-independent programming language Python, and also supports platform
dependent native code. By allowing to add new functions to network devices it
improves the performance of Internet routers, and simplifies the introduction and
maintenance of new services.
To show the capabilities of the approach, two different quality of service related
applications, that is a simple multicast algorithm and an approach to automat-
ically set up tunnels, have been implemented. The evaluation of these services
shows the advantages of the architecture, and its benefits for the task of network
and quality of service management.

1 Introduction

The limitations of current management mechanisms to provide an adaptable system to
configure and control services within the network of Internet Service Providers (ISP)
enforce the development of new strategies for network management.

In addition to a distributed resource management, mechanisms are needed to add
new services dynamically to the network. For competing ISPs the time needed to pro-
vide a new service to their customers is essential. This is why an architecture allowing
the dynamic and quick establishment of new Internet services is important.

The most obvious way to provide such flexible systems is the exchange of pro-
gram code between network nodes. The program code is executed by a network device,
reconfiguring the router, collecting information or sending data and program code to
other devices. Networks providing such mechanisms are called active networks. Such
an approach is even more powerful since the differences between classical network
management and signaling are becoming smaller. Active networks can not only be used
to provide a high degree of control over the network but can easily be used to implement

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 177–190, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

178 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

lightweight signaling mechanisms, needed for the control of large networks. There are
several types of active networks.

The capsule approach, as presented by Tennenhouse [19], uses packets consisting
of a short piece of code and of additional payload. An active router receives the capsule
and executes the code. This code may simply be used to route the capsule to the desti-
nation or to configure the active router on the path. Another approach focuses more on
a programmable network [7] and proposes a more moderate active networking model.
Active network mechanisms are used for signaling, configuration and monitoring pur-
poses [11].

The execution of code on network devices causes several problems. Especially with
the capsule approach security and performance are still open issues, but even within
moderate active networks, the security issue is not solved yet. Murphy [14] shows the
security problems and proposes an architecture for active networks. A different ap-
proach to improve security was proposed by Brunner [6], who suggests the creation of
Virtual Active Networks. Similar to virtual private networks (VPNs), a customer can
”rent” such a virtual active network. Within its active network, the customer (e.g. a
company) can exploit AN technology but has no access to the other virtual networks.

The goal of the approach presented within this paper is to provide an easy to use,
lightweight mechanism with a focus on management related tasks. In contrast to sys-
tems with a broader approach, this reduces the complexity of several typical active
networking problems, like security and performance. On the other hand, such a system
requires a more direct interaction between the IP router and the active components. In-
stead of providing a distributed application platform, which mainly uses the IP network
as a transport medium, the system has to change and modify router functions, add new
components, or has to be able to influence packet processing within the router core.
This requires lightweight but powerful and flexible interfaces to native code and func-
tions as well as a high level programming language to support the rapid development of
configuration scripts.

2 The Python-Based Active Router

Various languages have been discussed and used for the implementation of active net-
working systems [18]. While PLAN [13] is based on a functional language like Caml
[8], others, like the Active Network Transport System (ANTS) [22], are based on Java.
In contrast to those, the active networking architecture proposed here was developed
especially for the purpose of network management and therefore uses the Python [17]
language, which provides certain advantages for that kind of application.

Python as a Language for Active Network Systems

Python meets the properties of most modern, interpreted languages, used for active net-
works. It provides portable bytecode, which allows an execution on different platforms;
restricted execution environments to keep active packets from damaging the environ-
ment; and threads.

Design and Implementation of a Python-Based Active Network Platform 179

One of the strengths of Python, which makes it especially useful for configuration
related tasks, is its extensibility. In contrast to Java with its native interface (JNI) [7] or
other languages, the integration of native code modules has been a central aspect of the
Python programming language from the beginning. This is also the reason why many
applications use Python as a configuration and control front-end and rely on native code
for time consuming tasks. The functional separation used by these programs matches
perfectly the situation we face on an active IP router, with high speed packet processing
in the kernel and an interpreted language on the control plane.

Another argument, which led to the use of Python instead of Java or Caml, was the
type of programs we expect to be sent over the network. Similar to system adminis-
trators, automating certain tasks, network administrators have to be able to write short
configuration scripts and send them through the network. Since these scripts will highly
depend on the current network state and on a specific task, the capacity of a language
to support rapid development is important. Python provides high-level data structures
and dynamic types, which support the rapid development of configuration scripts. Since
more generic systems face security and performance problems, Alexander [2] recom-
mends different, or even contrary properties for active networking languages. As will
be shown in the next section, the specialization of the PyBAR system reduces this prob-
lems, and therefore allows to benefit from Python’s prototyping capabilities.

Due to its high level data structures and dynamic types, Python programs are short.
Their source code is usually three to five times shorter than comparable Java sources
[20] and also the bytecode used by the PyBAR consumes significantly less memory.
Therefore it is possible, similar to special purpose languages like Sprocket or Spanner
[18], to transmit reasonable programs within a single Ethernet packet. This simplifies
the transmission of active packets crucially, since no fragmentation/reassembly and re-
liability mechanisms are necessary.

A general comparison between Python and other languages is presented in [20]. For
a detailed performance evaluation of Python and Java see [12]. The Python based active
router (PyBAR) system has been implemented for Linux and for Virtual Routers [3].
A Virtual Router is an IP router emulator, which can be combined with real networks.
This allows real routers and hosts to be integrated into an emulated network.

2.1 The PyBAR Architecture

The design of the active network platform tries to separate the active components as far
as possible from the conventional router functionalities, but provides access to routers
internal components, like traffic conditioning systems, packet filters and routing. Such a
separation ensures portability and also allows an easier integration of existing devices.
Figure 1 shows the general architecture of the system.

The PyBAR architecture is based on the standard Python virtual machine and can be
connected to several network nodes (e.g. routers). In addition to a rather thin NodeOS
(platform adaptor) layer written in C++, the system consists of a set of native or inter-
preted library and extension modules and a central core written in Python to execute
received code. Received packets are forwarded either to a specific service handler, pro-
vided by an extension module, or are processed by the core.

180 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

The NodeOS provides communication facilities for the PyBAR core and the exten-
sion modules. Instead of running merely on top of the IP router, the NodeOS provides
several interfaces to the routers, using Python’s capability to use native code. This al-
lows the addition of new functions like traffic conditioning, encapsulation or monitoring
components directly to the IP routers kernel.

Security Since the system is only used by network administrators and their manage-
ment tools, security issues are less complex to solve than in more generic environments
[14][11]. The question of whether a platform is trustworthy or whether a secure boot-
strap mode [2] is supported, is of less importance, since the devices are owned and
controlled by the same network provider.

The basic mechanism used by the PyBAR platform is a public key infrastructure,
which can be used to sign and encrypt active packets. For that purpose the system
provides a set of encryption mechanisms, which are provided by the PyRSA extension
module allowing the flexible use of high speed cryptographic algorithms. Cryptographic
mechanisms require high processing speed, and the module therefore was implemented
in C. This solution provides high usability with good performance.

Since active packets can be modi-

Platform Adaptor (NodeOS)

IP Router

Core
PyBAR Modules

extension

(Python &
native)

pr
og

ra
m

 1

pr
og

ra
m

 1

Fig. 1. Basic architecture of the PyBAR
system.

fied during transmission, authentication
for active packets is complicated [14]. A
PyBAR active packet consists usually of
several parts (code blocks), which allows
sensitive (e.g. executable) code blocks
to be static and uses other code blocks
for the volatile data [11]. Additionally,
within the PyBAR system active packets
can be forwarded within a specific Dif-
ferentiated Service class. Access to this
Differentiated Services class can be lim-
ited to devices operated by the network
provider itself. By setting up filter mech-
anisms at border routers, a modification
of active packets can be prevented. This
approach is similar to the Virtual Ac-
tive Networks [6], but uses a Differen-
tiated Services class instead of a VPN-
like mechanism to control the access to
the active network.

Code Transport The advantage of active networking regarding network management
is that code can be transported along the path with normal data traffic. Therefore, pro-
grams can become active at nodes requiring configuration without keeping central struc-
tures like topology databases.

– A packet has one of the router addresses and is forwarded to the PyBAR for further
processing. This mechanism is especially useful to address specific end systems or
to send an active packet directly to a special active router.

Design and Implementation of a Python-Based Active Network Platform 181

– The Router Alert option is an IP option, indicating that a router should treat the
packet in a special way and can be used to trigger active packet processing [18].
The Router Alert option was introduced in conjunction with the RSVP protocol
and has the purpose to send a packet to a specific destination and trigger certain
functionalities in the routers along a certain path.

– Some IP routers process packets containing IP options like Router Alert more
slowly than normal packets. To prevent a delay of active packets, a special Differen-
tiated Services Code Point [4] value can be used instead of the Router Alert option.
Active routers forward these packets to the active components while conventional
devices will simply ignore this DSCP value. Besides improved performance this
has other advantage. Since packets with such a DSCP can be handled preferentially
by Differentiated Services routers, the loss of active packets can be ignored, and
limiting the use of that DSCP to devices of the network provider reduces secu-
rity risks. Of course multiple DSCPs may be used as well. As an example, there
might be a DSCP value for active signaling packets and another for active packets
carrying data.

Extension/Library Modules Since the hard coded commands provided by the PyBAR
cover only very fundamental tasks, and the availability of functions may depend on the
platform, more complex issues have to be covered by extension modules.

Extension modules can be provided by native code or by Python. Since the inte-
gration of native code and libraries is a fundamental mechanisms in Python, already
existing libraries can be added without much overhead, similar to the PyRSA module.
Of course, an appropriate module for the current platform has to be available, but since
there is no difference between calling functions provided by a native module, or using
an interpreted Python module, a platform-independent Python version of a module may
be provided as a default.

Any of these modules can be added, replaced, or removed dynamically by active
network mechanisms. A high-level, interpreted extension module to provide a uniform
interface to set up resources will be presented in Section 2.2.

Packet Processing and Code Execution The PyBAR core is responsible for the treat-
ment of received packets containing code. The active service id field in the packet
header signals the platform adaptor which active packet type is received. While packets
containing executable code are forwarded to the core, the processing of other packets
is left to active service handlers. Comparable to router plug-ins [9], modules can be
installed to process certain packets, identified by an active service id.

The processing of executable packets is much slower and time consuming than the
simple forwarding of a packet’s payload. Furthermore, the treatment of such streams
can be accomplished completely by the NodeOS and specialized extension modules. If
the service handler is provided by native code, the complete processing of such a packet
is ”Python-free” and therefore reasonably fast.

If a packet contains a program to be executed, the entire packet has to pass con-
sistency and security checks. While in the first step basic properties of the packet are
controlled, the second one covers digital signatures and encryption related issues. After

182 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

the packet has passed the consistency and authentication tests, an execution environ-
ment is initialized and the code within the packet is executed.

The core is Python-based and mainly a kind of framework, which can be adapted to
different needs and to provide very different mechanisms. Typical functions provided
by the core are:

– Monitoring of a running code. This monitoring provides no absolute security, but
merely limits the damage caused by program errors.

– A small central database or stack is provided to allow capsules to store and ex-
change data.

– Functions to install and replace modules within the library are provided.

In the description of the Python language the ”high level” of the Python language
was mentioned. Even if some of the tasks, like cryptography, require rather complex
algorithms, the core itself is very simple and uses only some high-level data structures
and functions provided by those modules.

Packet Format Packets, which contain executable code, can use the same basic header
as packets, which only have to be processed by some active component. To avoid as
much overhead as possible, this header is much simpler and shorter than an ANEP
header [1]. This increases the performance of packet processing by service handlers,
and leaves the processing of more sophisticated header fields, which are required for
executable packets, to the Python-based core.

UDP

Header

IP
Header

Code
Block

Source Port
Length

Destination Port

Checksum

PyBAR

Block Length Data

Data

Total Length

Identification Flag Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Version IHL TOS

IP Options

Version Active Service ID

Fig. 2. PyBAR IP/UDP payload and a PyBAR code block. Several
code blocks might be attached to a packet.

The minimum required PyBAR header is exactly four bytes long (see Figure 2) and
can be encapsulated either in raw IP or in UDP packets. It only contains an eight-bit
wide field with version information and a 24-bit wide active service identifier. The latter

Design and Implementation of a Python-Based Active Network Platform 183

allows to notify which module of the PyBAR system shall process the packet’s payload.
Since this header is very small and simple, a stream packet has to be checked only for
the active service id and can be forwarded to the corresponding module responsible for
this type of service.

The special active service identifier is used if the rest of the packet contains exe-
cutable code. If the active service identifier signals an ”active” payload the rest of the
payload has to consist of at least one code block. A code block consists of a 16 bit wide
length field and the code block’s content only. Multiple code blocks may be contained
within a packet. The PyBAR system expects the first code block to contain executable
code. Besides the program, this code block also contains a signature and other informa-
tion. However the payload format of the first code block is completely handled by the
PyBAR system itself and can therefore be adjusted easily. The other code blocks are
not processed and it is left to the code in the first code block to handle them. The plat-
form adaptor provides mechanisms allowing to access and manipulate the other code
blocks in the packet. This includes the execution of code blocks and their installation as
PyBAR library modules.

2.2 Differentiated Services Support

A central problem within the Internet is the lack of a homogeneous configuration in-
terface to network devices. Dependent on the vendor, very different interfaces are pro-
vided. Even more problematic than the interfaces are the fundamental design differ-
ences of devices [21].

A good example for such different design concepts are traffic conditioning compo-
nents, which are rather different on various platforms. Therefore, a simple mapping of
configuration commands might not be feasible. The Linux traffic control system uses a
concept of nested boxes. Each box is a traffic conditioning component, which can con-
tain other components. Other implementations are more list oriented or use a graph-like
layout of their traffic conditioning systems like the Virtual Router does.

These different concepts prohibit the use of low-level configuration commands
within a network. In contrast to providing a general application programming inter-
face [15] the PyBAR simply offers different commands for different types of platforms.
Since a capsule might be executed on multiple hosts and a distinction among the differ-
ent command sets is not feasible, those low-level commands are usually not used but
library modules are installed on the system in advance. A module providing methods to
set up and maintain Differentiated Services on a router can map a command set to the
low-level configuration scripts. Several high-level functions can be provided by such a
module:

– Functions to initialize and configure the basic system have to be provided. Some
kind of init() function may set up the complete set of queues, schedulers and classi-
fiers needed to provide Differentiated Services. Parameters of the init function may
define whether an ingress, egress or intermediate router has to be set up.

– The marker mechanisms have to be configured to mark packets with different
DSCPs. Functions to add or remove flow descriptions at the ingress routers have
to be provided. The mechanisms to apply such flow descriptions to the router may
vary significantly. Therefore, a high level interface would be beneficial.

184 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

– Since the Differentiated Services concept requires a separate handling of the dif-
ferent traffic classes, each traffic class has to be configured for a certain share of
the link bandwidth. Therefore, also these parameters are important for a general
interface.

Obviously, such a description can never meet all aspects of Differentiated Services
or of any other Quality of Service- providing mechanism. Therefore the PyBAR does
not even try to provide such a general interface or even a multi-platform module pro-
viding such a functionality.

Therefore, a module integrating DiffServ configurations for Virtual Routers and for
Linux was implemented, providing a convenient small set of commands as listed in
Table 1. The module is written in Python and can rather easily be extended to provide
more control and advanced features. This is important, because the set of commands
provided by an appropriate Differentiated Services module depends on the services an
Internet Service Provider wants to provide and control.

init() sets up the complete traffic con-
ditioning components required
for DiffServ, with a an appro-
priate scheduler, EF and AF
queues, token bucket filters

setClassShares(...) configures the bandwidth
shares for the different traffic
types

mark(...) configures the Differentiated
Services marker to mark spe-
cific flows with certain DSCPs

unmark(..) removes a marker rule

Table 1. Commands pro-
vided by the DiffServ mod-
ule for the configuration of
Differentiated Services re-
sources.

This explains why a lightweight mechanism to install modules on different plat-
forms and to adapt extension modules for new purposes is much more important than
the attempt to provide a really generic interface. The mechanisms to install such mod-
ules are provided by the PyBAR platform. An active packet may transport and install
code within each suitable node of a network, on a single device only, or on any machine
along a certain path. Even the attachment of multiple code objects is possible, whereas
each code object is to be installed on the matching router hardware.

3 Adding Active Services to a Network

The active service id field in the PyBAR header provides an easy mechanism to add
various packet treatments. Since the processing can completely be provided by native
code, the required processing power stays reasonably low, even for more complex al-
gorithms. A possible application for such active services can be the support for video
applications or the support for management related tasks, like a framework to establish
tunnels within a network, or simple multicast mechanism for small groups.

Design and Implementation of a Python-Based Active Network Platform 185

3.1 Active Tunnel Establishment

IP tunnels are an enabling technology for the application of new services and network
management. Even if the basic mechanism – an encapsulation of a packet into another
packet (IPIP) as proposed by [16] – is simple, more complex functions may be realized:

– The encryption and decryption of packets at the tunnel start and end points can
provide end-to-end security. This way flows can be transmitted securely without
the danger that an untrustworthy service provider might eavesdrop.

– Since all packets transmitted through a tunnel get a new header at the tunnel start
and the tunnel end point addresses, traffic conditioning mechanisms can be applied
quite easily for all packets in the tunnel, even if the encapsulated packets have
different source and destination addresses.

– Tunnels allow transport of signals transparently through a network and keep them
from triggering mechanisms within an ISP (e.g. an RSVP reservation setup).

For the establishment of tunnels, appropriate start and end points are required, if
certain special services like encryption have to be provided. But even for a simple IP
in IP encapsulation, an end point needs to be capable of handling the decapsulation of
packets.

Since the configuration of a tunnel is usually sender-driven, the general problem is
to detect an appropriate end point. When establishing a tunnel between border routers
of an ISP, the ingress border router does not usually know the address of the egress
border router. In contrast to other approaches using active networks to establish tunnels
[13], the focus here is not to provide tunneling mechanisms by active code itself, but on
finding appropriate end points and setting up encapsulation mechanisms within the IP
router. The active components are only involved for the instantiation of the tunnel, and
leave the encapsulation of packets to the IP router.

An active network allows triggering the

A

B

C

C

Fig. 3. A network with routers capa-
ble to tunnel packets (grey) and routers
without that mechanisms (white).

establishment of tunnels automatically with-
out the need for of any additional protocol.
Since an active packet allows the definition
of a kind of ”search pattern” for an end point
and can simply be sent downstream towards
the destination, the establishment of a tunnel
can be simplified and also the exchange of
keys might be accomplished.

Figure 3 shows a small network with a set
of grey routers capable of handling tunnels
and white end systems without this support.
Node A wants a tunnel to be established as close as possible to point B. To find out
an appropriate end node, an active packet addressed to node B can be injected into the
network. The packet will pass the nodes along the path and check whether the node is
an appropriate tunnel end point or not. Similar to the traceroute program reporting each
passed router, the active packet can report each possible candidate for a tunnel end point
to node A. If simple IPIP tunnels, not requiring a specific setup of the tunnel end point,

186 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

class DiscoverEP(ARpacket):
def init (self,acpkt):

get a list of router properties/services
c=pad.getCaps()
if IPIP available, extract information from
code block and send feedback packet
if c.count(’IPIP’):

src info=cPickle.loads(acpkt.cb(1))
generate and send feedback packet
p=pad.UDPPacket()
p.source=pad.hostip
p.dest=src info[’tunnel start’]
p.destport=src info[’portnumber’]
p.payload=cPickle.dumps({’service’:’IPIP’,

’tunnel end’:pad.hostip, ’time’:pad.time})
p.send()

forward original active packet
acpkt.send()
return

Table 2. Active Packet
code to discover a device,
able to handle IPIP tunnel
endpoints.

are used, node A simply uses the most appropriate candidate as the end point and sends
the encapsulated packets to this address.

Table 2 shows a the active packet’s Python code to check whether a device can
handle an IPIP tunnel. The whole packet consists of the first code block containing this
executable program and a second code block containing information about the tunnel
start point (src info) like the address and the port number to which the feedback packet
has to be sent.

To ensure that such a configuration packet was sent by an authorized network node,
this exchange of active packets takes place within a Differentiated Services class, which
is accessible only for specific nodes and prevents a transmission of active configuration
packets from outside that network. Additionally, such a packet carries a signature, which
can be checked periodically.

This search for an end point is not only determined by the simple capability to pro-
vide the decapsulation of tunneled packets, but may also be used to find nodes capable
of certain encryption techniques.

3.2 A Simple Active Multicast Service

Another example for an application using active services is the simple active multicast
mechanism, which is useful to support multicast for small groups. The active service id
signals the existence of additional IP addresses in the packet’s payload.

A similar but not active multicast service for small groups (xcast) has been proposed
by Boivie et al. [5]. An active approach to distribute multicast packets using functional
language elements of the PLAN system is described by Hicks [10]. In contrast to the
approach using PLAN, the algorithm presented here conforms better to the current xcast
approach. The main difference between the approach presented here and xcast, is the

Design and Implementation of a Python-Based Active Network Platform 187

way an xcast packet is signaled. While xcast uses a dedicated destination address, this
algorithm uses the active service id to trigger the special packet treatment. Especially
if a native service handler is provided, an active router running the PyBAR system can
easily be updated to provide a xcast mechanism at reasonable speed.

Figure 4 illustrates the

A,B,C B,C

A

B

C

Server

Client

Client

Client

Fig. 4. Processing of a packet with multiple addresses.

general concept. A server
has to send identical data
to multiple addresses. In-
stead of transmitting one
packet via unicast to each
destination, one packet is
sent, containing multiple
addresses. An active router
on the path detects the
packet due to a special
DSCP values, checks the
active service id, and ex-
tracts the list of addresses. If all addresses are routed over the same interface, the
original packet is forwarded, otherwise the packet is converted into several packets,
each carrying the addresses of the clients routed over the same interface. The resources
saved in comparison to unicast are evident.

Table 3. The complete code of the service handler providing a simple multicast service.

class MiniMulticast(ARservicehandler):
def forward(self,pkt):

extract address list from first code block
alist=cPickle.loads(pkt.cb(0))
ifcs={}
scan address list and create interface/address-l ist structure
for i in alist:

interface=pad.queryRoute(i)[’if’]
if not ifcs.has key(interface):

ifcs[interface]=[]
ifcs[interface].append(i)

scan interface/address-list structure and send packets
for i in ifcs.keys():

p=pad.Packet()
p.cb(0)=cPickle.dumps(ifcs[i])
p.cb(1)=pkt.cb(1)
p.send({’dest’:ifcs[i][0], ’ptype’:pkt})

return

188 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

Two extension modules providing the appropriate service handler have been imple-
mented. While the first one uses Python only, the second one is platform dependent
using C++. Table 3 lists the complete Python code required for the service handler. An
active packet for installing this service handler will usually consist of a short script to
register the service and the service handler code itself.

The example uses the PyBAR packet format. A multicast packet consists of two
code blocks cb(0) and cb(1) (see Table 3). The first code block contains the address
list, the second one the payload of the packet. As a simplification, in the example the
addresses are realized by a Python list, but also the more generic xcast format could
be used. The addresses within this list are scanned and for each address it is checked,
which interface would be used to reach it. As intermediate results, a data structure
is created and filled with addresses for each outgoing interface. In a final step new
packets are generated and transmitted. The pad.* functions are provided by the platform
adapter. Once a packet for a specific service handler arrives, the forward() function
of this service handler class is called with the packet as a parameter. The forward()
function extracts the address list from the first code block of the packet (cPickle), scans
the addresses, sets up the dictionary and finally creates and sends the new packets. The
destination address of a new packet for a certain interface is chosen from the list of
addresses routed over that interface.

Table 4 shows the performance1 of the Python and the C++ based service handlers
for different numbers of addresses. The bandwidth calculation was based on the execu-
tion speed of the Python code and an average packet size of 1000 bytes. For the output
bandwidth it was assumed that each packet is split up completely, and each address has
to be routed over a different interface.

nr.of addresses time [ms] packet rate (in) packet rate (out)

Python module
4 1 1000 4000
8 1.7 580 4640

16 2.2 454 7264
Native extension module (C++)

4 0.014 > 10000 -
8 0.026 > 10000 -

16 0.05 > 10000 -

Table 4. Performance of
the simple multicast ser-
vice provided by service
handlers written in Python
and in C++.

The packet rates reached by the native extension module could not have been mea-
sured exactly, but they were more than sufficient to process incoming packets at a full
link bandwidth of 100 Mbps. The performance of the Python example can not compete
with the implementation using the native code but could being improved by using a
more sophisticated format to store the destination IP addresses.

1 Measured on a Linux 400 MHz Pentium II

Design and Implementation of a Python-Based Active Network Platform 189

4 Summary

The Python-based Active Router (PyBAR) system is a lightweight active networking
platform focusing on the tasks of network management and configuration. The system
provides flexible access to router resources and forwarding mechanisms, which is nec-
essary to provide quality of service or to configure devices. Both platform-independent
and native extension/library modules are supported, and allow, if a native module is
available, to perform packet processing without the limitations of interpreted code.

The system provides basic security by using standard encryption and authentication
mechanisms. Additionally active packets can be transported within a specific Differen-
tiated Services class, which prevents unauthorized injection of active packets, and also
supports a preferential treatment of active packets.

The support for rapid development, provided by Python, is pursued by ongoing work
to combine Python and Java with the goal to be capable to use prototypical Python pro-
grams from within Java applications, and directly compile Python programs to Java
bytecode. These prototyping capabilities allow a rapid development of configuration
scripts, which is important for the usability of the system. Additionally, the high-level
character of the language reduces the program size and improves the system perfor-
mance.

The capabilities of the approach were demonstrated by two classical active network
applications. Using the system for the establishment of tunnels, illustrates how to au-
tomate and distribute configuration tasks with PyBAR. Active packets can be used to
set up tunnel endpoints according to certain specifications. The second example is a
multicast mechanism for small groups, which shows the advantages of installing new
services on the network, and serves for a short performance comparison of a platform
independent Python approach and an implementation using native code.

5 Conclusions

Seamless integration of native code modules within the PyBAR provides great advan-
tages for the task of network and quality of service management. Resources within the
network devices can be accessed and native code can be used more easily than using
languages like Java. This allows the easy installation of new traffic conditioning com-
ponents. The capacity to provide packet processing by the native code only allows to
implement services requiring high performance. This encourages the implementation of
native mechanisms for the PyBAR, instead of the underlying platform itself, increasing
the flexibility and portability of new services.

Acknowledgment

The work described in this paper is a part of the work done at the University of Bern
in the project ’Quality of Service Support for the Internet Based on Intelligent Net-
work Elements’ funded by the Swiss National Science Foundation (project no 2100-
055789.98/1) and the SNF R‘Equip project no. 2160-53299.98/1. This work was also
supported in part by the NSF grant EIA 0103676.

190 Florian Baumgartner, Torsten Braun, and Bharat Bhargava

References

[1] D.S. Alexander. Active network encapsulation protocol. CIS, University of Pennsylvania,
http://www.cis.upenn.edu/ switchware/ANEP/, August 2002.

[2] D.S. Alexander, W.A. Arbaugh, A.D. Keromytis, and J.M. Smith. A secure active network
environment realization in switchware. IEEE Network, 12(3):37–45, 1998.

[3] F. Baumgartner and T. Braun. Virtual routers: A novel approach for qos performance eval-
uation. In Crowcroft e. al., editor, Quality of Future Internet Services, LNCS, pages 336–
347. Springer, 2000. ISBN 3-540-41076-7.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weis. An architecture for
differentiated services. Internet Standard RFC 2475, December 1998.

[5] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridans. Explicit multicast
(xcast) basic specification. Internet Draft draft-ooms-xcast-basic-spec-03.txt, June 2002.
work in progress.

[6] M. Brunner and R. Stadler. Virtual active networks - safe and flexible environments for
customer-managed services. In R. Stadler and B. Stiller, editors, Active Technologies for
Network and Service Management. Springer, 1999. ISBN 3-540-66598-6.

[7] Ken Calvert, Samrat Bhatacharjes, Ellen Zegua, and J.P.G. Sterbenz. Directions in active
networks. IEEE Communications, 36(10):72–78, October 1998.

[8] The Caml language, INRIA, France, http://caml.inria.fr, June 2002.
[9] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: A software architecture

for next generation routers. In Proceedings of the SIGCOMM Conference, 1998.
[10] M. Hicks, P. Kakkar, T. Moore, C.A. Gunter, and Scott Nettles. Network programming

using plan. In B. Belkhouche and L. Cardelli, editors, Proceedings of the ICCL Workshop,
Chicago, LNCS. Springer, 1998. ISBN 3-540-66673-7.

[11] A.W. Jackson, J.P.G. Sterbenz, and R.R. Condell, M.N. Hain. Active monitoring and con-
trol: The sencomm architecture and implementation. In Proceedings of the DARPA Active
Networks Conference and Exposition (DANCE), pages 379–393. DARPA, 2002.

[12] G. Lefkowitz. A subjective analysis of two high level, object oriented languages. http://-
www.python.org/doc/Comparisons.html, April 2000.

[13] J.T. Moore, M. Hicks, and S. Nettles. Chunks in plan: Language support for programs as
packets. In Proceedings of 37th Annual Allerton Conference on Communication, Control,
and Computing, 1999.

[14] Sandy Murphy. Security architecture for active nets. http://www.dcs.uky.edu/∼calvert/
arch-docs.html, May 2001. AN Security Working Group.

[15] Proposed ieee standard for application programming interfaces for networks. http://www-
.ieee-pin.org.

[16] C. Perkins. IP encapsulation within IP. Internet Standard RFC 2003, October 1996.
[17] Python language website. http://www.python.org, August 2002.
[18] B. Schwartz, A.W. Jackson, W.T. Strayer, W. Zhou, R.D. Rockwell, and C. Partbridge.

Smart packets: applying active networks to network management. ACM Transactions on
Computer Systems, 18(1):67–88, 2000.

[19] D. Tennenhouse et al. A survey of active network research. IEEE Communications Maga-
zine, January 1997.

[20] G. van Rossum. Comparing python to other languages. http://www.python.org/doc/essays/-
comparisons.html, August 2002.

[21] W. Wang and J. Biswas. Standardizing programming interfaces for tomorrow’s telecom-
munications network. IEEE Standard Bearer, 12(2), April 1998.

[22] D. Wetherall, J. Guttag, and D. Tenenhouse. Ants: A toolkit for building and dynamically
deploying network protocol. In IEEE Openarch, April 1998.

	Design and Implementation of a Python-Based Active Network Platform for Network Management and Control
	Introduction
	The Python-Based Active Router
	The PyBAR Architecture
	Differentiated Services Support

	Adding Active Services to a Network
	Active Tunnel Establishment
	A Simple Active Multicast Service

	Summary
	Conclusions
	Acknowledgment
	References

