Skip to main content

Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2556))

Abstract

A three-dimensional (straight-line grid) drawing of a graph represents the vertices by points in Z3 and the edges by non-crossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing ’01, Lecture Notes in Comput. Sci., 2002]: does every n-vertex planar graph have a threedimensional drawing with O(n) volume? We prove that this question is almost equivalent to an existing one-dimensional graph layout problem. A queue layout consists of a linear order σ of the vertices of a graph, and a partition of the edges into queues, such that no two edges in the same queue are nested with respect to σ. The minimum number of queues in a queue layout of a graph is its queue-number. Let G be an n-vertex member of a proper minor-closed family of graphs (such as a planar graph). We prove that G has a O(1) × O(1) × O(n) drawing if and only if G has O(1) queue-number. Thus the above question is almost equivalent to an open problem of Heath, Leighton, and Rosenberg [SIAM J. Discrete Math., 1992], who ask whether every planar graph has O(1) queue-number? We also present partial solutions to an open problem of Ganley and Heath [Discrete Appl. Math., 2001], who ask whether graphs of bounded tree-width have bounded queue-number? We prove that graphs with bounded path-width, or both bounded tree-width and bounded maximum degree, have bounded queue-number. As a corollary we obtain three-dimensional drawings with optimal O(n) volume, for series-parallel graphs, and graphs with both bounded tree-width and bounded maximum degree.

Research supported by NSERC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, C. McDiarmid, and B. Reed, Acyclic coloring of graphs. Random Structures Algorithms, 2(3):277–288, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci., 209(1–2):1–45, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. L. Bodlaender and J. Engelfriet, Domino treewidth. J. Algorithms, 24(1):94–123, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Calamoneri and A. Sterbini, 3D straight-line grid drawing of 4-colorable graphs. Inform. Process. Lett., 63(2):97–102, 1997.

    Article  MathSciNet  Google Scholar 

  5. R. F. Cohen, P. Eades, T. Lin, and F. Ruskey, Three-dimensional graph drawing. Algorithmica, 17(2):199–208, 1996.

    Article  MathSciNet  Google Scholar 

  6. H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid. Combinatorica, 10(1):41–51, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. di Giacomo, G. Liotta, and S. Wismath, Drawing series-parallel graphs on a box. In S. Wismath, ed., Proc. 14th Canadian Conf. on Computational Geometry (CCCG’ 02), The University of Lethbridge, Canada, 2002.

    Google Scholar 

  8. J. Díaz, J. Petit, and M. Serna, A survey of graph layout problems. ACM Comput. Surveys, to appear.

    Google Scholar 

  9. R. P. Dilworth, A decomposition theorem for partially ordered sets. Ann. of Math. (2), 51:161–166, 1950.

    Article  MathSciNet  Google Scholar 

  10. G. Ding and B. Oporowski, Some results on tree decomposition of graphs. J. Graph Theory, 20(4):481–499, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Ding and B. Oporowski, On tree-partitions of graphs. Discrete Math., 149(1–3):45–58, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Dujmović, P. Morin, and D. R. Wood, Path-width and three-dimensional straight-line grid drawings of graphs. In M. Goodrich, ed., Proc. 10th International Symp. on Graph Drawing (GD’ 02), Lecture Notes in Comput. Sci., Springer, to appear.

    Google Scholar 

  13. V. Dujmović and D. R. Wood, Tree-partitions of k-trees with applications in graph layout. Tech. Rep. TR-02-03, School of Computer Science, Carleton University, Ottawa, Canada, 2002.

    Google Scholar 

  14. S. Felsner, S. Wismath, and G. Liotta, Straight-line drawings on restricted integer grids in two and three dimensions. In P. Mutzel, M. Jünger, and S. Leipert, eds., Proc. 9th International Symp. on Graph Drawing (GD’ 01), vol. 2265 of Lecture Notes in Comput. Sci., pp. 328–342, Springer, 2002.

    Google Scholar 

  15. G. Fertin, A. Raspaud, and B. Reed, On star coloring of graphs. In A. Branstädt and V. B. Le, eds., Proc. 27th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’ 01), vol. 2204 of Lecture Notes in Comput. Sci., pp. 140–153, Springer, 2001.

    Google Scholar 

  16. J. L. Ganley and L. S. Heath, The pagenumber of k-trees is O(k). Discrete Appl. Math., 109(3):215–221, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou, The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1(2):216–227, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Halin, Tree-partitions of infinite graphs. Discrete Math., 97:203–217, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. S. Heath, F. T. Leighton, and A. L. Rosenberg, Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math., 5(3):398–412, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. S. Heath and A. L. Rosenberg, Laying out graphs using queues. SIAM J. Comput., 21(5):927–958, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. M. Malitz, Graphs with E edges have pagenumber O(√E). J. Algorithms, 17(1):71–84, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Nesetril and P. Ossona de Mendez, Colorings and homomorphisms of minor closed classes. Tech. Rep. 2001-025, Institut Teoretické Informatiky, Universita Karlova v Praze, Czech Republic, 2001.

    Google Scholar 

  23. J. Pach, T. Thiele, and G. Tóth, Three-dimensional grid drawings of graphs. In G. Di Battista, ed., Proc. 5th International Symp. on Graph Drawing (GD’ 97), vol. 1353 of Lecture Notes in Comput. Sci., pp. 47–51, Springer, 1998.

    Google Scholar 

  24. S. V. Pemmaraju, Exploring the Powers of Stacks and Queues via Graph Layouts. Ph.D. thesis, Virginia Polytechnic Institute and State University, Virginia, U.S.A., 1992.

    Google Scholar 

  25. T. Poranen, A new algorithm for drawing series-parallel digraphs in 3D. Tech. Rep. A-2000-16, Dept. of Computer and Information Sciences, University of Tampere, Finland, 2000.

    Google Scholar 

  26. S. Rengarajan and C. E. Veni Madhavan, Stack and queue number of 2-trees. In D. Ding-Zhu and L. Ming, eds., Proc. 1st Annual International Conf. on Computing and Combinatorics (COCOON’ 95), vol. 959 of Lecture Notes in Comput. Sci., pp. 203–212, Springer, 1995.

    Google Scholar 

  27. W. Schnyder, Planar graphs and poset dimension. Order, 5(4):323–343, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Seese, Tree-partite graphs and the complexity of algorithms. In L. Budach, ed., Proc. International Conf. on Fundamentals of Computation Theory, vol. 199 of Lecture Notes in Comput. Sci., pp. 412–421, Springer, 1985.

    Google Scholar 

  29. F. Shahrokhi and W. Shi, On crossing sets, disjoint sets, and pagenumber. J. Algorithms, 34(1):40–53, 2000.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wood, D.R. (2002). Queue Layouts, Tree-Width, and Three-Dimensional Graph Drawing. In: Agrawal, M., Seth, A. (eds) FST TCS 2002: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2002. Lecture Notes in Computer Science, vol 2556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36206-1_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-36206-1_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00225-3

  • Online ISBN: 978-3-540-36206-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics