
RADAR: Ring-Based Adaptive Discovery of

Active Neighbour Routers

Sylvain Martin and Guy Leduc

Research Unit in Networking, Université de Liège, Institut Montefiore B28, 4000
Liège 1, Belgium

{martin, leduc}@run.montefiore.ulg.ac.be
http://www.run.montefiore.ulg.ac.be/

Abstract The RADAR protocol and its underlying neighbourhood dis-
covery framework extend the ANTS toolkit by giving active nodes the
ability to discover dynamically other active nodes close to them without
relying on any configuration file. Such an automatic discovery is the key
to administration of large or sparse active networks and the first step
towards an efficient active routing.
Active nodes will use their local IP routing table to run an extended ring
search in their domain. An Additive Increase Multiplicative Decrease
control allows RADAR to discover several neighbours per physical in-
terface without searching too far away or fixing a maximum distance a
priori. The protocol is complemented by a traffic-driven discovery that
can grab capsules coming from unknown nodes (mainly outside the local
domain) and trigger targetted probing of those addresses.

1 Introduction

1.1 Purpose of This Work

Active networks often require the network engineer to develop his own active
routing that would better fit the application needs than what a default routing
protocol would have done. One can, for instance, use active nodes soft state so
that a multicast flow of capsules reaches all of its subscribers by simply following
indications that have been stored by previous subscribe capsules (that follow the
’upstream’).
However, to have such schemes work, we need an initial way to find routes

to nodes. Clearly, in the previous example, the subscribe capsules cannot rely on
some soft state to reach the stream source. We have different ways to deal with
that kind of capsules :

1. if we know the stream source’s IP address, we can rely on IP routing to reach
the source.

2. if we know the stream source’s active address, we could have an active routing
protocol that would relay the capsules to the next active hop towards the
stream source.

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 62–73, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers 63

3. otherwise, we could forward the subscribe capsule to all the possible ac-
tive next hop repeatedly until we find the source (that’s awfully unscalable,
though).

The first option is by far the simplest if its condition is met. However, it
would lead to create a direct tunnel between the source and the subscriber,
which prevents intermediate nodes from doing any processing on the capsules.
In both other options, we need to know a list of next active hops of the

active node, either to exchange active-routing information, or to select one and
forward it directly the data. Those active nodes will be referred to as active
neighbours or simply neighbours in this paper. Most execution environments
assume either that the whole network is made of active routers or that the list
of active neighbours is provided through some configuration file. This limits the
use of these environments to relatively small or very static testbed networks.
So the purpose here is to design a neighbours discovery protocol for the

ANTS[1] framework that will let every active node dynamically discover its active
neighbours to form an overlay network on top of the IP topology and possibly
inform an active routing protocol of neighbour arrival or departure. Moreover,
we want it to be fully plug-and-play and require no centralized component.

1.2 Defining Neighbourhood

Because active nodes run on top of IP, every active node can virtually reach any
other active node. However, we want to reduce this “full mesh” to an overlay
topology that better matches the real (physical) topology. Our protocol will per-
form that transformation by selecting a list of neighbours among all the reachable
active nodes.
Active Neighbours are the equivalent of the next hops in IP routing and have

to meet the following conditions:

– They must be active nodes,
– They must be directly reachable by the current node, which means if the
current active node sends an IP packet to a neighbour, no other active router
will receive the packet before it has reached the neighbour,

– They must be ’close enough’ to the current node.

The latter condition enforces that a restricted amount of resource will be
consumed to reach a neighbour node. For instance, we could fix a maximum
TTL needed to reach a neighbour or define a time interval for the neighbour to
respond. Note that the neighbourhood relationship is not necessarily symmetric,
especially when routes aren’t (i.e. if the route leading from A to B is not the
route leading from B to A).

1.3 Structure of This Paper

After the state of the art summary in section 2, section 3 introduces the reader
to the basic mechanisms that are used in our protocol.

64 Sylvain Martin and Guy Leduc

The extended-ring-based discovery protocol - RADAR - is introduced and
described in section 4. It is built on top of the framework of section 3, and adds
an efficient capsules generation policy.
The architectural changes that have been made to the ANTS toolkit to make

our protocol run on it are described in section 5.

2 State of the Art

Neighbourhood discovery techniques in overlay networks significantly differ from
those in classical or ad-hoc networks by the fact that we cannot reach all the po-
tential neighbours by just broadcasting a message through an interface. Although
it re-uses the principle of the extending ring search [14], RADAR doesn’t require
any node to support multicast and works even without broadcasting facility.
Existing active network Execution Environments rarely address the problem

of active neighbours discovery. In ANTS [1] and PLAN [4], routing tables and
neighbourhood tables are read out of static configuration files. Using the DANTE
[5] protocol from ABone [6] specifications, a single domain can join a statically
configured backbone router and start exchanging routing updates, but these
features don’t help for auto-configuration of a dynamic overlay topology.
Other works such as the PROTEAN [7,8] project and its SPINE network

infrastructure or the ALAN [9] project are based on a hierarchical database
where all service providers will register. The hierarchy is usually based on domain
names hierarchy and allows identification of which service is provided by which
node. However, such databases don’t provide a neighbourhood relationship and
have virtually no information about components physical proximity 1. So we can
use them when a client has to find out which server it can connect to, but they
aren’t of much help when building dynamic active routing tables.
In the TAO dynamic overlay management algorithm [12], the neighbourhood

discovery is based on DNS queries for a well-known name that returns a list of
cluster heads, and each node uses ping statistics to join one of these clusters.
Every node of such a cluster then becomes the neighbour of every other node
in its cluster and an elected “cluster head” runs a routing protocol with peer
clusters to build neighbourhood between clusters. Unlike what happens in our
protocol, the TAO algorithm works at a coarse level: two nodes of a cluster can
be neighbours even if they can’t directly reach each other. Moreover, two nodes
that are physically close to each other could use an excessively long path to
communicate if they join distinct clusters.

3 Neighbourhood Discovery Framework

3.1 The AYA Capsules

The whole discovery process is based on very simple AYA (stands for Are You
Active?) capsules - a sort of active ICMP Echo packet. Those capsules are sent
1 unless assuming that a domain name is made of close devices, which is certainly false
for domains as .com

RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers 65

to the node or network we want to probe and will be intercepted by the first
active node they cross (see listing 1.1 for a pseudocode for AYA.evaluate()).
Only active nodes will recognize AYA capsules and reply to them. If such a

capsule is received by a non-active IP node, this one will have no upper protocol
that matches the ANEP protocol type written in the IP header and will just
drop it (or possibly reply with an ICMP error message). Non-active intermediate
nodes will just forward the capsule as they would forward any other IP packet.
Once the AYA capsule is received by an active node, this node will fill in the

“neighbour” field with its own active address. Then the capsule stops searching
its target and goes back home. The neighbour discovery application running on
that home node will then learn that it has a (new) neighbour, but also that this
neighbour is on the road to reach the target address.

Listing 1.1. evaluate() method for Ay-
aCapsule
vars :

neighbour = NOT_FOUND;

target; /* probed address */

evaluate on node N:

if node address = capsule source {

if neighbour != NOT_FOUND

”deliver to RADAR instance”;
else

”route to target address”;
} else {

if neighbour = NOT_FOUND

neighbour= node address;

”route back to capsule source”;
}

Listing 1.2. Pseudocode for RADAR
probing policy
on every interface:

repeat {

testing = targets.nextRing();

foreach (1..3) {

testing.sendCapsules();

wait(DELAY);

}

threshold+=testing.size;

} until threshold.reached

|| testing.isEmpty;

on ”capsule c delivered ” {

”remove c.target from testing ”;
threshold*=ALPHA;

}

3.2 Neighbour Discovery as an Active Application

Rather than implementing the neighbour discovery protocol directly in the core
of the ANTS execution environment, we decided to develop it as an active ap-
plication that runs on top of that environment and uses it to send its capsules.
However, the neighbour-discovery application must have a privileged status in

the ANTS execution environment to be able to do its job properly. For instance,
it must be able to provide the enumeration of Neighbour nodes instead of the
primordial node2, and have the opportunity to inform the ANTS’s routing table
manager of neighbours arrivals and departures.
Special care should be taken while updating the ANTS environment to sup-

port extensions required by the neighbourhood discovery, so that appropriate
security checks are performed and only “trusted” applications can modify the
neighbourhood table.
2 In ANTS, the PrimordialNode is the main component of the Execution Environment
that deals with most communication with the NodeOS, including retrieving routing
and neighbourhood tables

66 Sylvain Martin and Guy Leduc

3.3 Capsules Grabbing

A protocol like the neighbour discovery protocol3 can’t work using only the
regular capsule-over-udp scheme. In that scheme, a capsule is routed along a list
of udp tunnels linking active nodes, and only the tunnel endpoints can do some
processing on the capsule. This can be useful when trying to establish a service
that only requires some of the network nodes (even if the whole network is made
of active nodes) like transcoders or repeaters, but it completely ruins our plans
when we’re dealing with neighbour discovery.
Keeping this UDP service would mean that we’d have to send AYA capsules

to every router on the path to a destination D for discovering the neighbour
which leads to D. Indeed, sending an AYA capsule with D as IP destination
would skip all intermediate active nodes and make D appear as a neighbour if
it is active, which is far from what we expected.
To have things working, we need active nodes to catch the AYA capsule and

evaluate them even if they’re not the IP destination of this capsule. This is what
we call capsules grabbing. With a NodeOS-based system [11], this means that
some ANTS entity should create a new InputChannel that will inspect the IP
packet header and accept them if they have the right protocol type, regardless of
the IP destination they hold. Once such packets are received on that channel,
they will be processed by ANTS as if they were coming from another channel:
retrieval of the capsule class based on its Method IDentifier and then capsule
evaluation. Moving to this scheme might require an update of the active envi-
ronment, but it doesn’t require a modification of the NodeOS itself.
As we want to keep backward compatibility with the UDP tunnel model,

we don’t want to grab any kind of capsule, but only those that ’require’ or
’request’ it. In this work, we decided to use grabbable capsules every time a node
is requested to send a capsule to a destination for which it has no neighbour. This
gives us a reliable “escape route” (falling back to IP route table) and prevents the
nodes from dropping capsules because of incomplete routing or neighbourhood
tables.
The capsules grabbing is mandatory for our solution, but it isn’t sufficient

to solve the neighbourhood problem:

1. The active nodes that will perform operations along the route might not be
right on the default IP route and therefore would not grab the capsules they
should process.

2. To be grabbable, the capsule’s address must contain (or map to) a unique
IP address. For capsules that don’t know their destination a priori this will
not be possible.

3. Only capsules whose target address can be mapped to a unique IP address
can be made grabbable. Having all capsules grabbable would require that
active addresses (used for ANTS active routing) are IP addresses.

3 In the rest of this paper, we will give the generic name of Neighbour Discovery Proto-
col(NDP) to any software component that extends ANTS to support a dynamically-
built neighbourhood table. Our RADAR protocol is one possible instance of the
abstract NDP protocol.

RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers 67

193

 0.0.0.201

62

142

166

 subnet 0.0.0.128/26

14

26

38

78

86
85

(a)

38 14

26

86
62

85
78

142

166

193

table-driven discovery

additionnal traffic-driven
 discovery (b)

Fig. 1. (a) topology used to test discovery protocol and (b) resulting neighbourhood
mesh when table-driven discovery is used alone

3.4 When to Send AYA Capsules ?

There are two possible approaches for the Neighbours Discovery Protocol: the
table–driven discovery and the traffic-driven discovery. Better results are ob-
tained when both discovery techniques are used together.
The table-driven approach is based on inspection of the underlying network-

layer (IP) routing table, while traffic-driven discovery will try and learn from
any protocol’s capsules that the node receives or grabs.

Table-Driven Discovery

Every time a new entry is added in the routing table, the neighbourhood daemon
is notified and will try to determine whether the next hop and the destination of
this entry are active or not. When the Neighbour Application initializes itself, it
will ask the NodeOS for a copy of the IP routing table and simply consider all
the route table entries as ’new’ and will process them for neighbour discovery.
In order to avoid the risk of high AYA traffic when a node boots up, route

table entries are grouped by output interface and only one AYA capsule can be
sent through an interface during a probing interval.
Figure 1a presents one of the topologies used for discovery testing, with active

nodes highlighted. This network was in fact split into two independent domains
(running shortest path algorithms) statically linked by a “backbone” node. No
routing information about the domains internal routes crossed the backbone, as
usual in hierarchical routing. Host 193 does not participate in any IP routing
protocol and simply sends all its datagrams to its default router (the ’backbone’).
As we can see on figure 1b, if the time to live (TTL) for the AYA capsules

is correctly set, the discovery works quite fine: nodes within an area have found
each other and the topology did not degenerate into a full-mesh. However, no

68 Sylvain Martin and Guy Leduc

neighbourhood exists between nodes of different domains. An active node lo-
cated on the backbone would probably discover the “upper” network because
its gateway is an active router, but nothing similar could be guaranteed for the
“lower” network. As such an active backbone router wouldn’t know the details
of the “lower” domain, it could only send an AYA capsule to the domain’s ad-
dress4 (0.0.0.128/26) or to the domain access point (0.0.0.201). The problem is
that, for both of them, there is no active router on the way while there are some
active nodes in the domain. This clearly shows that something is still missing in
our protocol: the traffic-driven discovery.

Traffic-Driven Discovery

First, we can observe that this lack of active neighbourhood doesn’t completely
break the reachability of the whole network. Indeed, for each destination that has
no active neighbour discovered, the active router will simply forward the capsule
to the final destination using a grabbable IP packet. Moreover, the default route
is forced to have no neighbour. Thus, for capsules that rely on the active routing
table to reach their destination, it’s still possible to reach all active nodes, even
if some of them appear to be unreachable in the active topology.
The extension of our protocol will consist of using such capsules to dynami-

cally learn new neighbours. Every time a capsule is received by an active node,
the node’s neighbour discoverer will lookup the previous node address stored
in the capsule in its internal tables and will try to determine to which of the
following categories it belongs:

– The previous node is an already known neighbour,
– The previous node has already been tested and is not a neighbour (e.g. too
far or routes from and to that node are distinct),

– The previous node hasn’t been tested yet.

In the latter case, we will enqueue the previous node’s address in the incoming
interface’s list of potential neighbours and send it AYA capsules when its turn
has come.

3.5 Protocol Behaviour Summary

The Neighbour Discovery Protocol is designed for quick configuration of ANTS
nodes. It probes the network with AYA capsules to discover which nodes are
active using its IP routing table or other capsules to guess potential neighbours.

– Unlike most existing techniques, it doesn’t require configuration files on each
node and is completely “plug-and-play”, but it needs a running “daemon”
on every active node to send AYA capsules periodically.

4 One of the characteristics of our discovery protocol is that it may send packets
towards network addresses (found in the routing table) in order to reach the first
active neighbour towards a given destination.

RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers 69

– Active nodes that don’t have that daemon can still be discovered as neigh-
bours, but can’t discover other nodes.

– It can deal with neighbours crossing domain bounds if some data traffic goes
from one domain to another

– Capsules with an IP destination can be routed even before discovery is com-
pleted.

In order to implement our neighbourhood discovery framework, the NodeOS
must be able to provide a copy of the IP table5. This table will have to include at
least destination, next hop and cost fields. Moreover, we will need a way for the
NodeOS to notify changes in the routing table to the NDP framework. Finally,
the addressing scheme for active nodes must include IP addresses, but is not
limited to IP addressing.

4 R.A.D.A.R.: A Ring Search Using AYA Capsules

The generic neighbourhood discovery framework presented in section 3 must be
completed with a probing policy that will choose in which order AYA capsules
for table-driven discovery will be sent and which entries of the initial routing
table will/won’t be used for discovery.

4.1 Using Routing Table Information

In each active node, an independent instance of the probing policy is running for
each network interface. At node initialization, the addresses of the routing table
are distributed to each policy instance based on the interface used to reach each
address.
The amount of capsules needed to discover a given topology is a crucial point

of the protocol: sending useless6 AYA capsules will lead to bandwidth and CPU
waste when the network becomes larger (and thus when there are more potential
targets). By ordering targets in an extending ring search rather than keeping the
routing table order, RADAR can save some unnecessary probes.
In order to achieve a good scalability, RADAR is restricted to a n-hops neigh-

bourhood for its table-driven discovery. Any entry which has a cost beyond the
MAX HOPS parameter will be automatically discarded. This prevents the protocol
from using excessive resources on large networks with few active nodes. How-
ever, in sparse overlays, scanning the whole n-hops neighbourhood is already too
costly, so we’ll try to keep the MAX HOPS only as a last resort limit.

4.2 Semi-persistent Searching

One simple way to reduce the discovery overhead is to stop searching if the
physical neighbour is active. RADAR tries to extend this rule to the whole
5 regardless of the protocol that built that table
6 either AYA request duplicates asking for information we already have, or capsules
trying to reach a target that is obviously too far for their limited resources.

70 Sylvain Martin and Guy Leduc

inactive (IP) node

active node S

cost-0 ring

cost-1 ring

cost-2 ring
X

Y

Fig. 2. Example of impact of neighbourhood on routing performance

discovery. Rather than stopping at the first neighbour it encounters, it has a
half-persistent behaviour that makes it look a bit further and try to find more
neighbours than just one per interface.
Figure 2 shows the point of doing so: if we stop our neighbourhood search

when X is discovered, then routing capsules from S to Y will require 5 hops:
2 to reach X (nearest neighbour) and then 3 other hops to go from X to Y .
If RADAR’s threshold is properly set up, we can make the discovery daemon
continue and find both X and Y . Capsules will now be routable directly from S
to Y without extra cost.
Restricting the search to the cost ring of the first discovered neighbour will

often lead to sub-optimal routes, whereas a bit more probing overhead can easily
discover better ones.
For each interface, a threshold value is maintained and defines how far the

search will go on that interface. Technique used for correct threshold setup is
presented at section 4.4

4.3 Tests Results

In order to validate our protocol, some tests have been issued on the brand-
new RUN Active Network Simulator developed at Université of Liège - a cross
between the legacy ANTS [1,2,3] toolkit and the generic SSFNET network sim-
ulator [10].
Compared to an earlier “naive” policy (testing every target in table order),

RADAR is 6 times faster for a complete discovery on the topology shown in
figure 1 and saves about 50% of the search overhead (only 234 Kbits of AYA
capsules generated and forwarded against 439 in the naive approach), which
lowers its cost roughly to the same level as capsule code download.

RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers 71

4.4 Setting the R.A.D.A.R. Discovery Threshold

The threshold value used to define how far7 an interface must search is an im-
portant parameter for the whole protocol. It will define the trade off between
search cost and routes efficiency, but also the ’complexity’ of the discovered ac-
tive topology. So a threshold-based limit allows us to set a less constraining
absolute MAX HOPS parameter, and lets the protocol search ’as far as it has to’.
Simulations have been carried out to find out a threshold definition algorithm

that would be able to adapt to the underlying topology and that would achieve
good resource use. Using only the cost of the first found neighbour to compute
the threshold leads to a high dependence on parameters like active nodes density
or spanning tree growth at each node.

4.5 Adaptive Threshold Setting Algorithm

The solution we adopted is based on the well known additive-increase-multipli-
cative-decrease generic algorithm widely used in network engineering. It tries to
find a balance between discovered neighbours and potentially remaining neigh-
bours.
Every time an AYA capsule successfully returns to an active node, the thresh-

old of the sending interface is reduced multiplicatively by α. Keeping from 1/2
to 2/3 of the previous value has given good results on every tested configuration
(see figure 3). When all targets of the current cost ring have been probed, thresh-
old is incremented by the amount of non-responding8 targets. A pseudocode for
RADAR behaviour is given in listing 1.2.
Note that after the first neighbour has been found for an interface (and has

reduced threshold), the threshold reduction depends on how many targets that
neighbour covers (i.e. every time such a covered target is probed, the neighbour
replies and the threshold is further reduced). So, finding a neighbour located at
the ’edge’ of the network will not have much impact on neighbours search while
finding a neighbour in the ’core’ of the network quickly stops the search.
Note also that the threshold is only used when a ring search wasn’t completely

successful. If every target of a ring has replied, then the search won’t go any
further, regardless of the current threshold.

4.6 Using R.A.D.A.R. on Dynamic Topologies

In order to support active nodes arrival or departure at any time RADAR needs
a timeout mechanism that will force it to re-check some targets (for nodes that
are still active neighbours or that have been active in the past). We still use
AYA capsule to refresh the information, but the threshold parameter will only
be modified if the situation has changed since the last known state.

RADAR will send refresh capsules only if it has received no traffic from the
target address, thus avoiding unnecessary overhead on heavily loaded links. In
7 in hops count from the searching node
8 after 3 re-emission of the AYA capsules with a period of DELAY

72 Sylvain Martin and Guy Leduc

(a) (b) (c)

Fig. 3. Discovery using adaptive (AIMD) threshold: (a) physical topology, (b) α = 0, 5,

(c) α = 2/3

addition, a binary exponential back-off mechanism will make the refresh attempts
more and more spaced if the target does not send data capsules between AYA
probes. By doing so, a node will usually wait a long time before discovering that
a silent node is down while the crash of a router that exchanges a lot of data
will be discovered almost immediately.

5 ANTS Modifications

5.1 Output Channels

The RADAR protocol requires some extensions to the legacy OutChannel class
from ANTS, mainly to support grabbable capsules facility. A derivate output
channel using ANEP/IP rather than ANEP/udp will be automatically generated
when the next hop address can be recognized as an “unknown” address (i.e. when
the requested route hasn’t discovered any neighbour).
Moreover, it is now possible for OutChannels to become invalid due to a

change in the ANTS routing table (done by a routing manager in response of
some active neighbourhood notification)

5.2 Route Table Copy

RADAR requires a copy of the IP routing table for its discovery process. The
next hop addresses of the table entries will be modified dynamically to reflect
the topology knowledge of RADAR. The entries in this table will have to carry
a route cost (preferably a hop count) as well as an identifier of the network
interface card (using the next hop address is no more possible as it is now prone
to dynamic updates).

Conclusions and Future Work

We have extended the ANTS platform to support discovery protocols of active
neighbours. The presented protocol - RADAR - performs that discovery with

RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers 73

a cost comparable to code download when active nodes are dense or slightly
sparse, but it could still be improved on very sparse topologies through a local
host cache service like what is done in decentralized peer-2-peer networks [13].
On a single domain, RADAR almost always results in connected graphs9.

When considering a hierarchical network, traffic-driven discovery is mandatory
to interconnect subnets, and it will work better if border routers are active.
A feedback loop could be investigated to modify the heuristic α constant

when the amount of discovered neighbours isn’t satisfactory.
Thanks to the traffic-based discovery, any active application can remotely

“guide” RADAR by contacting some specific targets (querying a directory of the
domain’s active node, using a multicast group, etc.). RADAR will then detect
the new potential neighbours from reply-traffic analysis.

References

1. D. Wetherall, A. Whitaker : ANTS - an Active Node Transfer System. version 2.0.
http://www.cs.washington.edu/research/networking/ants/

2. D. Wetherall : Service Introduction in an Active Network.
http://www.cs.washington.edu/research/networking/ants/ants-thesis.ps.gz

3. D. Wetherall, J. Guttag, D. Tennenhouse : ANTS - A Toolkit for Building and
Dynamically Deploying Network Protocols. IEEE OPENARCH’98, April 1998

4. P. Kakkar : The Specification of PLAN (Packet Language for Active Networks)
Draft 1, University of Pennsylvania (July 12, 1999)

5. S. Berson, B. Braden : DANTE : Dynamic Topology Extension for the ABone.
ABone: Technical Specs - http://www.isi.edu/abone/DOCUMENTS/dante2.ps

6. S. Berson, B. Braden, L. Ricciulli : Introduction to the ABone.
http://www.isi.edu/abone/DOCUMENTS/ABoneIntro.pdf

7. R. Sivakunnar, S.W. Han, Vaduvur Bharghavan : PROTEAN : A scalable Archi-
tecture for Active Networks Proceedings of OPENARCH’2000, March 2000

8. Raghupathy Sivakumar, Sungwon Ha, Sungwook Han, Vaduvur Bharghavan: The
Protean Active Router: Design and Implementation. The 14th IEEE Computer
Communications Workshop (IEEE CCW’99), Invited Presentation, October 1999.

9. A. Ghosh, M. Fry, J. Crowcroft : An Architecture for Application Layer Rout-
ing. Lecture Notes in Computer Science 1942, “Active Networks”, Springer, 2000
(IWAN 2000)

10. Scalable Simulation Framework for modeling the Internet. http://www.ssfnet.org
11. Larry Peterson (Editor). NodeOS Interface Specification. DARPA AN NodeOS

Working Group Draft, 1999.
12. Andy Collins, Ratul Mahajan, and Andrew Whitaker. The TAO Algo-

rithm for Virtual Network Management. Unpublished work. December 1999.
http://citeseer.nj.nec.com/collins99tao.html

13. Clip2. The Gnutella Protocol Specification v0.4 http://www9.linewire.com-
/developer/gnutella

14. D.R. Boggs : Internet Broadcasting, Ph. D. thesis, Electircal Engineering Dept.,
Stanford, 1982 and Technical Report CSL-83-3, Xerox PARC Palo Alto, California

9 The graph might be partitioned in some rare case, but traffic-driven discovery will
usually reconnect them if some capsules cross the partition line

	RADAR: Ring-Based Adaptive Discovery of Active Neighbour Routers
	Introduction
	Purpose of This Work
	Defining Neighbourhood
	Structure of This Paper

	State of the Art
	Neighbourhood Discovery Framework
	The AYA Capsules
	Neighbour Discovery as an Active Application
	Capsules Grabbing
	When to Send AYA Capsules ?
	Table-Driven Discovery
	Traffic-Driven Discovery

	Protocol Behaviour Summary

	R.A.D.A.R.: A Ring Search Using AYA Capsules
	Using Routing Table Information
	Semi-persistent Searching
	Tests Results
	Setting the R.A.D.A.R. Discovery Threshold
	Adaptive Threshold Setting Algorithm
	Using R.A.D.A.R. on Dynamic Topologies

	ANTS Modifications
	Output Channels
	Route Table Copy

	Conclusions and Future Work
	References

