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Abstract. We exhibit a deterministic algorithm that, for some effectively computable real num-
ber c, decides whether a given integer n > 1 is prime within time (log n)6 · (2 + log log n)c. The
same result, with 21/2 in place of 6, was proved by Agrawal, Kayal, and Saxena. Our algorithm
follows the same pattern as theirs, performing computations in an auxiliary ring extension of Z/nZ.
We allow our rings to be generated by Gaussian periods rather than by roots of unity, which leaves
us greater freedom in the selection of the auxiliary parameters and enables us to obtain a better run
time estimate. The proof depends on results in analytic number theory and on the following theorem
from additive number theory, which was provided by D. Bleichenbacher: if t is a real number with
0 < t ≤ 1, and S is an open subset of the interval (0, t) with

∫
S dx/x > t , then each real number

greater than or equal to 1 is in the additive semigroup generated by S. A byproduct of our main re-
sult is an improved algorithm for constructing finite fields of given characteristic and approximately
given degree.
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1. Introduction

Our main result reads as follows.

Theorem 1. There exists, for some effectively computable real number c0, a deterministic
algorithm that, given an integer n with n > 1, decides whether or not n is prime, and does
so in time at most (log n)6 · (2+ log log n)c0 .

We shall exhibit an algorithm with the stated properties. Its run time is measured in bit
operations. The constant c0 is effectively computable in the sense that our proof of the
existence of c0, combined with the proofs in the papers to which we refer, implicitly
contains an algorithm for computing c0.

The same result, but with the run time exponent 6 replaced by 21/2, was obtained
by Agrawal, Kayal, and Saxena [2]. They also prove a result with run time exponent
15/2 (in which “c0” is not effectively computable), and they argue that the true run time
exponent of their algorithm may reasonably be conjectured to equal 6. We achieve the
exponent 6 not by proving their conjecture, but by modifying their algorithm.

A fundamentally new idea would be required to obtain a deterministic primality test-
ing algorithm with run time exponent smaller than 6. For probabilistic primality tests
the situation is different. Bernstein [6], also elaborating on [2] and building on an idea
of Berrizbeitia [9], exhibited a probabilistic algorithm that, for some effectively com-
putable constant c1, has the following property. Given any integer n > 1, the algorithm
correctly decides whether or not n is prime, and it does so in expected time at most
(log n)4 · (2+ log log n)c1 log log log(22 log n). See [4] for a similar result.

Like [2], the present paper has an algebraic and an analytic component, addressing the
correctness and the efficiency of the algorithm, respectively. By working harder on the al-
gebra, we leave the algorithm greater freedom in the selection of auxiliary parameters,
thus simplifying the analytic problem of obtaining a good run time estimate. Specifically,
both the algorithm of [2] and our own algorithm perform computations in a suitable ring
extension of the ring Z/nZ of integers modulo n; if d denotes the “degree” of the exten-
sion, then the run time estimate becomes d3/2

· (log n)3 times a lower order factor, and
the problem of obtaining a small run time exponent boils down to proving a good upper
bound for the smallest d that can be used. Agrawal et al. use the ring (Z/nZ)[X]/(Xd−1),
and find that the problem of accurately estimating the least usable value for d leads to an
unsolved problem in analytic number theory. We select our ring extension from a much
wider class, for which estimating d becomes feasible.

The ring extensions of Z/nZ that we use will be referred to as pseudofields. If n is
a prime number, then these pseudofields are in fact finite fields, and our construction
of pseudofields is inspired by a construction of finite fields proposed by Adleman and
Lenstra [1]. They describe a deterministic algorithm that, for certain effectively com-
putable constants c2 and c3, has the following properties: given a prime number p and a
positive integerD, it computes an irreducible polynomial f in (Z/pZ)[X] satisfyingD ≤
deg f ≤ c2D logp, and it does so within time (D + logp)c3 . The ring (Z/pZ)[X]/(f )
is then a finite field of given characteristic p of degree “close” to a given number D. Our
construction improves upon this result when D is not too small.
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Theorem 2. There exist an effectively computable positive integer c4 and a deterministic
algorithm such that the following holds. Given a prime number p and a positive inte-
ger D with D > (logp)46/25, the algorithm computes an irreducible polynomial f in
(Z/pZ)[X] with D ≤ deg f < 2D and has run time at most (D logp) · (2 + logD +
log logp)c4 .

Note that the run time of our algorithm is essentially linear in terms of the length of the
output. Under mild restrictions we may narrow the interval [D, 2D) to [D, (1 + ε)D)
for small positive values of ε (see Theorem 4.4). There is a deterministic algorithm that
produces an irreducible polynomial in Fp[X] of exact degree D and that runs in polyno-
mial time assuming the Generalized Riemann Hypothesis (see [1]). In addition, there is a
probabilistic algorithm to do the same that runs in expected time Õ(D2 logp+D log2 p)

(see [29]), where the notation Õ is defined below.
Adleman and Lenstra [1] construct the finite field (Z/pZ)[X]/(f ) by adjoining to

Z/pZ a certain set of Gaussian periods parametrized by what we call a period system. For
Theorem 2, we use almost exactly the same construction, but we are much more careful
in selecting the period system, so that we are able to narrow the interval [D, c2D logp]
for the degree down to [D, 2D), and even narrower, in a large range.

The proof that an appropriate period system can be found is the major technical hurdle
we have to take; our desire that the constants in Theorems 1 and 2 be effectively com-
putable has added to the difficulties.

An auxiliary result, which has independent interest, was provided by D. Bleichenba-
cher [10], who kindly allowed us to include his result and its proof. The Frobenius postage
problem asks for the largest number which is not in the additive semigroup generated by a
given set of coprime positive integers. Bleichenbacher’s theorem considers a continuous
version of this problem. A similar result was obtained by Lev [25].

Theorem 3. Suppose S is an open subset of the set of positive real numbers that is closed
under addition and for which 1 6∈ S. Then for each real number t ∈ (0, 1] one has∫
S∩(0,t) dx/x ≤ t .

We give a number-theoretic application of Theorem 3, a simplified version of which is
the following.

Theorem 4. For every real number α with 0 < α ≤ 1/2, there is a positive integer x0,
effectively computable when α is rational, with the following property. If x, u are real
numbers with

x > x0, 1/α < u < (log x)1/10

and Q is a set of primes contained in (x1/u, x1/2
] with∑

q∈Q

1
q
≥ α,

then there is a squarefree number in [x1/α, 2x1/α) composed solely of primes in Q.

Our proofs of Theorems 1 and 2 depend on the existence of many primes r where r − 1
has certain multiplicative constraints. It has been known since Erdős [18] that there is a
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positive constant E such that for a positive proportion of all primes r the number r − 1
is composed solely of primes in (1, r1−E

]; and he conjectured that this holds for each
choice of E less than 1. Since then many people have worked on this problem, with the
current record being any number E < 1 − 1/(2

√
e). The proof (in Friedlander [20])

is modeled on a similar result of Balog [5], who obtained the slightly weaker assertion
that the number of primes in (1, x] with the desired property is at least proportional to
x/(log x)2. We follow Balog’s approach to prove the following theorem.

Theorem 5. If x > 1 is a real number and Q is a set of primes in the interval (1, x1/2
],

let R(x,Q) denote the number of primes r ≤ x with r − 1 composed solely of primes
in (1, x1/2

] \ Q. There are effectively computable positive numbers X0, δ, with X0, δ
−1

integers, such that if x ≥ X0 and R(x,Q) < δx/(log x)2, then∑
q∈Q

1
q − 1

> 0.2727.

That the numbersX0, δ in Theorem 5 are effectively computable has us forgo certain stan-
dard tools, such as the prime-number estimates of Bombieri, Friedlander, and Iwaniec. In
addition we need to modify another tool, namely the Bombieri–Vinogradov theorem. The
major “off-the-shelf” tool that we do employ is a result of Deshouillers and Iwaniec [17]
on the Brun–Titchmarsh theorem on average.

The connection of Theorems 4 and 5 to our problem is as follows. Our pseudofields
are built up to have their degrees as close as possible to a given target degree. We construct
a certain set of primes Q, showing that we can attain degrees equal to subset products
of Q. Our set Q is constructed to satisfy the hypotheses of Theorem 5. Theorem 4 is then
used to show that there are indeed squarefree numbers close to a given target which are
built solely from primes in Q.

In Section 2 we define pseudofields and period systems, and we state all properties of
these concepts that go into our proofs. Taking these results for granted, we prove Theo-
rem 1 in Section 3 and Theorem 2 in Section 4. In Sections 5–8 we prove the properties
of pseudofields stated in Section 2. A proof of Theorem 3 is found in Section 9. In Sec-
tion 10 we apply Theorem 3 to prove a somewhat stronger version of Theorem 4. In
Sections 11–12 we use analytic number theory to prove Theorem 5. In Section 13, we use
the result of Section 10 plus Theorem 5 to show the existence result for period systems
stated in Section 2.

In this paper, we write simply ring for commutative ring. As in [3, 24], a ring is
required to have a unit element, a ring homomorphism is required to preserve the unit
element, and a subring is required to contain the unit element. The ring of integers is
denoted by Z, and, for a prime number p, we write Fp for Z/pZ. For a ring R, we write
R∗ for the group of units of R, the characteristic charR is the non-negative integer n for
which nZ is the kernel of the unique ring homomorphism Z → R, and we write R[X]
for the polynomial ring in one variable X over R. An element of R[X] is monic if it has
leading coefficient 1, the unit element of R.

Let S be a set, and let f , g : S → R be two functions from S to the field R of
real numbers such that for all x ∈ S one has g(x) ≥ 0. By the statement f = O(g)
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we mean that there exists c ∈ R such that for all x ∈ S one has |f (x)| ≤ c · g(x),
and by f = Õ(g) we mean that there exists c ∈ R such that for all x ∈ S one has
|f (x)| ≤ g(x) · (log max{3, g(x)})c. We shall often apply this with S equal to a set of
inputs to an algorithm, and f (x) equal to the run time of the algorithm when given x.
For example, with the notation just introduced one expresses the run time estimates in
Theorems 1 and 2 as Õ((log n)6) and Õ(D logp), respectively.

Whenever we assert that a constant with certain properties exists, it will be effectively
computable in the sense explained above; this is also valid for the constants implicit in
our use of the O- and Õ-symbols. The same comment, mutatis mutandis, applies to the
existence of algorithms. All of the algorithms that we present in this paper are determin-
istic.

2. Pseudofields and period systems

Pseudofields. By a pseudofield we mean a pair (A, α) consisting of a ring A and an
element α ∈ A, such that for some integer n > 1, some integer d > 0, and some ring
automorphism σ of A, the following conditions are satisfied:

charA = n,(2.1)

#A ≤ nd ,(2.2)
σα = αn,(2.3)

σ dα = α,(2.4)

σ d/lα − α ∈ A∗ for each prime number l dividing d.(2.5)

In Section 5 we shall prove the following result about pseudofields.

Proposition 2.6. Let (A, α) be a pseudofield, and let n, d be as above. Then there is a
unique monic polynomial f ∈ (Z/nZ)[X] with the property that there is a ring isomor-
phism (Z/nZ)[X]/(f ) ∼= A that maps the coset (X mod f ) to α. In addition, the degree
of this polynomial equals d.

The polynomial f from 2.6 and its degree d are called the characteristic polynomial and
the degree of the pseudofield, respectively. The proposition implies that each element ofA
can in a unique way be written as g(α), where g ∈ (Z/nZ)[X] satisfies deg g < d. This
implies that equality holds in (2.2). It also implies that, as a ring, A is generated by α,
so that the automorphism σ of A is uniquely determined by (2.3); we refer to it as the
Frobenius automorphism of the pseudofield.

Example. If n ∈ Z>1 and a ∈ Z, then the pair (Z/nZ, a mod n) is a pseudofield if and
only if one has an ≡ a mod n; for composite n, one often expresses this property by say-
ing that n is a pseudoprime to the base a. In this example, the degree equals 1, the Frobe-
nius automorphism is the identity, and the characteristic polynomial is X − (a mod n).
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Example. Let n ∈ Z>1, let r be a positive integer with gcd(r, n) = 1, and denote by 8r
the rth cyclotomic polynomial. Then the pair ((Z/nZ)[X]/(8r), X mod 8r) is a pseudo-
field if and only if (n mod r) generates the group (Z/rZ)∗. This pseudofield is closely re-
lated to the rings used in [2]. In this example, the degree equals ϕ(r), where ϕ denotes Eu-
ler’s function, the Frobenius automorphism maps each (g mod 8r) to (g(Xn) mod 8r),
and 8r is the characteristic polynomial.

Finite fields yield pseudofields, as explained in the following result.

Proposition 2.7. Let p be a prime number, let A be a ring of characteristic p, and let
α ∈ A. Then (A, α) is a pseudofield if and only if A is a finite field satisfying A = Fp(α).
In addition, if (A, α) is a pseudofield, and σ denotes its Frobenius automorphism, then
for all β ∈ A one has σβ = βp.

This proposition is proved in Section 5.

Primality testing with pseudofields. The following result shows that, for the purposes of
primality testing, pseudofields can play the role that the rings (Z/nZ)[X]/(Xd − 1) play
in [2].

Proposition 2.8. Let (A, α) be a pseudofield of degree d with Frobenius automorphism σ ,
and let n = charA. Suppose that for each a = 1, . . . , b(d/3)1/2(log n)/log 2c one has
αn + a = (α+ a)n. Suppose also that d > (log n)2/(3 · (log 2)2), and that n has a prime
factor greater than (d/3)1/2(log n)/log 2. Then n is a power of a prime number.

The proof of Proposition 2.8 is given in Section 6.

Algorithmic aspects of pseudofields. Proposition 2.6 shows that a pseudofield is, up to
isomorphism, determined by its characteristic n and its characteristic polynomial f . We
shall for algorithmic purposes always assume a pseudofield to be specified by the pair
(n, f ), the polynomial f being represented by its vector of coefficients; this applies in
particular when a pseudofield forms part of the input or output of an algorithm. The
pseudofield represented by (n, f ) equals ((Z/nZ)[X]/(f ),X mod f ), and its elements
are represented as polynomials in (Z/nZ)[X] of degree smaller than the degree d of
the pseudofield. It is well-known that there are algorithms that, given n, f , and two ele-
ments of (Z/nZ)[X]/(f ), compute the sum and the product of these two elements within
time Õ(d log n) (see [7]). As a consequence, testing the equality αn + a = (α + a)n

from 2.8 for a single value of a in Z/nZ can be done in time Õ(d(log n)2), and for about
(d/3)1/2(log n)/log 2 values of a in time Õ((d1/2 log n)3). This time bound will equal the
time bound Õ((log n)6) from Theorem 1 if we use a pseudofield for which the degree d
is, as a function of n, not too much larger than the lower bound (log n)2/(3 · (log 2)2)
from 2.8. Thus, we are faced with the problem of constructing a pseudofield of given
characteristic and approximately given degree.

The techniques that we develop for constructing pseudofields culminate in the follow-
ing result. Let n ∈ Z, n > 1. By a period pair for n we mean a pair (r, q) of integers with
the properties

(2.9) r is a prime number not dividing n,
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(2.10) q divides r − 1 and q > 1,
(2.11) the multiplicative order of n(r−1)/q modulo r equals q.

Further, a period system for n is a finite set P of period pairs for n such that

(2.12) gcd(q, q ′) = 1 whenever (r, q), (r ′, q ′) ∈ P, (r, q) 6= (r ′, q ′),

and the degree of P is
∏
(r,q)∈P q, denoted degP .

Proposition 2.13. There is an algorithm that, given an integer n > 1 and a period sys-
tem P for n with n > degP , either correctly declares n composite or constructs a pseu-
dofield of characteristic n and degree degP , and that runs in time

Õ
((

degP +
∑

(r,q)∈P
q(r + log n)

)
log n

)
.

The proof of Proposition 2.13 is given in Section 8.
If n is known to be prime, then the algorithm of Proposition 2.13 simplifies some-

what, and the term involving (log n)2 in the run time estimate may be omitted; in view of
Proposition 2.7, this leads to the following result.

Proposition 2.14. There is an algorithm that, given a prime number p and a period
system P for p with p > degP , constructs a monic irreducible polynomial f ∈ Fp[X]
with deg f = degP , and that runs in time

Õ
((

degP +
∑

(r,q)∈P
qr
)

logp
)
.

The proof of Proposition 2.14 is also given in Section 8.

The existence of period systems. Our final auxiliary result reads as follows.

Proposition 2.15. There are effectively computable positive integers c4, c5 such that, for
each integer n > c4 and each integer D > (log n)46/25, there exists a period system P
for n consisting of pairs (r, q) with

(2.16) r < D6/11, q < D3/11, q prime,

and with D ≤ degP < D + D1−1/(c5(log logD)2). In addition, the number of period
systems P for n with degP ∈ [D, 2D) exceeds D/exp(5(log logD)3).

We use Proposition 2.15 to show that the algorithms of Theorems 1 and 2 perform as
stated. In particular the number c4 of Theorem 2 is the same as in 2.15. Proposition 2.15
is proved in Section 13 using a stronger version of Theorem 4 (namely, Proposition 10.1)
and using Theorem 5. In particular, we will show in Propositions 13.1 and 13.4 that it
is common for primes r of a certain size to have r − 1 divisible by a fairly large prime
divisor q with (r, q) being a period pair for n. We then use Theorem 5 to show that the
primes q appearing in this way are plentiful enough for the hypothesis of Proposition 10.1
to hold, and so construct period systems for n, as in 2.15, with degrees close to a given
target degree.
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3. The primality test

In this section we deduce Theorem 1 from the results stated in Section 2. We begin with a
straightforward transformation of 2.15 into an algorithm for constructing period systems.

Algorithm 3.1. We describe an algorithm that takes as input an integer n > 1 and an
integer D > 0, and that searches for a period system P for n consisting of pairs (r, q)
satisfying (2.16) and with degP not much larger than D.

Step 1. Using a modified version of the sieve of Eratosthenes, sieving with prime powers
rather than just with primes, compute the prime factorizations of all integers in
[1, 2D).

Step 2. For each prime number r < D6/11 not dividing n, in increasing order, determine
the set Q(r) of prime factors q of r − 1 that satisfy

q < D3/11, n(r−1)/q
6≡ 1 mod r, q /∈

⋃
r ′<r

Q(r ′).

Put Q =
⋃
r Q(r) and, for each q ∈ Q, put rq = r if q ∈ Q(r).

Step 3. If there is some integer in [D, 2D) that is squarefree and composed solely of
primes from Q, let d be the least such integer, let P be the set of all pairs (rq , q)
with q ranging over the prime factors of d, return P and halt. If no such integer
exists, pronounce failure and halt.

This completes the description of Algorithm 3.1.

The constant c4 in the following result is as in 2.15.

Proposition 3.2. Algorithm 3.1, when given integers n > 1 and D > 0, successfully
computes a period system P for n with the properties listed in (2.16) and with degP ∈
[D, 2D) if and only if such a period system exists, which is the case if n > c4 and
D > (log n)46/25; the run time of the algorithm is Õ(D +D6/11 log n).

Proof. The “if and only if” statement is clear from the algorithm, the second assertion is
immediate from 2.15, and proof of the run time estimate is entirely straightforward. This
proves 3.2.

Primality testing. We describe an algorithm that has the properties stated in Theorem 1.
We let c4 again be as in 2.15.

Algorithm 3.3. Given an integer n > 1, this algorithm decides whether or not n is prime.

Step 1. If n ≤ c4, find by trial division the least prime p dividing n, declare n prime or
composite according as n = p or n 6= p, and halt.

Step 2. Using the algorithm of [8], determine the largest k ∈ Z for which there exists
m ∈ Z with n = mk . If k > 1, declare n composite and halt.
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Step 3. Using standard algorithms for computing elementary functions (cf. [7, 12]), com-
pute an integer D satisfying

D − 2 < max{(log n)2/(3 · (log 2)2), (log n)46/25
} < D.

Next, using Algorithm 3.1, construct a period system P for n with the properties
listed in (2.16) and with degP ∈ [D, 2D). Put d = degP .

Step 4. Using standard algorithms for computing elementary functions (cf. [7, 12]), com-
pute an integer b satisfying

b − 1 < (d/3)1/2(log n)/log 2 < b + 1,

and test by trial division whether n has a divisor among 2, . . . ,max{d, b}. If it
does, let p be the least such divisor, declare n prime or composite according as
n = p or n 6= p, and halt.

Step 5. Using the algorithm of 2.13, either declare n composite and halt, or construct a
pseudofield (A, α) of characteristic n and degree d .

Step 6. For a = 1, . . . , b, test the equality αn+a = (α+a)n inA. If all of these are valid,
declare n prime and halt. If at least one fails to be valid, declare n composite and
halt.

This completes the description of Algorithm 3.3.

Proof of Theorem 1. We prove that Algorithm 3.3 has the properties claimed in The-
orem 1; that is, it terminates within time Õ((log n)6), correctly declaring n prime or
composite. Step 1 runs in time O(1), and by [8], Step 2 runs in time Õ(log n). If the
algorithm halts during one of these two steps, it is clearly correct. Assume otherwise, so
that one has n > c4 and n is not a proper power. The first part of Step 3 runs in time
O(log n), and from D > (log n)46/25 and D = O((log n)2) it follows, by 3.2, that the
second part of Step 3 successfully computes a period system in time Õ((log n)23/11). We
have d = O((log n)2), and from d ≥ 2#P one obtains #P = O(log(2 log n)). Step 4
runs in time Õ((log n)3) because b = O((log n)2). If the algorithm halts in Step 4, it is
clearly correct. Suppose otherwise. Then we have n > d, so by 2.13 and the inequalities
in (2.16), Step 5 runs in time Õ((log n)3). As we argued in Section 2, the test in Step 6
can be done in time Õ((d1/2 log n)3), which is Õ((log n)6). Since n passed Step 4, it has
a prime divisor greater than (d/3)1/2(log n)/log 2, so 2.8 implies that, if n passes the test
in Step 6, it is a prime power; not being a proper power, it must be prime. If n does not
pass the test in Step 6, then by 2.7 (with n in the role of p and α + a in the role of β) it
cannot be a prime number. This concludes the proof of Theorem 1.

4. Constructing finite fields

In this section we prove Theorem 2. We begin with two lemmas that are used to deal with
certain exceptional cases.
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Lemma 4.1. Let k be a finite field, r a prime number, h a non-negative integer, and b ∈ k∗

an element that is not an rth power in k∗. Assume that #k ≡ 1 mod 4 if rh ≡ 0 mod 4.
Then Xr

h
− b is irreducible in k[X].

Proof. See [26, Theorem 3.75].

Lemma 4.2. For any non-negative integer h, the polynomialsX2·3h
+X3h

+1 andX4·3h
+

X3h
+ 1 are irreducible in F2[X]. For any prime number p with p ≡ 1 mod 4, any non-

negative integer h, and any a ∈ Fp satisfying
(
a
p

)
= −1, the polynomial X2h

− a is
irreducible in Fp[X]. For any prime number p with p ≡ −1 mod 4 there exists a ∈ Fp
with

(
a2
+4
p

)
= −1, and for any such a and any non-negative integer h the polynomial

X2h+1
− aX2h

− 1 is irreducible in Fp[X].

Proof. In this proof, we denote algebraic closures by an overhead bar.
First let p = 2. Let a, α ∈ F̄2 satisfy a2

+a+1 = 0 and α3h
= a. Then F2(α) contains

F2(a), and the latter field has degree 2 over F2. Since the only non-zero cube in F2(a)
∗

is 1, one sees by 4.1 that [F2(α) : F2(a)] = 3h, and therefore [F2(α) : F2] = 2 · 3h.
Since α is a zero of X2·3h

+ X3h
+ 1, this polynomial is irreducible in F2[X]. Now let

b, β ∈ F̄2 satisfy b4
+ b + 1 = 0 and β3h

= b. Then F2(β) contains F2(b), a field of
degree 4 over F2. The non-zero cubes in F2(b) are roots of X5

− 1, so b is not a cube.
Thus, by 4.1 one has [F2(β) : F2(b)] = 3h and so [F2(β) : F2] = 4 · 3h. Since β is a root
of X4·3h

+X3h
+ 1, this polynomial is irreducible in F2[X].

Next let p ≡ 1 mod 4. In this case the lemma is immediate from 4.1.
Finally suppose p ≡ −1 mod 4. If c is the least positive integer with

(
c
p

)
= −1,

then one can write (c − 1 mod p) = e2 with e ∈ Fp, and a = 2e then satisfies
(
a2
+4
p

)
=(4

p

)
·
(
c
p

)
= −1. Next let b, α ∈ F̄p satisfy b2

−ab−1 = 0 and α2h
= b. From

(
a2
+4
p

)
= −1

it follows that X2
−aX−1 is irreducible in Fp[X], so the field Fp(b), which is a subfield

of Fp(α), has degree 2 over Fp. The product of b and its conjugate equals −1, which is
not a square in Fp, so b is not a square in Fp(b). Since also #Fp(b) = p2

≡ 1 mod 4,
Lemma 4.1 implies [Fp(α) : Fp(b)] = 2h and therefore [Fp(α) : Fp] = 2h+1. Since α is
a zero of X2h+1

− aX2h
− 1, the latter polynomial is irreducible in Fp[X].

This proves 4.2.

We describe an algorithm that has the properties stated in Theorem 2.

Algorithm 4.3. Given a prime number p and a positive integerD, this algorithm attempts
to construct an irreducible polynomial f ∈ Fp[X] with D ≤ deg f < 2D. We let c4 be
as in 2.15.

Step 1. [This step takes care of the case in which p is too small for 2.14 or 3.2 to apply.] If
D = 1, return f = X and halt. If p = 2, determine the least non-negative integer
h with 2 · 3h ≥ D; if 2 · 3h < 2D, return f = X2·3h

+ X3h
+ 1 and halt. Else,

return f = X4·3h−1
+X3h−1

+ 1 and halt. If p ≡ 1 mod 4 and p ≤ max{c4, 2D},
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determine the least positive integer a with
(
a
p

)
= −1 and the least non-negative

integer h with 2h ≥ D, return f = X2h
− a and halt. If p ≡ −1 mod 4 and

p ≤ max{c4, 2D}, determine the least positive integer a with
(
a2
+4
p

)
= −1 and

the least non-negative integer h with 2h+1
≥ D, return f = X2h+1

− aX2h
− 1

and halt.
Step 2. [In this case we have p > c4 and p > 2D.] Apply Algorithm 3.1 to n = p andD;

if that algorithm pronounces failure, pronounce failure and halt. Otherwise, let P
be the period system for p produced by Algorithm 3.1, apply the algorithm of
2.14 to P , return the polynomial produced by the latter algorithm and halt.

This completes the description of Algorithm 4.3.

Theorem 2 is now an immediate consequence of the following somewhat stronger result.

Theorem 4.4. Let c4, c5 be as in 2.15. Algorithm 4.3, when given a prime number p and
a positive integer D, runs in time Õ(D logp), and if it does not pronounce failure then
it computes a monic irreducible polynomial f ∈ Fp[X] satisfying D ≤ deg f < 2D;
in addition, it does not pronounce failure if p ≤ max{c4, 2D} or D > (logp)46/25.
Further, in the case p > max{c4, 2D} and D > (logp)46/25, one has D ≤ deg f <

D +D1−1/(c5(log logD)2).

Proof. First suppose p ≤ max{c4, 2D}. Then by 4.2 the algorithm halts in Step 1 and
returns a polynomial f that is irreducible over Fp and satisfies D ≤ deg f < 2D. From
p = O(D) one readily deduces that the computation of h in Step 1 and, if p is odd,
of a in Step 1 can be done in time Õ(D). Next assume p > max{c4, 2D}. If D >

(logp)46/25, then by 3.2 the algorithm successfully computes a period system for p, and
if it successfully computes a period system, then by 2.14 it computes a polynomial f with
the stated properties. The run time estimate for Step 2 is obtained in a routine manner
from 3.2 and 2.14; note that the sum

∑
(r,q)∈P qr occurring in 2.14 is Õ(D9/11), by the

inequalities in (2.16). This proves 4.4.

5. Algebraic properties of pseudofields

In Section 2 we defined pseudofields, and the present section is devoted to their basic
algebraic properties.

For a ring A, an element α ∈ A, and a ring automorphism σ of A, we will have
occasion to refer to the condition

(5.1) σα belongs to the subring of A generated by α.

This condition is implied by condition (2.3), if n is a positive integer.

Proposition 5.2. Let A be a ring, let α ∈ A, let d ∈ Z>0, and let σ be a ring auto-
morphism of A such that (2.4), (2.5), and (5.1) are satisfied. Then for any i, j ∈ Z with
i 6≡ j mod d one has σ iα − σ jα ∈ A∗.
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Proof. Let h ∈ Z, h /∈ dZ, and let I = (σ hα − α) be the A-ideal generated by σ hα − α.
The set {β ∈ A : σ hβ ≡ β mod I } is a subring of A that contains α, so by (5.1) it
contains σα; that is, σ h+1α ≡ σα mod I , so σ(σ hα − α) belongs to I , and therefore
σI ⊂ I . Since σ d maps σ hα − α to itself, we actually have σI = I , so for all m ∈ Z
one has σmI = I . It follows that the set H = {m ∈ Z : σmα ≡ α mod I } is a subgroup
of Z. It contains d and h, where h /∈ dZ, so H = d ′Z where d ′ is a divisor of d with
1 ≤ d ′ < d . Choose a prime number l that divides d/d ′. Then d/l ∈ d ′Z = H , so
σ d/lα − α ∈ I . Thus, by (2.5) the ideal I contains a unit, and therefore I = A. This
implies σ hα − α ∈ A∗. Now let i, j ∈ Z with i 6≡ j mod d . Then the integer i − j does
not belong to dZ, so by the result just proved we have σ i−jα− α ∈ A∗. Applying σ j we
find σ iα − σ jα ∈ A∗, as required. This proves 5.2.

Lemma 5.3. Let A be a ring, let k ∈ Z≥0, and let α1, . . . , αk ∈ A be such that αi − αj
∈ A∗ whenever 1 ≤ i < j ≤ k. Then for each g ∈ A[X] which vanishes at α1, . . . , αk ,
one has g ∈ A[X] ·

∏k
i=1(X − αk).

Proof. Let Ii = A[X] · (X − αi) for 1 ≤ i ≤ k. For i 6= j , the unit αi − αj can be
written as −(X − αi) + (X − αj ), so Ii + Ij = A[X]. This implies

∏k
i=1 Ii =

⋂k
i=1 Ii ,

by [3, Proposition 1.10(i)]. From X ≡ αi mod Ii one obtains g ≡ g(αi) mod Ii for each
g ∈ A[X], so if each g(αi) vanishes then g ∈

⋂k
i=1 Ii =

∏k
i=1 Ii = A[X]·

∏k
i=1(X−αk),

as required. This proves 5.3.

The following result summarizes the technical information on pseudofields that we shall
need.

Proposition 5.4. Let A be a ring, let α ∈ A, and let the integers n, d ∈ Z>0 and the ring
automorphism σ of A satisfy (2.1), (2.2), (2.4), (2.5), and (5.1). Then:

(a) for each β ∈ A there are unique a0, a1, . . . , ad−1 ∈ Z/nZ with β =
∑d−1
i=0 aiα

i;
(b) #A = nd , and σ d equals the identity;
(c) the polynomial f =

∏d−1
i=0 (X − σ

iα) belongs to the subring (Z/nZ)[X] of A[X];
(d) the ring homomorphism (Z/nZ)[X] → A sendingX to α is surjective, and its kernel

is generated by the polynomial f from (c);
(e) if I ⊂ A is an ideal, then one has σI ⊂ I if and only if there exists a divisor m of n

such that I = mA;
(f) for each prime factor p of n there exists a unique residue class (i mod d) such that

for all β ∈ A one has βp ≡ σ iβ mod pA.

Proof. It is clear that there is a unique ring homomorphism ψ : (Z/nZ)[X] → A as
in (d), and that it maps each g ∈ (Z/nZ)[X] to g(α). If g ∈ kerψ , then for each i ∈ Z
one has g(σ iα) = σ i(g(α)) = σ i(ψ(g)) = 0, so by 5.2 and 5.3 one has g ∈ A[X]f ,
where f is as in (c). Since each non-zero g ∈ A[X]f has degree at least d, this implies

kerψ ∩
(
(Z/nZ)+ (Z/nZ)X + · · · + (Z/nZ)Xd−1)

= {0},

so that the restriction of ψ to (Z/nZ)+ (Z/nZ)X+· · ·+ (Z/nZ)Xd−1 is injective. From
(2.2) one now sees that it is surjective as well, which proves (a), the first statement of (b),
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and the surjectivity in (d). Since each element of A can be expressed in α, the second
statement of (b) follows from (2.4). Applying (a) to β = αd , one finds a0, a1, . . . , ad−1 ∈

Z/nZ for which the polynomial g = Xd −
∑d−1
i=0 aiX

i belongs to kerψ ; hence g ∈
A[X]f , and comparing degrees and leading coefficients one finds g = f . This implies (c).
We have kerψ = A[X]f ∩ (Z/nZ)[X] = (Z/nZ)[X]f , the latter equality because f is
a monic polynomial in (Z/nZ)[X]. This proves the remaining assertion of (d).

The “if” part of (e) is clear. For the “only if” part, let I be an ideal of A with σI ⊂ I ,
and let Ā be the ring A/I . From σI ⊂ I it follows that σ induces a ring homomorphism
σ̄ : Ā → Ā. From (b) one sees that σ̄ d is the identity on Ā, so σ̄ is an automorphism
of Ā. Put m = char Ā. Then m divides n, and we have mA ⊂ I , so from (a) we see
#Ā ≤ #A/mA = md , with equality if and only if mA = I . We claim that (2.1), (2.2),
(2.4), (2.5), and (5.1), with Ā, m, d , σ̄ , and ᾱ = (α mod I ) in the roles of A, n, d, σ , and
α, are satisfied. For (2.2) we have just proved this, (2.1) is true by definition, and (2.4),
(2.5), and (5.1) follow from the corresponding properties of A, n, d, σ , and α. Hence,
applying (b) to this new situation, we find #Ā = md , so that mA = I . This proves (e).

To prove (f), we replace, for notational convenience, n and A by p and A/pA, so
that we may assume n = p. Let φ : A → A be the ring homomorphism that maps
each β ∈ A to βp, and let g ∈ (Z/nZ)[X] be such that σα = g(α). If ρ : A → A is
any ring homomorphism with σρ = ρσ , then σ(ρα) = ρ(σα) = ρ(g(α)) = g(ρα).
Applying this to ρ = φ and to ρ = σ i , where i ∈ Z, we obtain σ(φα) = g(φα) and
σ(σ iα) = g(σ iα) and therefore σ(φα) ≡ σ(σ iα) mod (φα − σ iα)A. Hence, for any
i ∈ Z, the ideal I = (φα − σ iα)A satisfies σI ⊂ I , so by (e) and the fact that n is
prime one has I = A or I = nA = 0, so that φα − σ iα is either a unit or 0. From∏d−1
i=0 (φα − σ

iα) = f (φα) = φ(f (α)) = 0p = 0 we see that not all φα − σ iα can be
units, so at least one of them is 0. Then φα = σ iα, so φ = σ i by (a). The uniqueness of
(i mod d) follows from 5.2. This proves 5.4.

We can now prove two propositions stated in Section 2.

Proof of Proposition 2.6. Let the notation and hypotheses be as in 2.6. Since (2.3) implies
(5.1), Proposition 5.4 applies. The existence of f as in 2.6 follows from 5.4(d). No two
distinct monic polynomials in (Z/nZ)[X] generate the same ideal, so f is unique. From
5.4(c) one sees deg f = d . This proves 2.6.

Proof of Proposition 2.7. Let p, A, and α be as in 2.7. For the “if” part, assume that
A is a finite field with A = Fp(α). Write d = [A : Fp] and define σ : A → A by
putting σβ = βp for every β ∈ A. It is a standard property of finite fields that σ is a
field automorphism of A of order d . Now (2.1)–(2.4) are obvious. If l is a prime number
dividing d , then σ d/l is not the identity, so from A = Fp(α) we have σ d/lα 6= α; since
A is a field, this implies (2.5).

To prove the “only if” part and the last statement of 2.7, assume that (A, α) is a
pseudofield. Write d for the degree and σ for the Frobenius automorphism. Since p is
prime, the map A→ A sending each β to βp is a ring homomorphism. It agrees with σ
on α, so by 5.4(a) on all of A, which is the last statement of 2.7. To prove that A is a field,
we let β ∈ A, and we prove that β equals 0 or is a unit. Put I = Aβ. From σβ = βp one
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sees σI ⊂ I , so by 5.4(e) and the fact that p is prime we have I = A or I = pA = 0. In
the first case, β is a unit, in the second case it equals 0. Thus, A is a field. By 5.4(a), it is
finite, and one has A = Fp(α). This completes the proof of 2.7.

6. Primality testing with pseudofields

In this section we prove 2.8. We begin with an elegant lemma.

Lemma 6.1. Let R be a ring, and let G be a finite subgroup of R∗ such that for each
β ∈ G, β 6= 1, one has β − 1 ∈ R∗. Then G is cyclic.

Proof. We may clearly assume R 6= {0}, so that we can choose a maximal ideal M of R.
For each β ∈ G, β 6= 1, the unit β − 1 does not belong to M , so that β is not in the
kernel of the natural group homomorphism R∗ → (R/M)∗. Hence the restriction of the
latter map to G is injective, and G is isomorphic to its image in (R/M)∗. Since any finite
subgroup of the multiplicative group of a field is cyclic, this implies 6.1.

The reader may enjoy proving 6.1 without using maximal ideals, for example by apply-
ing 5.3.

Let (A, α) be a pseudofield, and denote by n, d, and σ its characteristic, its degree,
and its Frobenius automorphism, respectively. We let p be a prime divisor of n, and put
R = A/pA. We shall simply write α for the image of α in R, and σ for the automorphism
of R induced by σ . Note that the conditions of Proposition 5.4, with R, α, p, d , σ in the
roles of A, α, n, d, σ , are satisfied. As in the proof of 2.7, we have

(6.2) if β ∈ R satisfies σβ ∈ Rβ, then β = 0 or β ∈ R∗,

by 5.4(e) applied to I = Rβ. We put

G = {β ∈ R : β 6= 0, σβ = βn}.

For any β ∈ G, one has σβ = βn ∈ Rβ, so β ∈ R∗ by (6.2). Since G is finite and closed
under multiplication, and contains 1, it is a subgroup of R∗. Also, for any β ∈ G, β 6= 1,
one has σβ = βn ≡ 1 mod R · (β − 1), so σ(β − 1) ∈ R · (β − 1) and β − 1 ∈ R∗, again
by (6.2). Thus, Lemma 6.1 implies

(6.3) G is a cyclic subgroup of R∗.

Lemma 6.4. If #G > n
√
d/3
− 1, then n is a power of p.

Proof. If n = p the lemma is true, so assume n > p. We let φ be the ring homomorphism
R→ R that sends each β ∈ R to βp. By 5.4(f), this map is a power of σ ; in particular, it
is an automorphism of R. The definitions of φ and G then imply that for all β ∈ G one
has (σφ−1)β = βn/p.

Let L be the kernel of the group homomorphism Z2
→ 〈σ 〉 that maps (i, j) to

(σφ−1)iφj . Since the image 〈σ 〉 of the group homomorphism has order d , the group L
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is a lattice of determinant d (see [14, Chapter I]). Consider the closed convex symmetric
subset

K =
{
(x, y) ∈ R2

: max{|x log(n/p)|, |y logp|, |x log(n/p)+ y logp|} ≤ t
}

of R2, where t ∈ R>0 is chosen such that the area 3 · t2/(log(n/p) · logp) of K equals
4d . (Note thatK is the hexagonal region with vertices at±(t/log(n/p), 0),±(0, t/logp),
and ±(t/log(n/p),−t/logp).) By the inequality of the means we have

t = 2
√
d/3 ·

(
log(n/p) · logp

)1/2
≤
√
d/3 · log n.

According to Minkowski’s lattice point theorem (see [14, Chapter III, Theorem II]), the
set K contains a non-zero element (i, j) of L. Multiplying (i, j) by ±1, we may assume
that i ≥ 0. Note that (i, j) ∈ K implies that (n/p)ipj ≤ n

√
d/3 if j ≥ 0, and

|(n/p)i − p−j | ≤ max{(n/p)i, p−j } − 1 ≤ n
√
d/3
− 1

if j < 0. From (σφ−1)iφj = idR we see that for all β ∈ G one has β(n/p)
ipj
= β. By

(6.3), we can choose β to be a generator ofG. Thus (n/p)ipj ≡ 1 mod #G if j ≥ 0, and
(n/p)i ≡ p−j mod #G if j < 0. But, by hypothesis, #G > n

√
d/3
− 1, so in either case

we have (n/p)ipj = 1. By unique factorization in Z and (i, j) 6= (0, 0), this equation
forces n to be a power of p. This concludes the proof of 6.4.

Proof of Proposition 2.8. We let the notation and the assumptions be as in Proposition
2.8, and in addition we write B = b(d/3)1/2(log n)/log 2c. Note that the condition d >
(log n)2/(3 · (log 2)2) implies d > B.

We apply the theory just developed to a prime factor p of n that satisfies p > B. As
σα = αn, we see that the element α of R = A/pA belongs to the subgroup G of R∗.
From σ(α + a) = σα + a = αn + a = (α + a)n for a = 1, . . . , B and from 5.4(a),
which implies each α + a 6= 0, we see that α + 1, . . . , α + B also belong to G. For each
proper subset S of {0, 1, . . . , B}, the element

∏
a∈S(α + a) also belongs to G. There are

2B+1
− 1 such sets S, and we claim that they give rise to 2B+1

− 1 different elements
of G. To see this, note that since p > B, the polynomials X + a, a = 0, 1, . . . , B, are
distinct in Fp[X], and by unique factorization in Fp[X] the polynomials

∏
a∈S(X + a),

with S as above, are pairwise distinct. As d > B, all these polynomials have degrees
smaller than d, so by 5.4(a) (applied to R) they give rise to 2B+1

− 1 different elements∏
a∈S(α + a) of G, as asserted.

It follows that

#G ≥ 2B+1
− 1 > 2(d/3)

1/2(log n)/log 2
− 1 = n

√
d/3
− 1.

Applying 6.4 we conclude that n is a power of p. This proves 2.8.

7. Tensor products

Tensor products (see [3, Chapter 2], [24, Chapter XVI]) can be used to construct “large”
pseudofields out of “small” ones, in the following manner.
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Proposition 7.1. Let (A1, α1) and (A2, α2) be pseudofields with charA1 = charA2 = n,
and suppose that the degrees d1, d2 of these pseudofields satisfy d1 > 1, d2 > 1, and
gcd(d1, d2) = 1. Then the tensor product (A1 ⊗Z/nZ A2, α1 ⊗ α2) is a pseudofield of
characteristic n and degree d1d2.

Proof. We check that A = A1 ⊗Z/nZ A2, α = α1 ⊗ α2, n, d = d1d2, and σ = σ1 ⊗ σ2

satisfy (2.1)–(2.5). By 5.4(a), each Ai is a free Z/nZ-module with basis 1, αi , . . . , αdi−1
i ,

so from [24, Chapter XVI, Corollary 2.4] one sees that A is a free Z/nZ-module with
basis (αi1⊗α

j

2 )0≤i<d1,0≤j<d2 . This implies both (2.1) and (2.2). One has σ(α) = σ1(α1)⊗

σ2(α2) = α
n
1⊗α

n
2 = α

n, which is (2.3). Each σ dii is the identity onAi , so σ d is the identity
onA, which implies (2.4). Finally, to prove (2.5), let l be a prime number dividing d . Then
l divides exactly one of d1 and d2; by symmetry we may assume it divides d2. Let k be
a prime number dividing d1. As σ1α1 = α

n
1 , the A1-ideal A1α1 is mapped to itself by σ1

and therefore contains σ d1/k
1 α1 − α1; the latter element is a unit of A1, so α1 is a unit

of A1 as well. Since d/l is divisible by d1, we have σ d/l1 α1 = α1 ∈ A
∗

1. Since d/l is not
divisible by d2, Proposition 5.1 implies σ d/l2 α2 − α2 ∈ A

∗

2. It follows that the element
σ d/lα − α = (σ

d/l

1 α1)⊗ (σ
d/l

2 α2)− α1 ⊗ α2 = α1 ⊗ (σ
d/l

2 α2 − α2) is a product of two
units, and therefore belongs to A∗. This proves 7.1.

We next address the problem of designing an algorithm that, given two pseudofields
(Ai, αi) as in 7.1, computes their tensor product. Here it is assumed, as in Section 2,
that a pseudofield is specified by its characteristic and its characteristic polynomial. For
the general context of our algorithm one may consult [11].

Let R be a commutative ring, let m ∈ Z≥0, and write S for the ring R[t]/(tm+1),
where t denotes a polynomial variable. The elements 1, t , . . . , tm form a basis for S
over R, in the sense that every element of S has a unique representation of the form∑m
i=0 ai t

i with each ai ∈ R. The elements
∑m
i=0 ai t

i with a0 = 0 form the ideal tS of S,
and the elements with a0 = 1 form a subgroup of the group S∗ of units of S; we write
1+ tS for this subgroup. We define the maps D : S → tS and L : 1+ tS → tS by

D
( m∑
i=0

ai t
i
)
=

m∑
i=0

iai t
i (ai ∈ R),

L(u) = D(u) · u−1 (u ∈ 1+ tS).

(The notation reflects that, up to a factor t , the maps D and L are differentiation and
logarithmic differentiation, respectively.) One readily verifies that for u, v ∈ S one has
D(uv) = uD(v) + vD(u), and consequently L is a group homomorphism from the
multiplicative group 1 + tS to the additive group tS. For a monic polynomial g =
Xk +

∑k
i=1 biX

k−i
∈ R[X], we write g[ for the image of 1 +

∑k
i=1 bi t

i in S, which
belongs to 1 + tS. Evidently, we have (gh)[ = g[ · h[ for any two monic polynomials
g, h ∈ R[X]. The Hadamard product ∗ is the operation defined on S by( m∑

i=0

ai t
i
)
∗

( m∑
i=0

bi t
i
)
=

m∑
i=0

aibi t
i,

for ai , bi ∈ R.
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For any ring homomorphism ψ : R1 → R2, the composition of the induced ring
homomorphism S1 = R1[t]/(t

m+1)→ S2 = R2[t]/(t
m+1) withD : S2 → tS2 equals the

composition ofD : S1 → tS1 with the induced map tS1 → tS2. Similar remarks apply to
L, [, and ∗.

In the following result we use the definitions just given for the ring R = Z/nZ.

Proposition 7.2. Let the hypotheses and notation be as in 7.1. Moreover, write f1,
f2, f for the characteristic polynomials of the pseudofields (A1, α1), (A2, α2), and
(A1 ⊗Z/nZ A2, α1 ⊗ α2), respectively. Then for any non-negative integer m we have the
identity

L(f [) = −L(f
[
1 ) ∗ L(f

[
2 )

in t (Z/nZ)[t]/(tm+1).

Proof. Let the notation A, α, d, σ1, σ2, σ be as in the proof of 7.1. We view A1 and A2
as subrings of A, identifying α1 with α1 ⊗ 1 and α2 with 1 ⊗ α2, so that α = α1α2. It
suffices to prove the identity in tA[t]/(tm+1). From f =

∏d−1
i=0 (X−σ

iα)we obtain f [ =∏d−1
i=0 (1 − (σ

iα)t). From L(1 − (σ iα)t) = −(σ iα)t/(1 − (σ iα)t) = −
∑m
j=1(σ

iα)j tj

we thus obtain

L(f [) =

d−1∑
i=0

L(1− (σ iα)t) = −
m∑
j=1

(d−1∑
i=0

(σ iα)j
)
tj .

Likewise,

L(f
[
1 ) = −

m∑
j=1

(d1−1∑
i=0

(σ i1α1)
j
)
tj , L(f

[
2 ) = −

m∑
j=1

(d2−1∑
i=0

(σ i2α2)
j
)
tj .

Since σ iα = (σ i1α1) · (σ
i
2α2) and the orders d1 and d2 of σ1 and σ2 are coprime, we have

d−1∑
i=0

(σ iα)j =
(d1−1∑
i=0

(σ i1α1)
j
)
·

(d2−1∑
i=0

(σ i2α2)
j
)

for all j ≥ 1. The identity to be proved now follows from the definition of the Hadamard
product. This proves 7.2.

Proposition 7.3. For positive integers n,m, let Sn,m denote the ring (Z/nZ)[t]/(tm+1).

(a) Let n andm be positive integers such that each prime factor of n exceedsm. Then the
map L : 1+ tSn,m→ tSn,m is a group isomorphism.

(b) There is an algorithm that, given positive integers n and m, and an element u ∈
1+ tSn,m, computes the element L(u) of tSn,m in time Õ(m log n).

(c) There is an algorithm that, given integers n > 1, m > 0, and an element s ∈ tSn,m,
either computes a prime factor of n that is at mostm or correctly decides that no such
prime factor exists, and in the latter case computes the element L−1(s) of 1+ tSn,m,
all in time Õ(m log n).

Proof. (a) Since each prime factor of n exceeds m, we have i ∈ (Z/nZ)∗ for i =
1, . . . , m, so D restricts to a group automorphism of tSn,m. For the same reason, there
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are well-defined maps log : 1+ tSn,m→ tSn,m and exp : tSn,m→ 1+ tSn,m with

log(1− x) = −
m∑
i=1

xi/i, exp(x) =
m∑
i=0

xi/i!

for x ∈ tSn,m. It is well known that log and exp are inverse group isomorphisms. An
easy computation shows L = D ◦ log. It follows that L is an isomorphism, with inverse
exp ◦D−1.

(b) In [7, Section 8] one finds an algorithm that computes L(u) by means of Õ(m)
ring operations in Z/nZ; this particular algorithm does not depend on the condition, in
[7, Section 8], that the field Q of rational numbers be contained in the coefficient ring. By
[21, Sections 8.3 and 9.1], each ring operation in Z/nZ can be done in time Õ(log n).

(c) We describe an algorithm with the stated properties. Using the extended Eu-
clidean algorithm (see [21, Corollary 11.10]), one attempts to compute i−1

∈ Z/nZ for
i = 1, . . . , m; this can only fail if among those i a prime factor of n is found, in which
case the algorithm halts. Suppose it does not fail. Then one computes D−1(s) directly
from the definition of D by means of m multiplications in Z/nZ, and next one uses the
algorithm from [7, Section 9] to compute L−1(s) = exp(D−1(s)) using Õ(m) ring oper-
ations in Z/nZ; inspection of this algorithm shows that the condition from [7, Section 9]
that Q be contained in the coefficient ring may be replaced by the weaker condition that
multiplicative inverses of each of i = 1, . . . , m be available; this condition is satisfied in
the present case.

This proves 7.3.

Proposition 7.4. There is an algorithm with the following property. Given an integer n
and two pseudofields of characteristic n and of coprime degrees d1, d2 greater than 1, it
either finds a prime factor of n that is at most d1d2 or it constructs the tensor product of
the two given pseudofields, and it does so in time Õ(d1d2 log n).

Proof. The following algorithm has the stated properties. Let f1, f2 be the characteristic
polynomials of the two given pseudofields. Put m = d1d2 and S = (Z/nZ)[t]/(tm+1),
and compute f [1 , f [2 ∈ 1 + tS from the definition of [. Next compute L(f [1 ) and L(f [2 )
by means of the algorithm of 7.3(b), and compute L(f [1 ) ∗ L(f

[
2 ) by d1d2 multiplica-

tions in Z/nZ. Finally, apply the algorithm of 7.3(c) to s = −L(f [1 ) ∗ L(f
[
2 ); this either

yields a prime factor of n that is at most m = d1d2, or it finds L−1(s) ∈ 1 + tS; in the
latter case, the characteristic polynomial of the tensor product is the unique monic poly-
nomial f ∈ (Z/nZ)[X] of degree d1d2 that satisfies f [ = L−1(s). This completes the
description of the algorithm. It is correct by 7.2, and 7.3 readily implies that it runs in
time Õ(d1d2 log n). This proves 7.4.

8. Gaussian periods

In this section we let n be an integer with n > 1, we let r be a prime number not dividing n,
and we define 8r =

∑r−1
i=0 X

i
∈ (Z/nZ)[X]. The element (X mod 8r) of the ring

(Z/nZ)[X]/(8r) is denoted by ζr , and that ring itself by (Z/nZ)[ζr ]. We have ζ rr =
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1 6= ζr , so ζr is an element of (Z/nZ)[ζr ]∗ of order r . From deg8r = r − 1 and
1 + ζr + · · · + ζ r−1

r = 0 one sees that the elements ζ ir , 1 ≤ i ≤ r − 1, form a basis for
(Z/nZ)[ζr ] over Z/nZ.

For each a ∈ Z \ rZ, the ring (Z/nZ)[ζr ] has a unique automorphism mapping ζr
to ζ ar ; we write σa for this automorphism. The set 1 of all automorphisms of the form
σa is a group under composition, and the map σa 7→ (a mod r) is a group isomorphism
1 ∼= F∗r . One concludes that 1 is cyclic of order r − 1, and that the elements τζr , τ ∈ 1,
form a basis for (Z/nZ)[ζr ] over Z/nZ.

Next let q be a positive integer dividing r − 1. Then 1q = {τ q : τ ∈ 1} is a
subgroup of index q of 1. The subset (Z/nZ)[ζr ]1

q
= {β ∈ (Z/nZ)[ζr ] : ρβ = β

for all ρ ∈ 1q} is a subring of (Z/nZ)[ζr ]. An element
∑
τ∈1 aτ · τζr with each aτ

in Z/nZ belongs to this subring if and only if aτ = aτρ for all τ ∈ 1 and ρ ∈ 1q .
Hence, if we put ηr,q =

∑
ρ∈1q ρζr , then the elements τηr,q with τ ranging over a set

of coset representatives for 1 modulo 1q form a basis for (Z/nZ)[ζr ]1
q

over Z/nZ; in
particular, one has #(Z/nZ)[ζr ]1

q
= nq . The elements τηr,q are called Gaussian periods

of degree q and conductor r . For example, ηr,r−1 = ζr and ηr,1 = −1. We write

fr,q =
∏

τ1q∈1/1q

(Y − τηr,q).

This is a monic polynomial in Y of degree q with fr,q(ηr,q) = 0. Its coefficients, which
belong to (Z/nZ)[ζr ], are readily checked to be invariant under all ρ ∈ 1, so they belong
to (Z/nZ)[ζr ]1

1
= (Z/nZ) · ηr,1 = Z/nZ. Thus, fr,q ∈ (Z/nZ)[Y ].

Proposition 8.1. Let n ∈ Z>1, let r be a prime number not dividing n, and let q be a
divisor of r − 1 with the property that the element (n(r−1)/q mod r) of F∗r has order q.
Let the notation ζr , σa , 1, ηr,q , fr,q be as just defined. Then:

(a) if n is prime, then in the ring (Z/nZ)[ζr ] one has ηnr,q = σnηr,q ;
(b) if in the ring (Z/nZ)[ζr ] one has ηnr,q = σnηr,q , then ((Z/nZ)[ζr ]1

q
, ηr,q) is a pseu-

dofield of characteristic n and degree q, with characteristic polynomial fr,q .

Proof. To prove (a), suppose that n is prime. Then the map from (Z/nZ)[ζr ] to itself
sending each β to βn is a ring homomorphism, and since it agrees with σn on ζr it coin-
cides with σn on all of (Z/nZ)[ζr ]. This implies (a).

To prove (b), we first observe that the kernel of the group homomorphism F∗r → F∗r
sending each x to x(r−1)/q equals the subgroup F∗qr of index q of F∗r . Hence the condition
that (n(r−1)/q mod r) have order q implies that the coset (n mod r)F∗qr generates the
group F∗r /F

∗q
r , and consequently the coset σn1q generates 1/1q .

For brevity, write A = (Z/nZ)[ζr ]1
q
. Define the ring homomorphism φ : (Z/nZ)[Y ]

→ A by φ(g) = g(ηr,q). Its image is the subring of A generated by ηr,q . From
σnηr,q = ηnr,q it follows that that subring is mapped to itself by σn. Since all elements
of 1q act as the identity on A, and σn1q generates 1/1q , the subring is mapped to it-
self by all τ ∈ 1. Hence, in addition to ηr,q it contains all τηr,q , so that it is equal to
all of A; in other words, φ is surjective. The kernel of φ contains the (Z/nZ)[Y ]-ideal
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generated by fr,q , and since both of these ideals have index nq in (Z/nZ)[Y ], we must
have equality. Thus, φ induces a ring isomorphism (Z/nZ)[Y ]/(fr,q) ∼= A.

We prove that A, α = ηr,q , n, d = q, and σ equal to the restriction of σn to A satisfy
(2.1)–(2.5). Conditions (2.1)–(2.3) are clearly satisfied, and (2.4) follows from σ

q
n ∈ 1

q .
We prove (2.5). Since σn1q generates the group 1/1q of order q, we may rewrite the
definition of fr,q as

fr,q =

q−1∏
i=0

(Y − σ iηr,q).

It follows that the derivative f ′r,q = dfr,q/dY satisfies f ′r,q(ηr,q) =
∏q−1
i=1 (ηr,q − σ

iηr,q),
so that to prove (2.5) it will suffice to prove f ′r,q(ηr,q) ∈ A

∗.
Let p be a prime number dividing n. Taking the isomorphism (Z/nZ)[Y ]/(fr,q) ∼= A

modulo p, we see that the ring Fp[Y ]/(f ), where f = (fr,q mod p) ∈ Fp[Y ], is iso-
morphic to a subring of Fp[X]/(g), where g =

∑r−1
i=0 X

i . Since g divides Xr − 1 where
r is a prime number different from p, one has gcd(g, dg/dX) = 1 in the ring Fp[X].
From Lemma 8.2, stated and proved below, it follows that gcd(f, df/dY ) = 1 in the
ring Fp[Y ]. Thus, there are u, v ∈ Fp[Y ] with uf + vdf/dY = 1. Lifting u, v to
(Z/nZ)[Y ], one obtains up, vp, wp ∈ (Z/nZ)[Y ] such that upfr,q + vpf ′r,q = 1+ pwp.
Applying φ one gets, for each prime number p dividing n, an identity in A of the form
vp(ηr,q) ·f

′
r,q(ηr,q)−p ·wp(ηr,q) = 1. Take the product over p, repeating the pth identity

just as many times as p occurs in n. On the right, we get 1. On the left, the only term that
does not have a factor f ′r,q(ηr,q) is divisible by n and is therefore 0. Hence, 1 is divisible
by f ′r,q(ηr,q) in A, so that the latter element is a unit, as required. The formula we gave
for fr,q shows that it is indeed the characteristic polynomial for the pseudofield.

Lemma 8.2. Let p be a prime number, and let f, g ∈ Fp[X] be non-zero polynomials
for which the ring Fp[X]/(f ) is isomorphic to a subring of Fp[X]/(g). Suppose also
gcd(g, dg/dX) = 1. Then gcd(f, df/dX) = 1.

Proof. A non-zero polynomial h ∈ Fp[X] satisfies gcd(h, dh/dX) = 1 if and only if h
is squarefree in the ring Fp[X], and if and only if there is no non-zero nilpotent element
in the ring Fp[X]/(h). Thus, the lemma follows from the trivial observation that if a ring
has no non-zero nilpotent element, then the same is true for a subring. This proves 8.2
and completes the proof of 8.1.

We next describe an algorithm that will prove Propositions 2.13 and 2.14.

Algorithm 8.3. Given an integer n > 1, which may or may not be known to be prime,
and a period system P for n satisfying n > degP , this algorithm attempts to construct a
pseudofield of characteristic n and degree degP .

Step 1. For all (r, q) ∈ P in succession, do the following. Compute ηr,q ∈ (Z/nZ)[ζr ]
as well as all of its conjugates τηr,q , and form the product of the q polynomials
Y−τηr,q in (Z/nZ)[ζr ][Y ]; the result is fr,q , which has coefficients in the subring
Z/nZ of (Z/nZ)[ζr ]. If n is not known to be prime, compute by an nth powering
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in the ring (Z/nZ)[Y ]/(fr,q) the unique polynomial gr,q ∈ (Z/nZ)[Y ] satisfying
Y n ≡ gr,q mod fr,q and deg gr,q < q, and test whether in (Z/nZ)[ζr ] one has
gr,q(ηr,q) = σnηr,q ; if this test fails, declare n composite and halt.

Step 2. [If the algorithm arrives at this point then, as we shall prove below, for each
(r, q) ∈ P the pair (n, fr,q) specifies a pseudofield.] Applying the algorithm
of 7.4 at most #P − 1 times, either find a prime factor of n that is at most degP ,
or construct the repeated tensor product of the #P pseudofields specified by the
pairs (n, fr,q) for (r, q) ∈ P . In the former case, declare n composite and halt,
and in the latter case return the tensor product computed by the algorithm and
halt.

This completes the description of Algorithm 8.3.

Proposition 8.4. Algorithm 8.3, when given n, P satisfying n > degP , runs in time

Õ
((

degP +
∑

(r,q)∈P
qr
)

log n
)

or Õ
((

degP +
∑

(r,q)∈P
q(r + log n)

)
log n

)
according as n is or is not known to be prime, and either correctly declares n composite
or constructs a pseudofield of characteristic n and degree degP .

Proof. We first prove the correctness of the algorithm. Since fr,q(ηr,q) = 0, the con-
gruence Y n ≡ gr,q mod fr,q in Step 1 implies gr,q(ηr,q) = ηnr,q . Thus, by 8.1(a), the
condition gr,q(ηr,q) = σnηr,q is necessary for n to be prime, and the algorithm is correct
if it halts in Step 1. If it passes Step 1, then by 8.1(b) there is for each (r, q) ∈ P a pseu-
dofield of characteristic n with characteristic polynomial fr,q . Hence by 7.4 the algorithm
either constructs the desired tensor product, or finds a prime factor of n that is at most
degP; in the latter case, n is composite because n > degP . This proves the correctness
of the algorithm.

The run time of Step 1 is dominated by the computation of the polynomials fr,q and, if
n is not known to be prime, the polynomials gr,q and their values at ηr,q . The computation
of fr,q , if done by means of Algorithm 10.3 from [21], runs in time Õ(qr log n). The
computation of gr,q involves O(log n) multiplications in the ring (Z/nZ)[Y ]/(fr,q) and
can therefore be performed in time Õ(q · (log n)2). The computation of gr,q(ηr,q) runs in
time Õ(qr log n). By 7.4, Step 2 runs in time Õ(log n · degP).

This proves 8.4.

Proposition 2.13 is an immediate corollary of 8.4. In addition, if n is prime, then it is not
declared composite, so that the algorithm returns a pseudofield; whence by 2.7, this pseu-
dofield is a finite field. Thus, by 2.6, its characteristic polynomial is irreducible in Fn[X].
So Proposition 2.14 follows from 8.4 as well.

9. The continuous Frobenius problem

In this section we prove Theorem 3 from the Introduction. As mentioned there, our proof
is adapted from Bleichenbacher [10].
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For any open subset S of the positive reals, let

M(S) =

∫
S

dx
x
,

and let S∗ denote the additive semigroup generated by S. We first prove the theorem in
the case that S is a finite union of n open intervals, after which the general case will be
seen to follow easily.

To prove the theorem for the union of n open intervals, we proceed by induction. In
particular, the theorem is true vacuously for n = 0. Henceforth we shall assume that

(9.1) n ≥ 1 and the theorem holds for the union of n′ open intervals for all 0 ≤ n′ < n.

Definition 9.2. Let n be a positive integer, let t ∈ (0, 1], and let a,b ∈ Rn with

(9.3) t ≥ b1 ≥ a1 ≥ · · · ≥ bn ≥ an ≥ 0, b1 > · · · > bn > 0.

Let

(9.4) S(a,b) =
n⋃
i=1

(ai, bi).

As a union of open intervals, S(a,b) is an open subset of R>0. Let St,n denote the set of
such sets S(a,b) ⊂ (0, t) such that for each h ∈ (Z≥0)

n with hi = 0 whenever ai = bi ,

(9.5) either h · b ≤ 1 or 1 ≤ h · a.

Lemma 9.6. If S ∈ St,n, then 1 6∈ S∗. Conversely, if S is the union of at most n open
intervals in (0, t) with 1 6∈ S∗, then S ∈ St,n.

Proof. Suppose S = S(a,b) ∈ St,n. If 1 ∈ S∗ there are elements s1, . . . , sN ∈ S with
sum 1. For 1 ≤ i ≤ n, let hi be the number of these elements sj with sj ∈ (ai, bi). With
h = (h1, . . . , hn) we thus have h ∈ (Z≥0)

n, hi = 0 whenever ai = bi , and

h · a < s1 + · · · + sN = 1 < h · b,

in violation of (9.5). Thus, 1 6∈ S∗. Conversely, suppose that S is the union of at most n
open intervals in (0, t). We may write any such S as in (9.3) and (9.4). Assume that
there is some h ∈ (Z≥0)

n for which hi = 0 whenever ai = bi and (9.5) fails; that is,
h · a < 1 < h ·b. Let A = h · a, B = h ·b, α = (B− 1)/(B−A), β = (1−A)/(B−A).
Then α, β are positive with α + β = 1. For 1 ≤ i ≤ n, let ci = αai + βbi . Then, if
hi 6= 0, we have ci ∈ (ai, bi), so that h · c ∈ S∗. But, by construction,

h · c = αh · a+ βh · b = αA+ βB = 1,

so that 1 ∈ S∗. This completes the proof of the lemma.

Lemma 9.7. Fix an arbitrary vector b = (b1, . . . , bn) ∈ Rn for which t ≥ b1 > · · ·

> bn > 0. Then M(S(a,b)) achieves a maximum value Mb over all a ∈ Rn for which
S(a,b) ∈ St,n. Furthermore, Mb > 0.
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Proof. Note that by (9.3) and (9.5), the set of vectors a with S(a,b) ∈ St,n is a compact
subset of Rn. Moreover, if a is in this set, we have an 6= 0 since otherwise 1 ∈ S(a,b)∗,
so that Lemma 9.6 implies that S(a,b) 6∈ St,n. Thus, M(S(a,b)) is continuously defined
over this set. There are vectors a with S(a,b) ∈ St,n, indeed a = b is permitted. It follows
thatM(S(a,b)) attains a maximumMb as claimed. To see thatMb > 0, letm be the least
integer with m > 1/b1, and then choose a1 = 1/m and ai = bi for 2 ≤ i ≤ n. The
vector a satisfies (9.3) and since 1 6∈ S(a,b)∗, Lemma 9.6 implies that S(a,b) ∈ St,n. But
M(S(a,b)) = log(mb1) and this expression is positive since mb1 > 1. This completes
the proof of the lemma.

Definition 9.8. Let a,b ∈ Rn as in (9.3). We say S(a,b) is degenerate if either ai = bi
for some i with 1 ≤ i ≤ n or ai−1 = bi for some i with 2 ≤ i ≤ n.

Lemma 9.9. Suppose b satisfies the hypothesis of Lemma 9.7. If S(a,b) ∈ St,n is such
that M(S(a,b)) = Mb, then either Mb < t or S(a,b) is non-degenerate.

Proof. Suppose S = S(a,b) ∈ St,n has M(S(a,b)) = Mb. First, we delete each empty
interval, that is, each interval with ai = bi . This preserves the property 1 6∈ S∗ and does
not change M(S). However, it does allow us to reduce to some n′ < n, and by (9.1),
M(S) < t . Next, suppose that ai−1 = bi for some i with 2 ≤ i ≤ n. We may then
consolidate the two intervals (ai, bi), (ai−1, bi−1) into one interval (ai, bi−1) keeping the
property that 1 6∈ S∗ and not changing the value of M(S). Indeed the latter claim is clear,
and if 1 is now representable by a sum of members of S ∪ {bi}, then bi must be involved
in the sum, say with positive integral coefficient d . If d = 1, then replace bi in the sum
with bi + ε for a suitably small ε > 0, and then replace another member x ∈ S of the
sum with x − ε. (There must be another number in the sum since bi < 1.) If ε is small
enough, both bi + ε and x − ε are in S, and we have represented 1 as a sum of members
of S, contradicting S ∈ St,n (see Lemma 9.6). If d ≥ 2, then since bi + ε/(d − 1) and
bi − ε are both in S for ε small enough, we can replace the d copies of bi in the sum with
d − 1 copies of bi + ε/(d − 1) and one copy of bi − ε, and so represent 1 as a sum of
members of S. Either way, we reach a contradiction, and so the consolidation of the two
abutting intervals continues to enjoy the property that 1 is not in the additive semigroup
generated by the intervals. Again, by (9.1), we have M(S) < t . We conclude that either
M(S) < t or S is non-degenerate, proving the lemma.

We now assume that the vectors a,b satisfy

(9.10) S(a,b) ∈ St,n, M(S(a,b)) = Mb,

and

(9.11) t ≥ b1 > a1 > · · · > bn > an > 0.

We partition the vectors h ∈ (Z≥0)
n into three disjoint sets. Let

H0 = {h ∈ (Z≥0)
n
: h · a < 1},

H1 = {h ∈ (Z≥0)
n
: h · a = 1},

H2 = {h ∈ (Z≥0)
n
: h · a > 1}.

Since ai > 0 for each i, it follows that H0, H1 are finite sets.
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Lemma 9.12. Let a,b be as in (9.10), (9.11) and for notational convenience, let an+1 =

bn+1 = 0. If h ∈ H1, then

hkh · (b− a) ≤ hk(bk − bk+1) for 1 ≤ k ≤ n.

Proof. Let ek be the kth standard basis vector in Rn. For k = 1, . . . , n, since h · a = 1
and ak > ak+1, we have

h · a− ak + ak+1 < 1.

Suppose that hk > 0. Let h′ = h − ek + ek+1 if k < n, and h′ = h − ek if k = n. Then
h′ ∈ H0. Hence, since (9.5) holds for h′, we have h′ · b ≤ 1. That is,

h · b− bk + bk+1 ≤ 1.

Using h ∈ H1 we get

h · (b− a) = h · b− 1 ≤ bk − bk+1.

Thus,
hkh · (b− a) ≤ hk(bk − bk+1),

an inequality that continues to hold if hk = 0. This completes the proof.

Let v be an arbitrary vector in Rn and for real numbers x, let

fv(x) = M
( n⋃
i=1

(ai + xvi, bi)
)
.

Note that

(9.13) f ′v(0) = −v ·m(a),

where m(a) := (1/a1, . . . , 1/an).

Lemma 9.14. Let v ∈ Rn be such that h · v ≥ 0 for all h ∈ H1. Let εv > 0 be a real
number such that ai + εv < bi for i = 1, . . . , n. Then for each real x ∈ [0, εv], the
vector a+ xv satisfies (9.11) in place of a. Further, by possibly reducing εv > 0, one has
S(a+ xv,b) ∈ St,n for every x ∈ [0, εv]. In addition, v ·m(a) ≥ 0.

Proof. Assume that v ∈ Rn has h · v > 0 for all h ∈ H1 and that εv has been chosen
as described. It is clear that a + xv satisfies (9.11) for each x ∈ [0, εv]. Suppose that
h ∈ (Z≥0)

n, so that h ∈ H0, H1, or H2. If h ∈ H0, since (9.5) holds for a, we have
h · b ≤ 1. Thus, (9.5) holds for all of the vectors a + xv and all h ∈ H0. Now suppose
h ∈ H1. By hypothesis, h · (a + xv) = 1 + xh · v ≥ 1 for all x ∈ R≥0, so that (9.5)
holds for each a + xv and all h ∈ H1. Finally, we consider H2. Since a ∈ Rn>0, there is
a finite “minimal” set H ∗2 ⊂ H2 such that h ∈ H2 if and only if there is some h∗ ∈ H ∗2
with h− h∗ ∈ Zn

≥0. Let

W = {w ∈ Rn>0 : w · h
∗ > 1 for all h∗ ∈ H ∗2 }.
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Then W is an open set that contains a. Thus, given v, by possibly reducing εv > 0,
for all 0 ≤ x ≤ εv we have a + xv ∈ W . It follows that h · (a + xv) > 1 for 0 ≤
x ≤ εv and all h ∈ H2. That is, (9.5) holds for the vectors a + xv and all h ∈ H2. Thus,
S(a + xv,b) ∈ St,n as asserted. By the maximality of a, we have f ′v(0) ≤ 0, which
implies the last assertion by (9.13). This completes the proof.

It is now clear that H1 is non-empty, since if H1 = ∅, we would have v ·m(a) ≥ 0 for all
vectors v ∈ Rn, which is patently false. Let r = #H1.

We cite a result of Farkas [20].

Lemma 9.15 (J. Farkas). Suppose A is an r × n real matrix and m ∈ Rn. Suppose that
for all v ∈ Rn with Av ∈ (R≥0)

r we have m · v ≥ 0. Then there is a vector p ∈ (R≥0)
r

with pTA = m.

(Note that the converse trivially holds: If Av,p ∈ (R≥0)
r and pTA = m, then m · v =

pTA · v = pT · Av ≥ 0.)

Proof of Theorem 3. We apply Lemma 9.15 to the matrix A whose rows are the r vectors
in H1 and to the vector m = m(a). We have shown in Lemma 9.14 that Av ∈ (R≥0)

r

implies that m · v ≥ 0. Thus, Lemma 9.15 implies there is a vector p ∈ (R≥0)
r with

pTA = m. Say p = (p1, . . . , pr), H1 = {h1, . . . ,hr}, and let each hj be (hj1, . . . , hjn).
We have

r∑
j=1

pjhjk = 1/ak for 1 ≤ k ≤ n.

Take the inequality in Lemma 9.12 applied to hj , multiply it by pj , and sum over j . For
k = 1, . . . , n, we have

r∑
j=1

pjhjk

n∑
i=1

hji(bi − ai) ≤

r∑
j=1

pjhjk(bk − bk+1) = (1/ak)(bk − bk+1).

Multiplying corresponding inequalities by ak and summing over k, we get

(9.16)
n∑
k=1

ak

r∑
j=1

pjhjk

n∑
i=1

hji(bi − ai) ≤

n∑
k=1

(bk − bk+1) = b1.

The left side of (9.16) equals
r∑

j=1

pj

n∑
k=1

akhjk

n∑
i=1

hji(bi − ai) =

r∑
j=1

pj (hj · a)(hj · (b− a)) =
r∑

j=1

pjhj · (b− a)

= m(a) · (b− a) =
n∑
i=1

(bi − ai)/ai .

Thus, (9.16) implies that

(9.17)
n∑
i=1

(bi/ai − 1) =
n∑
i=1

(bi − ai)/ai ≤ b1.
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However, M((ai, bi)) = log(bi/ai) < bi/ai − 1. Hence, by (9.17),

Mb =
n∑
i=1

log(bi/ai) < b1 ≤ t.

We have Mb < t for each choice of b satisfying (9.11), and so Theorem 3 holds for
any S which is the union of finitely many intervals. If S ⊂ (0, t) is the union of infinitely
many disjoint open intervals and has 1 6∈ S∗, let S(n) be the union of n of these intervals
with S(n) ⊂ S(n + 1) and

⋃
S(n) = S. We have M(S(n)) < t for each n, and so

M(S) = limn→∞M(S(n)) ≤ t . This concludes the proof of the theorem.

Remarks. We have seen that the inequality M(S) < t holds when S ⊂ (0, t) is a finite
union of open intervals with 1 not in the additive semigroup generated by S. This inequal-
ity for a finite union of intervals is best possible. Indeed, suppose Sn is the intersection
of (0, t) and the additive semigroup generated by (1/(n+ 1), 1/n), where n is a positive
integer. Note that 1 is not in this semigroup. Further, we have

M(Sn) ≥

btnc∑
j=1

M

((
j

n+ 1
,
j

n

))
=

btnc∑
j=1

log(1+ 1/n) > btnc
(

1
n
−

1
n2

)
> t −

1+ t
n

.

Thus, as n grows, we have M(Sn) as close as we please to t .
It is possibly true that M(S) < t continues to hold when S is an infinite union of

disjoint intervals; that is, the theorem holds with a strict inequality. We leave this as an
open question.

10. A number-theoretic application

In this section we give a number-theoretic application to the continuous Frobenius prob-
lem, proving a result which contains Theorem 4. The recent paper [22] contains a similar
result.

Proposition 10.1. Let α, ε be real numbers with

0 < ε ≤ α/2 ≤ 1/4.

There is a positive integer x0 = x0(α, ε), effectively computable if α, ε are rational, with
the following property. If x, u,D are real numbers with

x > x0, 2 < u < (log x)1/10, and x1/(2(α−ε))
≤ D ≤ x1/α,

then for any set Q of primes contained in (x1/u, x1/2
] with∑

q∈Q

1
q
≥ α,

there is a squarefree integer d composed of primes from Q withD ≤ d < D+D1−α/(4u).
Moreover, the number of squarefree integers d ∈ [D, 2D) composed of primes from Q
exceeds D/(logD)5u.
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Before commencing the proof we identify some auxiliary variables and prove some lem-
mas. Let D be as in 10.1 and write

D = x1/(2(α−δ)), α/2 ≥ δ ≥ ε.

Let N be an integer for which

(10.2) 6u log x ≤ N ≤ x1/(3u).

For N satisfying (10.2) and for i = 1, . . . , N , let

Ii = [x
(i−1)/N , xi/N ), Mi = x

i/N/i2.

Further, for Q as in 10.1, let

(10.3) Qi =

{
Ii ∩Q if #(Ii ∩Q) > Mi ,
∅ otherwise.

We remark that Qi = ∅ for i ≤ N/u.

Lemma 10.4. If x is sufficiently large, then for Q as in 10.1, N satisfying (10.2), and
sets Qi defined in (10.3),

N∑
i=1

∑
q∈Qi

1
q
> α − δ/2.

Proof. The double sum here is smaller than the sum
∑
q∈Q

1
q

in 10.1, the difference
between them coming from intervals Ii with #(Ii ∩ Q) ≤ Mi . Since Ii ∩ Q = ∅ for
i ≤ N/u, the sum of 1/q for primes q in intervals Ii with #(Ii ∩Q) ≤ Mi is at most∑

N≥i>N/u

Mi

x(i−1)/N =
∑

N≥i>N/u

x1/N

i2
<

2u
N
x1/N

≤
1

3 log x
e1/(6u) <

1
log x

,

by the first inequality in (10.2). Thus, these primes give a negligible contribution as
x →∞, and we have 10.4.

For N as in (10.2) and for i = 1, . . . , N , write xi/N = x(i−1)/N
+ Li . Then by the upper

bound in (10.2), for all i > N/u,

(10.5) Li = x
(i−1)/N (x1/N

− 1) > x(i−1)/N log x
N

> (x(i−1)/N )3/5

for all sufficiently large x.

Lemma 10.6. Suppose that N satisfies (10.2) and sets Qi are as in (10.3). For each i
with Qi 6= ∅, let S(i) be the image of Ii under the natural logarithm map, and if Qi = ∅,
let S(i) = ∅. If x is sufficiently large, then

N∑
i=1

∫
S(i)

dt
t
> α − δ.
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Proof. If Qi 6= ∅, we have i > N/u, and so we may assume that (10.5) holds. The
interval Ii is thus of the shape [z, z+L)whereL > z3/5. So, by a theorem of Huxley [23],
the number of primes in Ii is (1 + o(1))Li/log(x(i−1)/N ) = (1 + o(1))x(i−1)/N/i as
x → ∞, uniformly in i for N/u < i ≤ N . Let η = (δ/2)/(α − δ). It follows that for
all x larger than some effectively computable bound depending on η and for each i with
Qi 6= ∅, the number of primes in Ii is smaller than (1+ η)x(i−1)/N/i and so

(10.7)
∑
q∈Qi

1
q
<

1+ η
i

< (1+ η) log
i

i − 1
= (1+ η)

∫
S(i)

dt
t
.

Hence, for sufficiently large x, 10.4 and (10.7) imply that

N∑
i=1

∫
S(i)

dt
t
> (1+ η)−1

N∑
i=1

∑
q∈Qi

1
q
>
α − δ/2
1+ η

= α − δ.

This proves 10.6.

Proof of Proposition 10.1. We choose as a target for our squarefree number d a num-
ber D′ slightly above D, since we may miss the target on the low side, and we wish to
have d ≥ D. To be specific, let D′ = D exp(2u(log x)/(αN)) and let S be the additive
semigroup generated by

N⋃
i=1

1
logD′

S(i),

where S(i) is as in 10.6. Note that if S(i) 6= ∅ we have x(i−1)/N
≤ x1/2, so that since

D = x1/(2(α−δ)),

log(xi/N )
logD′

≤

(
1
2
+

1
N

)
log x

logD′
=

(
1
2
+

1
N

)
α − δ

1
2 +

2u
αN
(α − δ)

< α − δ,

where in the last step we have used α − δ > α/2 and u > 2. Thus, S(i)/logD′ ⊂
(0, α − δ). It now follows from 10.6 and the fact that the intervals S(i) are disjoint that∫

S∩(0,α−δ)

dt
t
≥

N∑
i=1

∫
S(i)/logD′

dt
t
=

∑
i

∫
S(i)

dt
t
> α − δ.

From Theorem 3 we know that 1 ∈ S. Hence, there are a finite subset F of
⋃
i S(i)

and positive integers κ(f ) for each f ∈ F such that∑
f∈F

κ(f )f = logD′.

Let Fi = F ∩ S(i) for i = 1, . . . , N , and let

κi =
∑
f∈Fi

κ(f ).
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Then, using S(i) = ∅ for i ≤ N/u from 10.3, we see that

(10.8)
N∑
i=1

κi =
∑
i

∑
f∈Fi

κ(f ) ≤
∑
i

1
log(x(i−1)/N )

∑
f∈Fi

κ(f )f

<
1

log(x1/u−1/N )

∑
f∈F

κ(f )f =
logD′

(1/u− 1/N) log x
< 2u/α,

the last inequality holding when x is sufficiently large. If S(i) 6= ∅, then (10.2) and (10.3)
imply that #Qi > Mi > x1/u/N2 > 2u/α > κi , again since x is large. Thus, for each
i with κi > 0 there are at least κi distinct primes in the set Qi . Label a choice for such
primes q1,i, q2,i, . . . , qκi ,i and let

d =

N∏
i=1

κi∏
j=1

qj,i .

We have

(10.9) |logD′ − log d|

=

∣∣∣∑
f∈F

κ(f )f −

N∑
i=1

κi∑
j=1

log qj,i
∣∣∣ = ∣∣∣ N∑

i=1

(∑
f∈Fi

κ(f )f −

κi∑
j=1

log qj,i
)∣∣∣

<
∑
i

κi
(
log(xi/N )− log(x(i−1)/N )

)
=

log x
N

∑
i

κi <
2u log x
αN

,

using (10.8). Thus,

D = D′ exp(−2u(log x)/(αN)) < d < D′ exp(2u(log x)/(αN))
< D(1+ 6u(log x)/(αN)).

By choosing N near the upper end of the interval in (10.2), we have the first assertion
in 10.1.

Now we show that there are many squarefree integers in [D, 2D) that are composed
of primes from Q. We chooseN = d6u log xe in (10.2) and we letD′ =

√
2D. For each i

with κi > 0 choose κi primes from Qi and let d denote the product of all of these primes
over all choices for i. Then, as in (10.9) and by our choice of N ,

|logD′ − log d| <
2u log x
N

<
1
2

log 2

for x large, so that D < d < 2D. It remains to count the number of choices for d in the
argument. Since #Qi > Mi when κi > 0, the number of choices for d is at least∏

i: κi>0

(
dMie

κi

)
≥

∏
i: κi>0

(
Mi

κi

)κi
=

∏
i

(
xi/N

i2κi

)κi
>

D∏
i(i

2κi)κi
.

Now, by (10.8), ∏
i: κi>0

i2κi < N2
∑
i κi < N4u
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and ∏
i: κi>0

κ
κi
i <

(∑
i

κi

)∑
i κi
< (2u)2u.

Thus, the number of choices for d exceeds D/(2uN2)2u and it remains to note that

(2uN2)2u < (log x)5u ≤ (logD)5u

for x large. This completes the proof of 10.1.

11. The distribution of primes in residue classes

For a positive integer q, an integer a coprime to q, and a real number x, let π(x, q, a)
denote the number of primes p ≤ x with p ≡ a mod q. Also, let

ψ(x, q, a) =
∑
n≤x

n≡amod q

3(n), θ(x, q, a) =
∑

p≤x, p prime
p≡amod q

logp,

where 3 is von Mangoldt’s function.
For fixed q and a coprime to q, we have the asymptotic relations

π(x, q, a) ∼
li(x)
ϕ(q)

, ψ(x, q, a) ∼
x

ϕ(q)

as x →∞, where error estimates may be explicitly calculated. In fact the same remains
true if q is allowed to tend to infinity slowly with x, say q < (log x)2−ε for fixed ε > 0.
For q > (log x)2 we have either inequalities or ineffective asymptotic estimates. In this
section we record some effective inequalities for π(x, q, a) that are valid in large ranges
for q.

Lemma 11.1 (Brun–Titchmarsh inequality). If x > q, then

π(x, q, a) ≤
2x

ϕ(q) log(x/q)
.

The lemma in this form is due to Montgomery and Vaughan [27]. Note that the inequality
gives an upper bound for π(x, q, a) that is of the expected order of magnitude, namely
x/(ϕ(q) log x), if q < x1−ε . When q is of order of magnitude xα , the upper bound
provided by the lemma is presumably too large by a factor 2/(1− α).

A result similar to the following lemma, but with a somewhat weaker error estimate,
can be found in Timofeev [30, Theorem 2].

Lemma 11.2 (effective Bombieri–Vinogradov inequality). There are absolute, effectively
computable positive numbers c6, c7 such that for all real x ≥ 3, there is an integer
s(x) ∈ [(log x)1/2, exp((log x)1/2)] such that for each real Q ∈ [x1/3 log x, x1/2

],∑
q≤Q
s(x)-q

max
2≤y≤x

max
gcd(a,q)=1

∣∣∣∣ψ(y, q, a)− y

ϕ(q)

∣∣∣∣ ≤ c6x
1/2Q(log x)5 + c6x exp(−c7(log x)1/2).
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Proof. We follow Vaughan’s proof of Bombieri’s theorem (see Davenport [15, Chap-
ter 28]). There is an effectively computable positive number c8 such that for any number
X > 2, there is at most one integer s1 ≤ X for which there is a primitive (real) char-
acter χ1 with modulus s1, and for which the L-function L(z, χ1) has a real zero β1 >

1− c8/logX. Further, if s1 exists, it is at least logX. If s1 exists for X = exp((log x)1/2),
we let s(x) = s1 and if s1 does not exist, we let s(x) = bexp((log x)1/2)c. Thus, s(x) is
an integer in the interval ((log x)1/2, exp((log x)1/2)].

For a Dirichlet character χ to the modulus q, let

ψ(y, χ) =
∑
n≤y

3(n)χ(n).

Also, let δ(χ) = 1 if χ is the principal character, and otherwise let δ(χ) = 0. We consider
|ψ(y, χ)− δ(χ)y| for q ≤ exp((log x)1/2), q not divisible by s(x), and 2 ≤ y ≤ x. Any
real zero of the L-function L(z, χ) must be at most 1− c8/(log x)1/2. We have

|ψ(y, χ)− δ(χ)y| = O
(
y1−c8/(log x)1/2

+ y1−c9/(log y)1/2),
where c9 is positive and effectively computable. Indeed, this follows from the prime num-
ber theorem if χ is principal, and otherwise it is [15, Chapter 20, (8)]. Thus, uniformly
for q ≤ exp((log x)1/2) with q not divisible by s(x), if χ has modulus q, then

(11.3) max
2≤y≤x

|ψ(y, χ)− δ(χ)y| = O
(
x exp(−c10(log x)1/2)

)
,

where c10 = min{c8, c9}.
Consider the elementary identity

ψ(y, q, a)−
y

ϕ(q)
=

1
ϕ(q)

∑
χ mod q

χ̄(a)(ψ(y, χ)− δ(χ)y),

so that

E(x, q) := max
2≤y≤x

max
gcd(a,q)=1

∣∣∣∣ψ(y, q, a)− y

ϕ(q)

∣∣∣∣
≤

1
ϕ(q)

∑
χ mod q

max
2≤y≤x

|ψ(y, χ)− δ(χ)y|.

Let χ1 be the primitive character that induces χ mod q. Then for q ≤ x,

|ψ(y, χ)− ψ(y, χ1)| ≤
∑
m≤y

gcd(m,q)>1

3(m) ≤ (log y)
∑
p|q

p prime

1 = O((log x)2).

Thus,

E(x, q) = O

(
(log x)2 +

1
ϕ(q)

∑
χ mod q

max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|

)
.
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With ∗ indicating a sum over primitive characters, we have for any real number Q with
2 ≤ Q ≤ x,

∑
q≤Q

1
ϕ(q)

∑
χ mod q

max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|

=

∑
q1≤Q

∑
∗

χ1 mod q1

max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|
∑

k≤Q/q1

1
ϕ(kq1)

= O

(
(logQ)

∑
q1≤Q

1
ϕ(q1)

∑
∗

χ1 mod q1

max
2≤y≤x

|ψ(y, χ1)− δ(χ1)y|

)
.

For the last step, we have used ϕ(kq1) ≥ ϕ(k)ϕ(q1) and the estimate

(11.4)
∑
k≤Q

1
ϕ(k)

=

∑
k≤Q

1
k

∑
u|k

u squarefree

1
ϕ(u)

=

∑
u≤Q

u squarefree

1
ϕ(u)

∑
ul≤Q

1
ul

= O

(∑
l≤Q

1
l

)
= O(logQ).

Dropping the subscripts on χ and q, we thus have uniformly and effectively for real
numbers Q with 2 ≤ Q ≤ x,

(11.5)
∑
q≤Q

E(x, q)

= O

(
Q(log x)2 + (log x)

∑
q≤Q

1
ϕ(q)

∑
∗

χ mod q

max
2≤y≤x

|ψ(y, χ)− δ(χ)y|

)
.

Let c11 = min{1, c10/2} and let Q1 = exp(c11(log x)1/2). We use (11.3) to estimate
the double sum in (11.5) where we restrict to those q not divisible by s(x), getting

(11.6)
∑
q≤Q1
s(x)-q

1
ϕ(q)

∑
∗

χ mod q

max
2≤y≤x

|ψ(y, χ)− δ(χ)y| = O
(
xQ1 exp(−c10(log x)1/2)

)
= O(x/Q1).

We now state a consequence of Vaughan’s inequality (see [15, Chapter 28, (2)]): for
1 ≤ Q ≤ x,∑

q≤Q

q

ϕ(q)

∑
∗

χ mod q

max
2≤y≤x

|ψ(y, χ)| = O
(
(x + x5/6Q+ x1/2Q2)(log x)4

)
.

We apply this for real numbers U with 1 ≤ U ≤ x/2, getting∑
U<q≤2U

1
ϕ(q)

∑
∗

χ mod q

max
2≤y≤x

|ψ(y, χ)| = O
(
(x/U + x5/6

+ x1/2U)(log x)4
)
.
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By breaking (Q1,Q] into dyadic intervals (U, 2U ] and using the inequality for each one,
we obtain∑
Q1<q≤Q

1
ϕ(q)

∑
∗

χ mod q

max
2≤y≤x

|ψ(y, χ)| = O

((
x

Q1
+ x5/6 log x + x1/2Q

)
(log x)4

)
,

where there is no restriction on the divisibility of q by s(x). Note that since q > 1 in the
sum, any primitive χ modulo q is nonprincipal, so that δ(χ) = 0. Putting this estimate
together with (11.5) and (11.6), we have∑

q≤Q
s(x)-q

E(x, q) = O
(
x1/2Q(log x)5 + x exp(−c7(log x)1/2)

)
for any choice of c7 with c7 < c11. This completes the proof of 11.2.

Lemma 11.7. With the same notation and hypotheses as in 11.2, we have∑
q≤Q
s(x)-q

max
gcd(a,q)=1

∣∣∣∣π(x, q, a)− li(x)
ϕ(q)

∣∣∣∣ ≤ c12x
1/2Q(log x)5 + c12x exp

(
−c7(log x)1/2

)
,

where c7 is as in 11.2, and c12 is an absolute, effectively computable number.

Proof. First note that one may replace the expressions ψ(y, q, a) in 11.2 with θ(y, q, a),
since

|ψ(y, q, a)− θ(y, q, a)| ≤
∑
n≤y

n is a power

log y = O(y1/2 log y).

Thus, the result follows directly from 11.2 and the identity

π(x, q, a) =
θ(x, q, a)

log x
+

∫ x

2

θ(y, q, a)

y(log y)2
dy.

In fact, one can save a factor of log x using this identity, but this is unimportant.

Lemma 11.8 (Deshouillers–Iwaniec). There are effectively computable positive numbers
c13, c14 such that for each integerm withm ≥ 3 there is an effectively computable integer
xm with the following property. For arbitrary real numbers x,Q with x ≥ xm and x1/2

≤

Q ≤ x1−1/m, and for an arbitrary integer a with 0 < |a| < x1/m, we have

π(x, q, a) ≤
(4/3+ c13/m)x

ϕ(q) log(x/q)

for almost all integers q ∈ [Q, 2Q] with gcd(q, a) = 1, the number of exceptions being
less than Qx−c14/m.

This result was announced in [16], and a sketch of the proof was presented in [17]. No
claim of effectivity for c13, c14, xm was made by the authors, but their methods are effec-
tive.
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12. Sieved primes

The goal of this section is to prove Theorem 5 from the Introduction. We begin with an
elementary lemma, which puts more precision into (11.4).

Lemma 12.1. Let ξ = ζ(2)ζ(3)/ζ(6), where ζ is the Riemann zeta-function, and let
ν =

∑
u(γ − log u)/(uϕ(u)), where γ is the Euler–Mascheroni constant and u runs over

squarefree numbers. Then for any real number t > 1,

∑
d<t

1
ϕ(d)

= ξ log t + ν +O
(

log(2t)
t

)
.

Proof. As in (11.4) and with u running over squarefree numbers,

∑
d<t

1
ϕ(d)

=

∑
u<t

1
uϕ(u)

∑
d<t/u

1
d
=

∑
u<t

1
uϕ(u)

(
log
(
t

u

)
+ γ +O

(
u

t

))

= (log t)
∑
u<t

1
uϕ(u)

+

∑
u<t

γ − log u
uϕ(u)

+O

(
1
t

∑
u<t

1
ϕ(u)

)
= (log t)

∏
p prime

(
1+

1
p(p − 1)

)
+

∞∑
u=1

γ − log u
uϕ(u)

+O

(
log(2t)
t

)

= ξ log t + ν +O
(

log(2t)
t

)
.

Proof of Theorem 5. We shall prove the contrapositive of Theorem 5. Let x be a positive
real number, and suppose we have a set of primes Q ⊂ (1, x1/2

] with
∑
q∈Q 1/(q− 1) ≤

0.2727. Let m > 104 be an integer and let β = 1/m. Let

L = (x1/2−2β , x1/2−β) ∩ Z, H = (x1/2+β , x1/2+2β) ∩ Z.

For a prime r ≤ x, let g(r) denote the number of factorizations of r − 1 as lh, where

• l ∈ L, h ∈ H,
• lh is not divisible by any member of Q,
• l is not divisible by s(x),
• h is not divisible by any prime larger than x1/2,

where s(x) is as in 11.2. It is possible that g(r) = 0; let N denote the number of primes
r ≤ x with g(r) > 0. Then, in the notation of Theorem 5, we have R(x,Q) ≥ N . Our
goal is to get a good lower bound for R(x,Q) and so it suffices to do so for N .

From Cauchy’s inequality, we obtain

N ≥
(∑
r≤x

g(r)
)2(∑

r≤x

g(r)2
)−1

.



Primality testing with Gaussian periods 1263

Our first task is to get an upper bound for
∑
r≤x g(r)

2, and to do this we shall ignore the
non-divisibility requirements in the definition of g(r) and use only the relatively simple
11.1. We have, with [a, b] denoting the least common multiple of a, b,∑

prime r≤x

g(r)2 ≤
∑

prime r≤x

∑
l1,l2|r−1
l1,l2∈L

1 =
∑
l1,l2∈L

π(x, [l1, l2], 1).

By 11.1, we thus have∑
prime r≤x

g(r)2 ≤ 2x
∑
l1,l2∈L

1
ϕ([l1, l2]) log(x/[l1, l2])

≤
x

β log x

∑
l1,l2∈L

1
ϕ([l1, l2])

.

We have∑
l1,l2∈L

1
ϕ([l1, l2])

=

∑
d<x1/2−β

∑
gcd(l1,l2)=d
l1,l2∈L

1
ϕ(l1l2/d)

≤

∑
d<x1/2−β

∑
a,b<x1/2−β/d

1
ϕ(abd)

≤

( ∑
d<x1/2

1
ϕ(d)

)3

≤ (log x)3,

the last inequality following from 12.1 for all x beyond an absolute bound. We conclude
that ∑

prime r≤x

g(r)2 ≤ β−1x(log x)2.

We now turn our attention to the heart of the proof, which is to obtain a reasonable
lower bound for

∑
r≤x g(r), and for this we shall use 11.7 and 11.8. Let L1 denote the set

of integers l ∈ L not divisible by s(x). To begin, we have∑
prime r≤x

g(r) ≥
∑
l∈L1

π(x, l, 1)−
∑
l∈L1

π(x1/2+β l + 1, l, 1)−
∑
l∈L1

q|l for some q∈Q

π(x, l, 1)

−

∑
h∈H

q|h for some q∈Q

π(x, h, 1)−
∑
h∈H

q|h for some prime q>x1/2

π(x, h, 1)

= S1 − S2 − S3 − S4 − S5, say.

Indeed, S1 counts the number of pairs l, h where lh + 1 is a prime r ≤ x and l ∈ L1,
while S2 removes from this count those pairs where h 6∈ H, S3 removes those pairs where
l is divisible by some prime in Q, etc.

For S1 we use 11.7 and get, for x exceeding some bound depending on m,

S1 = li(x)
∑
l∈L1

1
ϕ(l)
+O

(
x

(log x)2

)
.
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By 12.1 and using s(x) ≥ (log x)1/2 we have, for x above some bound depending on m,

S1 = ξβx +O(x/(log x)1/4).

By 11.1,

S2 = O

(
x1/2+β

log x

∑
l∈L1

l

ϕ(l)

)
.

From an argument like (11.4), one has
∑
l∈L1

l/ϕ(l) = O(x1/2−β), so S2 = O(x/log x).
For S3 we use 11.7 and get, for x exceeding a bound depending on m,

S3 ≤ li(x)
∑
q∈Q

∑
l∈L1, q|l

1
ϕ(l)
+O

(
x

(log x)2

)

≤ li(x)
∑
q∈Q

1
q − 1

∑
qk∈L

1
ϕ(k)

+O

(
x

(log x)2

)
.

By 12.1 we have, for q ∈ Q,

∑
qk∈L

1
ϕ(k)


= ξβ log x +O(q log(2x)x2β−1/2) for q < x1/2−2β ,

≤ ξβ log x + ν +O(q log(2x)xβ−1/2) for x1/2−2β
≤ q ≤ x1/2−β ,

= 0 for q > x1/2−β .

Thus,

S3 ≤ ξβx
∑
q∈Q

1
q − 1

+O

(
x

log x

)
.

We estimate S4 by using 11.8 with “m” chosen as our current m and with “Q” being
various powers of 2 so that the intervals [Q, 2Q] cover the interval (x1/2+β , x1/2+2β). If
h is an exceptional modulus in 11.8, we use the trivial estimate π(x, h, 1) ≤ x/h. Thus,
for x exceeding some bound depending on m,

S4 =
∑
h∈H

q|h for some q∈Q

π(x, h, 1)

≤ (4/3+O(β))x
∑
h∈H

q|h for some q∈Q

1
ϕ(h) log(x/h)

+O

(
x

log x

)

≤ (8/3+O(β))
x

log x

∑
h∈H

q|h for some q∈Q

1
ϕ(h)

+O

(
x

log x

)

≤ (8/3+O(β))
x

log x

∑
q∈Q

1
q − 1

∑
qm∈H

1
ϕ(m)

+O

(
x

log x

)

= (8/3+O(β))ξβx
∑
q∈Q

1
q − 1

+O

(
x

log x

)
.
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For S5 it is sufficient to use 11.1. Note that

∑
h∈H

q|h for some prime q>x1/2

1
ϕ(h)

≤

∑
x1/2<q≤x1/2+2β

q prime

1
q − 1

∑
t≤x2β

1
ϕ(t)

.

By Mertens’ theorem, the first sum on the right is O(β), and by 12.1, the second sum is
O(β log x). Thus, the sum

∑
1/ϕ(h) is O(β2 log x), so that

S5 ≤ 2x
∑
h∈H

q|h for some prime q>x1/2

1
ϕ(h) log(x/h)

= O

(
x

log x

∑
h∈H

q|h for some prime q>x1/2

1
ϕ(h)

)
= O(β2x).

Putting together our estimates for S1, S2, S3, S4, S5 we find that for x exceeding some
bound depending on m,∑

prime r≤x

g(r) ≥ S1 − S2 − S3 − S4 − S5

≥ ξβx

(
1− (11/3+O(β))

∑
q∈Q

1
q − 1

)
+O(β2x)+O(x/(log x)1/4)

≥ ξβx
(
1− (11/3+O(β))0.2727

)
+O(x/(log x)1/4)

= ξβx(10−4
+O(β))+O(x/(log x)1/4).

Thus, there is some absolute, computable, positive integer c15 such that if m = c15 and
β = 1/m, then ∑

prime r≤x

g(r) ≥ ξx/m2
= ξx/c2

15

for x ≥ X0, where X0 is a computable constant. Using this with our upper bound for∑
r≤x g(r)

2 and choosing δ = ξ2/c5
15, we get N ≥ δx/(log x)2. This completes the

proof of Theorem 5.

Remarks. By using results of Bombieri–Friedlander–Iwaniec instead of 11.8 and the
method of Friedlander [20] instead of Balog, one may not only replace “0.2727” with
“1/2” in Theorem 5, but the number of primes r satisfying the condition is of order of
magnitude π(x). However, these tools involve constants that are not effectively com-
putable. If one is not concerned with effective constants, this stronger form of Theorem 5
would support the conclusion of 2.15 with “46/25” replaced with any fixed number c > 1
(and with “c4” depending on c). It is likely that the work of Baker–Harman would lead to
a further (ineffective) improvement. See also [22].



1266 H. W. Lenstra Jr., Carl Pomerance

13. The existence of period systems

In this section we prove 2.15. We first show that there are many period pairs for n.

Proposition 13.1. Let n > 1 be an integer, and let w, y be real numbers. Each prime
number r satisfies at least one of the following conditions:

(i) the element (n mod r) of Fr is either zero or has multiplicative order at most w;
(ii) the number r − 1 has a divisor m > w composed of primes at most y;

(iii) there is an integer q with q > y and q2
| r − 1;

(iv) there is a prime q such that q > y and (r, q) is a period pair for n.

Proof. If (n mod r) does not belong to F∗r then (i) holds. Suppose (n mod r) ∈ F∗r , and
let m be the order of (n mod r) in F∗r . Then m divides r − 1. If m ≤ w, then (i) holds, so
suppose m > w. If m has no prime factor exceeding y, then (ii) holds. Suppose therefore
that q is a prime factor of m with q > y; then q equals the order of (nm/q mod r). If
q divides (r − 1)/m, then (iii) holds. If q does not divide (r − 1)/m, then the element
(n(r−1)/q mod r) = (nm/q mod r)(r−1)/m has order q, and (iv) holds. This proves 13.1.

Let ρ : R≥0 → R>0 denote the Dickman–de Bruijn function. That is, ρ is the continuous
solution to the equation ρ′(u) = −uρ(u−1) for u > 1, with the initial condition ρ(u) = 1
on [0, 1]. From [13] we have

(13.2) log ρ(u) = −u · log(u log u)+O(u) for u ≥ 2.

Lemma 13.3. Let x, u, v be real numbers with x ≥ 20, 1 ≤ v ≤ u ≤
√
(log x) log log x,

and put y = x1/u, w = yv . The number of prime numbers r ≤ x satisfying 13.1(ii) is at
most

O

(
uπ(x)

(
ρ(v)

log(2v)
+ ρ(u)

))
.

Proof. This is Theorem 2 from [28].

Proposition 13.4. For all sufficiently large integers n, if x is a real number such that
x ≥ (log n)1.001, then the number of prime numbers r ≤ x for which there does not exist
a period pair (r, q) for n satisfying

q is prime, q > x1/(log log x)2

is at most x/(log x)3.

Proof. By 13.1, it suffices to show that when n is a sufficiently large integer and x is
a real number with x ≥ (log n)1.001, the number of primes r ≤ x satisfying one of
13.1(i)–(iii), with w = x1/log log x and y = x1/(log log x)2 , is at most x/(log x)3. We prove
this by showing that the number of such primes r is o(x/(log x)3) as n→∞.

If the prime r satisfies 13.1(i), then either r | n or r | nm − 1 for some integer m in
[1, w]. Since the number of distinct prime divisors of a positive integer k is at most
(log k)/log 2, the number of primes r satisfying 13.1(i) is at most

log n
log 2

+

∑
m≤w

m ·
log n
log 2

≤ w2
·

log n
log 2

≤ 2x1000/1001+2/log log x
= o(x/(log x)3)

as n→∞.



Primality testing with Gaussian periods 1267

To estimate the number of primes r ≤ x satisfying 13.1(ii) we apply 13.3 with v =
log log x and u = v2; one finds via (13.2) that as n→∞, this number is at most

x/(log x)(1+o(1)) log log log x
= o(x/(log x)3).

The number of integers r with 1 < r ≤ x satisfying 13.1(iii) is clearly at most∑
q>y x/q

2 < x/(y − 1) = o(x/(log x)3) as n→∞.
This proves 13.4.

Let n be an integer at least 20 and choose real numbers x, u with

(13.5) x ≥ (log n)1.001, u = (log log x)2.

For a prime r , let Q(r) = Q(r, n, x, u) denote the set of prime divisors q of r − 1 with

x1/u < q ≤ x1/2 and (r, q) is a period pair for n.

Further, let Q = Q(n, x, u) denote the union of the sets Q(r) over all primes r ≤ x.
Note that each subset S of Q corresponds to at least one period system for n with degree∏
q∈S q and where each pair (r, q) used satisfies r ≤ x, q ≤ x1/2, and q prime.

Proposition 13.6. For all sufficiently large integers n, and with x, u as in (13.5), we have∑
q∈Q

1
q − 1

> 0.2727.

Proof. Let

A = {prime r ≤ x : prime q | r − 1 implies q ≤ x1/2 and q 6∈ Q},
B = {prime r ≤ x : prime q | r − 1 implies q ≤ x1/u or (r, q) is not a period pair for n}.

Clearly A ⊂ B. We use Theorem 5. Suppose n is so large that Theorem 5 and Propo-
sition 13.4 hold for all x ≥ (log n)1.001. Since 13.4 implies that #B ≤ x/(log x)3, we
have #A ≤ x/(log x)3. If we use Theorem 5, the conclusion of 13.6 now follows for
sufficiently large x.

Proof of Proposition 2.15. Let n,D be integers with n ≥ 20 and D > (log n)46/25.
Further, let α = 0.2726, let x = D(25/46)1.001 (so that (log n)1.001 < x < D6/11), and let
u = (log log x)2. Then (13.5) holds. Let ε = 10−4 and let c4 ≥ 20 be so large that n ≥ c4
implies that 13.6 holds,

x−1/u < ε, 2 < u < (log x)1/10,
α

4u
>

1
15(log logD)2

,

and x≥x0(α, ε) in 10.1. With Q as above, we have
∑
q∈Q 1/q >

∑
q∈Q 1/(q−1)−x−1/u

> 0.2727 − ε = α. We apply 10.1 with the current choices for α, ε, x, u,Q, noting that
1/(2(α − ε)) < 46/25. Since (logD)5u < exp(5(log logD)3), we thus have 2.15 with
c5 = 15.
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