
Programmable Resource Discovery Using

Peer-to-Peer Networks

Paul Smith, Steven Simpson, and David Hutchison

Computing Department
Lancaster University

Lancaster, LA1 4YR, UK
{p.smith, ss, dh}@comp.lancs.ac.uk

Abstract. Some forms of programmable networks such as funnelWeb
allow service components to be deployed discretely (i.e. out-of-band) on
a suitable configuration of elements, but do not define mechanisms to
determine such configurations.
We present a mechanism to resolve arbitrary service-specific deployment
constraints into a suitable node configuration. To focus constraint reso-
lution, we arrange programmable elements into an overlay, and use this
to interpolate/extrapolate more favourable locations. Programmable ser-
vice components are used to evaluate suitability of individual nodes.

1 Introduction

Critical to the successful operation of a network service is the deployment of
service components on appropriate network elements. The services supported by
a conventional network element are intrinsic to that element and static. However,
services on a programmable element are dynamic and transient. The challenge
in a programmable networking environment is to select from a set of general
purpose programmable elements a subset that is suitable for deploying a set of
service components.

When considering programmable service component deployment, two main
approaches have been adopted to date: the capsule (or in-band) approach, where
computational components are included with or referenced from within network
traffic that is to be augmented [WGT99, Wet99]; or the discrete (or out-of-band)
approach, where computational elements are loaded prior to the traffic’s arrival
by a third-party process [FG98, SBSH01]. The discrete approach requires a pro-
cess to select the appropriate set of programmable elements to deploy compo-
nents on, unlike the capsule approach where component deployment is integral to
the manner in which the service is executed and so there is no such requirement.

In this paper, we are concerned with the discrete approach to service deploy-
ment. We present a critical part of a service deployment architecture that enables
the identification of programmable entities based upon a set of service-specific
constraints. Using our GROUPNET algorithm, programmable elements are organ-
ised into a peer-to-peer overlay network. Programmable service components are
used to resolve service-specific constraints into suitable node configurations.

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 229–240, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

230 Paul Smith, Steven Simpson, and David Hutchison

cost

memory

CPU

Fig. 1. An example set of dimensions and two different services with distinct
desired values within those dimensions

We continue this section with a discussion of issues related to service de-
ployment constraints. Following in Sect. 2 an overview of our GROUPNET overlay
construction algorithm is given, which enables us to infer locations to search
when resolving deployment constraints. Section 3 presents a search algorithm
using GROUPNET and shows simulation results of a number of searches. In Sect. 4
we present an example service deployment scenario and show how our approach
can be used. In Sect. 5 related work are discussed. Finally, in Sect. 6 we present
some conclusions and outline further work.

1.1 Service Deployment Constraints

Peer-to-peer networking services such as Freenet [CSWH01] perform single-
dimensional constraint resolution. For example, they transform the name of
a shared file into a set of peers from which the file can be obtained. In pro-
grammable networks there are potentially multiple service deployment constraint
dimensions that can be distinct on a per-service-instantiation basis, for example
monetary cost and topological location. This is exemplified in Fig. 1, where one
service has relatively low computational and cost constraints and another with
relatively higher constraints.

In some cases, values within constraint dimensions can be traded against
others in different dimensions – for example, a customer may be willing to pay
a price in proportion to the service quality. Values within some dimensions can
change in relation to network topology. For example, a telephone call may cost
less when the end-points are topologically nearer. Programmable services that
demonstrate these properties can be seen at [GF97, SMCH01].

A programmable element that is intended to support a number of poten-
tially transient services cannot natively understand the nature of their opera-
tional constraints. It is for this reason we advocate the use of programmable
service components to evaluate the suitability of individual elements. In this
situation, elements expose interfaces that enable appropriately privileged pro-
grammable resource discovery components to interrogate local state and perform
measurements with interesting nodes. Constraint resolution intelligence resides

Programmable Resource Discovery Using Peer-to-Peer Networks 231

in programmable service components that interrogate dumb programmable ele-
ments.

2 GROUPNET: A GROUPing Meshed Overlay NETwork

Programmable elements are organised into an overlay network. This overlay
network is constructed using the GROUPNET algorithm. A property of the overlay
enables us to interpolate/extrapolate improved locations to search. A description
of the GROUPNET overlay construction algorithm will now be given.

The procedure that a new peer wishing to join a GROUPNET mesh must follow
can be described as follows. A peer s locally decides its desired degree d, which
will influence the number of immediate peers it has. It will maintain N(s), its set
of immediate neighbours. (Initially, using a bootstrap mechanism, s is assigned
a set of peers N(s). This initial N(s) can either be randomly selected, or to
improve algorithm performance some heuristics can be used for selection.) s
now undergoes a sequence of optimisations.

In each optimisation, for each peer p in N(s), s obtains measurements to p
and N(p), and orders them to produce a list L(p) (which includes p) of those
peers in order. The new set of neighbours of s, N ′(s) will at least consist of the
best of each L(p) – if this falls short of d, the best of the union of the remaining
members of all the L(p)’s can make up the shortfall.

The result is that for each p ∈ N(s), (N ′(p) ∪ p) ∩ N ′(s) is not empty, i.e.
there is a path of no more than two hops between s and each of its original
neighbours, ensuring that the mesh does not become disconnected.

A

B

C

D

E

F

GH

I J

K

L

M N

O

P

Q

R Y

T

U

V

W X

s

d = 3
1. N(s) = {K}
N(K) = {F, O, L} , L(K) =< O, L, K, F >

2. N ′(s) = {O, L, K}
N(O) = {K, P} , L(O) =< P, O, K >

N(K) = {F, L, O} , L(K) =< O, L, K, F >

N(L) = {K, P, M} , L(L) =< P, L, M, K >

3. N ′′(s) = {P, O, L}
N(P) = {L, O, Q} , L(P) =< Q, P, O, L >

N(O) = {K, P} , L(O) =< P, O, K >

N(L) = {K, P, M} , L(L) =< P, L, M, K >

4. N ′′′(s) = {Q, P, O}

Fig. 2. An example peer membership scenario with some of the stages of evalu-
ation shown

232 Paul Smith, Steven Simpson, and David Hutchison

2.1 Peer Membership Example

Figure 2 shows an example of a peer wishing to join a mesh and some of the
steps toward achieving this. The node s wishes to join the mesh and has selected
a degree d of 3. Using a bootstrap mechanism s is assigned {K} as its initial
N(s) as shown in step 1 of Fig. 2. The neighbours of K are evaluated along with
K itself and the ordered list L(K) is produced. In this example, peers closer to
s score higher than those more distant and therefore appear toward the start of
the list. From L(K), the best d are taken to produce N ′(s) as shown in step 2.
This completes a single iteration of the GROUPNET membership algorithm.

We anticipate a number of iterations would be performed until N ′(s) does
not improve on N(s). In step 2 of Fig. 2, N ′(s) = {O, L, K} which improves upon
the immediate neighbours of s. Another iteration of the membership algorithm
involves: determining N(p) where p is a peer in N ′(s) and N(p) are all the
neighbours of p (for example N(O) = {K, P}), evaluating them to create L(p)
(L(O) =< P, O, K >) and then selecting the best from each L(p) to generate
N ′′(s). If we find that we have already selected the best from a list, we simply
take the next best as demonstrated in the example. It can be seen that the
immediate peers of s draw gradually closer to it. Ultimately, the algorithm will
terminate with N(s) = {U, T, Y }.

2.2 Peer Evaluation Metrics

The metric used to evaluate a peer will depend on the application of the overlay
mesh. For example, for programmable resource discovery we wish to construct a
topologically aware overlay network. To this end, we could use round-trip delay
between peers to evaluate suitability. Peers with smaller round trip delays score
higher in this situation that those with longer delays.

If one considers a resource sharing application, it may be desirable to group
peers sharing similar resources. By grouping peers which share similar resources
(for example by music from a similar genre) searching could be more effective
as peers probable to have a desirable resource will be fewer overlay hops away.
If a user searches for resources that are distinct from those available from its
immediate peers, inferences can be made regarding optimal locations to search.

2.3 Evaluation of GROUPNET

We have simulated the GROUPNET overlay construction algorithm. Peers are ran-
domly distributed in a two-dimensional coordinate space and the group mem-
bership algorithm run at each peer. Distance between peers is used as the config-
uration metric. Peers with a smaller distance score better than those with larger
distances. Figure 3 presents a graphical representation of the meshes produced.
Node degrees of 3, 4 and 5 were assigned shown in Fig. 3a–c respectively. The top
line of Fig. 3 (random) shows meshes produced after peers are assigned random
neighbours. The bottom line of Fig. 3 (groupnet) show the meshes produced

Programmable Resource Discovery Using Peer-to-Peer Networks 233

Random

GROUPNET

a b c

Fig. 3. Meshes created both randomly and using the GROUPNET algorithm with
different node degrees

after running the GROUPNET overlay membership algorithm presented earlier. To
optimise the mesh produced, we ran the algorithm 30 times at each node1.

The aim of these simulations is to demonstrate that the membership algo-
rithm produces overlays with desirable properties. The random meshes shown
in Fig. 3 show undesirable properties as peers have links that are connected to
relatively distant peers. The searching mechanism described in section 3 cannot
be conducted on overlay configurations such as these, since there is no correla-
tion between distances on the overlay and the space. The meshes constructed
using the GROUPNET algorithm have the desired properties for enabling interpola-
tion/extrapolation as there is a smooth transition over the space as one traverses
the overlay.

3 Searching over GROUPNET

To evaluate the effectiveness and scalability of our approach, we have simulated
searching over a GROUPNET mesh. To do this we construct meshes as in the
simulations presented in Sect. 2. We define a target set of peers with three
parameters: a point p in the coordinate space, a threshold T from p, that peers
should fall within, and a timeout. Figure 4 shows the simulation scenario, with
the target peers falling within the threshold shown.

A peer is capable of performing two operations on other peers. A node can
either evaluate or spawn on another peer. The evaluate operation simulates
remotely determining the suitability of another peer, for example by loading
evaluation components. In our simulation, evaluation takes the form of a peer
calculating its distance from p and returning that value. The spawn operation

1 Normally, we expect that optimisation would happen periodically, increasing in fre-
quency the more excess links a peer has.

234 Paul Smith, Steven Simpson, and David Hutchison

node

point

threshold

overlay link

Fig. 4. Scenario used for searching simulations

simulates instantiating programmable service components onto a peer. These are
two operations we envisage as being necessary to conduct searches.

3.1 Search Algorithm

To conduct the search, a peer is randomly selected from the mesh. Initially,
the timeout is checked and if it has expired the search algorithm terminates
on that peer. The peer then randomly selects a number of other peers n hops
away and evaluates them. If the peers just evaluated have larger distances s to
p than a peer’s own s, a subsequent set of peers are selected n/2 hops away and
evaluated. This process is iterated until n = 0, when the search is terminated at
that peer. However, if a set of evaluated peers have smaller values of s than a
peer’s own, the search algorithm is spawned on those peers. Peers with s <= T
are immediately reported after evaluation. The search should migrate or spawn
toward peers with improved values of s and terminate when better values of s
cannot be found.

3.2 Simulation Results

To assess the scalability of our search algorithm, we observed the average num-
ber of evaluations and spawns. We ran the search algorithm with the following
parameters. We exponentially increased the number of peers in the mesh and
adjusted the size of the coordinate space to maintain a constant density of peers.
The value of T was maintained to statistically yield a constant number of target
peers. The initial hop count n was kept at 20% of the mesh size. The algorithm
was performed 50 times using each mesh size, with a new p and initial peer to
start the search on being selected at each iteration.

Spawns and evaluations are relatively expensive operations to perform. For
example, programmable service component deployment using funnelWeb in-

Programmable Resource Discovery Using Peer-to-Peer Networks 235

volves invoking a load command on a programmable element, fetching the com-
ponent(s) over HTTP to the element and then instantiating the components.
Figures 5 and 6 present the average number of spawns and the percentage of the
total mesh spawned upon. The average number of spawns remains fairly con-
stant in relation to increased topology size. The ability of the search algorithm
to scale is best demonstrated in Fig. 6, where the total percent of the mesh
spawned upon falls dramatically with the increase in size of the mesh.

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 100 400 1600 6400 25600

S
p
a
w
n
s

Nodes

Fig. 5. Average number of spawns conducted on different size meshes

 0

 2

 4

 6

 8

 10

 12

 100 400 1600 6400 25600

%

S
p
a
w
n
e
d

Nodes

Fig. 6. Percentage of total mesh size spawned on when searching

Figure 7 presents the average number of evaluations conducted when exe-
cuting the search algorithm. Again, as with the average number of spawns the
number of evaluations remains relatively constant in relation to increased mesh

236 Paul Smith, Steven Simpson, and David Hutchison

size. The percentage of the mesh evaluated is presented in Fig. 8. The percentage
of the total mesh evaluated falls significantly with increased mesh size.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 100 400 1600 6400 25600

E
v
a
l
u
a
t
i
o
n
s

Nodes

Fig. 7. Average number of evaluations conducted on different size meshes

 0

 5

 10

 15

 20

 25

 30

 35

 100 400 1600 6400 25600

%

E
v
a
l
u
a
t
e
d

Nodes

Fig. 8. Percentage of total mesh size spawned on when searching

It can be seen from the results presented that the target peers can be rapidly
converged upon in a manner that scales with large mesh sizes. This is achieved
by using a search algorithm that uses the properties of the GROUPNET overlay
to infer improved locations to search. To demonstrate the effectiveness of the
algorithm, we observed that out of the total number of peers to be found the
algorithm located on average 89%.

Programmable Resource Discovery Using Peer-to-Peer Networks 237

4 Service Deployment Scenario

To demonstrate the applicability of our approach we will present an example
service deployment scenario. The service we present in this example aims to
reduce the cost of making long distance calls by using the Internet and Voice
over IP (VoIP) to make the long distance connection [GFC00]. At the remote
end of a connection, a network element with a modem attached to the PSTN
can be used to complete a call to a local receiver, therefore making the total
cost of a long distance call at most two local connections: one to connect to the
Internet and the other to a local receiver. In our example scenario, the network
element with modem functionality is programmable and the aim is to discover
from the set of elements available a subset most suited to serve our application
demands.

By using the Internet to form the long distance part of a connection, one
exacerbates the problem of round-trip call delay. However the greater part the
Internet constitutes the connection, the cheaper the cost of the call is likely to
be. A balance must be struck between the total cost of the call and the delay
experienced. Both parts of a connection contribute to a monetary cost and the
total round-trip delay. We can use the function c = cn + cp to calculate the total
cost of making the call, where cn is the fixed cost of connecting to the Internet
and cp is cost of the call on the PSTN. We use t = tn + tp to determine the
total round-trip delay, where tn is the delay across the Internet and tp is the
delay across the PSTN. The values of t and c have acceptable upper bounds
represented by tmax and cmax respectively. Elements with values greater than
tmax and cmax can be immediately dismissed as unacceptable. The product of t
and c can be used to select the most appropriate element from the available set.
Table 1 shows example values of five candidate elements.

Element tn tp cp cn t c tc

1 20 17 17 3 37 19 703
2 40 14 12 3 54 15 810
3 60 11 6 3 71 9 639
4 80 8 3 3 88 6 528
5 100 5 3 3 105 6 630

Table 1. Example costs for a set of candidate elements for deploying a Voice
over IP service

If tmax = 100ms and cmax = 10p/min we can immediately consider elements
1, 2 and 5 from Table 1 as unsuitable. Elements 3 and 4 meet our constraints
and we consider the value of tc to select the most a appropriate element, in this
case element 4 best meets the service constraints.

By constructing the overlay of programmable elements using GROUPNET, there
is a correlation between relative location in the overlay and network topology.

238 Paul Smith, Steven Simpson, and David Hutchison

One would anticipate the cost of the call cp to change in relation to network
topology. Therefore traversing the overlay network should result in a consistent
variation in the cost cp. We can use this fact to interpolate/extrapolate better
locations for searching. For example, if a direction along the overlay yields ele-
ments with a better cp than those already known, searching can continue in that
direction in the hope that cp will continue to improve. Other inferences such as
these can be made in order to find the set of programmable elements that have
acceptable values of c. If such elements are found, tn can be determined and
ultimately tc.

5 Related Work

There are peer-to-peer networking based solutions that are able to take multi-
dimensional resource constraints and resolve/route them to the nearest set of
peers that meet the constraints. Noteworthy approaches include CANs [RFH+01]
and Pastry [RD01].

The design of Content-Addressable Networks (CANs) is focused on the use
of a virtual d-dimensional Cartesian coordinate space, which is partitioned into
zones that are controlled by peers in the CAN. A peer wishing to join the CAN
selects a point in the coordinate space at which they wish to reside. They send
a join message to an arbitrary point in the CAN with their desired coordinates.
This message is routed over the coordinate space until it reaches a peer who
controls the zone that occupies that point. The peer who owns the zone partitions
it with the new peer and shares neighbour information. The new peer is now
reachable across the CAN and is adjacent to peers with similar coordinates.

Peers in the Pastry network possess a unique node identifier that is obtained
using a secure hash of its public key. As with CANs, a peer’s identifier dictates
its position within the Pastry network. The group membership algorithm used
by Pastry enables peers to be co-located with others that have similar identifiers.
Peers in Pastry maintain routing tables containing node identifiers of adjacent
peers in the network.

Points in a CAN coordinate space and public keys in Pastry can be used
to identify peers that satisfy multi-dimensional resource constraints. However,
the values within a dimension are absolute – they do not vary in relation to
different view points. It is also unclear how such approaches manage when there
are highly dynamic values within dimensions as in a programmable networking
environment.

For the purpose of programmable resource discovery, GROUPNET is used to con-
struct a topologically-aware overlay network. Other approaches to constructing
such overlays exist, for example Distributed Binning [RHKS02] and Hierarchical
Clustering [MCSH02].

Distributed Binning involves associating nodes with logical bins based upon
relative or absolute values that are derived from measuring a node’s distance
from a number of well-known landmarks. We believe that scalability issues could
arise if a significant number of nodes measure themselves against a much smaller

Programmable Resource Discovery Using Peer-to-Peer Networks 239

number of landmarks. More acutely, this problem could lead to a node being
inaccurately associated with a bin due to significant link stress at a landmark.

Scalable Adaptive Hierarchical Clustering is a method of building a hierarchy
of nodes, based on the notion of proximity, in a distributed and scalable way.
The hierarchy is built through a series of “local” decisions involving only a small
subset of the hierarchy’s population for each decision. By using only a series
local decisions and an innovative approach to adaptive cluster size distribution,
the authors present a scalable means of constructing application-level overlay
networks. Primarily this approach is intended for tree construction, however the
algorithm can be trivially extended to generate overlay meshes.

6 Conclusions and Further Work

In this paper we have presented a novel approach to discovering a set appropriate
programmable elements based upon service-specific deployment constraints.

We have suggested that deployment constraints differ in many dimensions
on a per-service basis and programmable elements cannot natively understand
the nature of these constraints. To solve this problem we propose that pro-
grammable service components are used to resolve deployment constraints and
programmable elements make available to these components their local state for
interrogation. We construct an overlay mesh consisting of programmable ele-
ments, which has the property of an element’s immediate peers being topologi-
cally close. Using this overlay, we can perform searches on constraint dimensions
whose ranges differ relative to network topology.

We have demonstrated some of the dimensions of scalability and effective-
ness of searching over a GROUPNET mesh. Further work is required to evaluate
the scalability and timeliness of the overlay construction algorithm. However,
we feel this is secondary to searching performance, as joining the overlay would
only occur at boot time. The use of programmable components for resolution
may present unacceptable performance issues, we need to investigate these and
suggest how performance could be improved. Additional consideration needs to
be given to searching in multiple dimensions and how to converge on a con-
figuration of resources with acceptable values within each. Further challenges
lie in searching dimensions that have less correlation to the target and are not
considered a part of the mesh dimensions.

7 Acknowledgements

This work was carried out under the Alpine project funded by BTexact Tech-
nologies. Paul Smith has a CASE studentship with the EPSRC and BTexact
technologies.

References

[CSWH01] I. Clarke, Oskar. S., B. Wiley, and T.W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In H. Federrath,

240 Paul Smith, Steven Simpson, and David Hutchison

editor, Designing Privacy Enhancing Technologies: International Workshop
on Design Issues in Anonymity and Unobservability, volume 2009 of LNCS,
New York, 2001. Springer.

[FG98] M. Fry and A. Ghosh. Application Level Active Networking. In Computer
Networks and ISDN Systems, 1998.

[GF97] A. Ghosh and M. Fry. Javaradio: an application level active network.
In Third International Workshop on High Performance Protocols (HIP-
PARCH ’97), London, June 1997.

[GFC00] A. Ghosh, M. Fry, and J. Crowcroft. An Architecture for Application Layer
Routing. In IWAN 2000, Tokyo, Japan, October 2000.

[MCSH02] L. Mathy, R. Canonic, S. Simpson, and D. Hutchison. Scalable Adap-
tive Hierarchical Clustering. IEEE Communications Letters, 6(3):117–119,
March 2002.

[RD01] A. Rowstron and P. Drushcel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM Middleware
2001, Heidelberg, Germany, November 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S Shenker. A Scalable
Content-Addressable Network. In ACM Sigcomm 2001, August 2001.

[RHKS02] S. Ratnasmay, M. Handley, R. Karp, and S. Shenker. Topologically-Aware
Overlay Construction and Server Selection. In IEEE INFOCOM 2002,
June 2002.

[SBSH01] S. Simpson, M. Banfield, P. Smith, and D. Hutchison. Component Selection
for Heterogeneous Active Networking. volume 2207 of LNCS, pages 84–100.
Springer, September/October 2001.

[SMCH01] P. Smith, L. Mathy, R. Canonico, and D. Hutchison. ALM and ProgNets
for v4-to-v6 Multicast Transition. In IEEE OpenArch 2001 - Short Paper
Session “Ghosts of the Net!”, Anchorage, Alaska, April 2001.

[Wet99] D. Wetherall. Active network vision and reality: lessons from a capsule-
based system. In Operating Systems Review, volume 34(5), pages 64–79,
December 1999.

[WGT99] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: Network Services
Without the Red Tape. IEEE Computer, 32(4):42–49, April 1999.

	Programmable Resource Discovery Using Peer-to-Peer Networks
	Introduction
	Service Deployment Constraints

	GROUPNET: A GROUPing Meshed Overlay NETwork
	Peer Membership Example
	Peer Evaluation Metrics
	Evaluation of GROUPNET

	Searching over GROUPNET
	Search Algorithm
	Simulation Results

	Service Deployment Scenario
	Related Work
	Conclusions and Further Work
	Acknowledgements
	References

