Communication Interference
in Mobile Boxed Ambients*

Michele Bugliesi®, Silvia Crafa’, Massimo Merro?, and Vladimiro Sassone®
1 Universita “Ca’ Foscari”, Venezia
2 Ecole Polytechnique Fédérale de Lausanne
3 University of Sussex

Abstract. Boxed Ambients (BA) replace Mobile Ambients’open capability with
communication primitives acting across ambient boundaries. Expressiveness is
achieved at the price of communication interferences on message reception whose
resolution requires synchronisation of activities at multiple, distributed locations.
We study a variant of BA aimed at controlling communication interferences as well
as mobility ones. Our calculus draws inspiration from Safe Ambients (SA) (with
passwords) and modifies the communication mechanism of BA. Expressiveness
is maintained through a new form of co-capability that at the same time registers
incoming agents with the receiver ambient and performs access control.

Introduction

The calculus of Mobile Ambients [3]] (MA) introduced the notion of ambient acting at the
same time as administrative domain and computational environment. Processes live in-
side ambients, and inside ambients compute and interact. Ambients relocate themselves,
carrying along all their contents: their migration, triggered by the processes they enclose,
models mobility of entire domains and active computational loci. Two capabilities con-
trol ambient movements: in and out. These are performed by processes wishing their
enclosing ambient to move to a sibling and, respectively, out of its parent, as show below,
where P, (Q and R are processes, m and n ambient names, | is parallel composition,
and square brackets delimit ambients’ contents.

nlinm.P|Q]|m[R] — m[n[P| Q]| R],
m[n[outm.P| Q]| R] — n[P | Q]| m[R]
A third capability, open, can be used to dissolve ambients, as expressed by the reduction

open n.P | n[Q] — P | Q. Process interaction is by anonymous message exchanges
confined inside ambients, as in

n[(M).P | (2).Q] — n[P | Q{x := M}],

where brackets represent outputs, curly brackets substitutions, and round parentheses
bind input variables.

* Research supported by ‘MyThS: Models and Types for Security in Mobile Distributed Systems’,
EU FET-GC IST-2001-32617.

M. Agrawal and A. Seth (Eds.): FSTTCS 2002, LNCS 2556, pp. 7184 2002.
(© Springer-Verlag Berlin Heidelberg 2002

72 Michele Bugliesi et al.

These ideas have given rise to an innovative calculus capturing several aspects of
current real-world distributed systems, and have posed some new hard problems. Pa-
per [7] unveiled a set of so-called grave interferences, i.e. situations where the inherent
nondeterminism of movement goes wild. For instance, in

E[n[inm.P|outk.R]|m[Q]]

although n’s next hop is beyond n’s control, the difference that such a choice brings
about is so big that it is difficult to see how such a situation could have been purposely
programmed. Levi and Sangiorgi’s proposal of Safe Ambients (SA) [[7] counters it by
using ‘co-actions’ to grant ambients a form of control over other ambients’ access. A
process willing to be entered will manifest that explicitly, as e.g. in

n[inm.P|Q]|m[inm.R|S] — m[n[P|Q]|R|S],

and similarly for out and open. Building on such infrastructure, a type-system enforced
notion of single-threadedness ensures that at any time ambients are willing to engage in
at most one activity across boundaries that may lead to grave interferences.

Recently, Merro and Hennessy [§] found useful to work with a version of SA called
SAP, where incoming ambients must be able to present a suitable password in order to
cross ambients’ boundaries. Paper [8] develops a treatable semantic theory for SAP in
the form of a labelled transition system (LTS) based characterisation of its (reduction)
barbed congruence. We will find use for some of these ideas in the present paper too.

Another source of potential problems is open in its own nature ambient dissolver.
A process exercising such a capability will embody all the contents of the dissolved
ambient, including its capabilities and migration strategies. Of course there is nothing
inherently wrong with that and, as a matter of fact, it is where a large part of the MA’s
expressiveness resides. For instance, without it the tree structure of a system could
never shrink, but only be translated about (or grow). As a consequence, processes would
belong to the same ambient for their entire lifespan. Despite its usefulness, from the
system designer’s point of view open must be handled with the greatest care.

The calculus of Boxed Ambients [2]] (BA) was born out of the observation that, after
all, there is an alternative way to yield expressiveness. Namely, direct communication
across boundaries as in the Seal calculus [15]. As shown below, in BA it is possible
to draw an input from a sub-ambient n’s local channel (viz. (x)™) as well as from the
parent’s local channel (viz. (z)"), and dually with the roles of input and output swapped.

()" P [n[(M).Q | R] — P{z:= M} |n[Q| R]
(M).P|n[(2)".Q | R] — P |n[Q{zx = M}|R].

Such design choices, although remarkable in many respects, have the drawback of
introducing a great amount of non-local nondeterminism and communication interfer-
ence. This is exemplified perfectly by the term below, where a single message issued
in n unleashes a nondeterministic race among three potential receivers located in three
different ambients, possibly belonging to three different administrative domains.

m[(@)".P | n[(M) | (x).Q | K[(z)".R]]]

Communication Interference in Mobile Boxed Ambients 73

This raises difficulties for a distributed implementation of BA, as there is a hidden, non
trivial distributed consensus problem to address at each communication. These forms of
interference are as grave as those that led to the definition of SA, as they too should be
regarded as programming errors.

In this paper we propose a variant of BA aimed at addressing such issue and at
providing a fresh foundation for the ideas behind BA. Our proposal, NBA, takes inspi-
ration from SA(P), and is based on the idea that each ambient comes equipped with two
mutually non-interfering channels, respectively for local and upward communications.

(@)".P | n[(M)".Q | R] — P{a:= M}|n[Q | R]
(M)".P|nl(z).Q | R] — P[n[Q{z:= M} |R]

Hierarchical communication, whose rules are shown above, is indicated by a pair of
distinct constructors, simultaneously on input and output, so that no communication
interference is possible. Observe that the upward channel can be thought of as a gateway
between parent and child, located at the child’s and travelling with it, and poses no
particular implementation challenges.

From the theoretical viewpoint, a first consequence of the elimination of unwanted
interferences is a set of good, expected algebraic laws for NBA, as illustrated in §T.21
Also, the type system for BA results considerably simplified. In particular, the types
of ambients and capabilities need only record upward exchanges, while processes are
characterised by their local and hierarchical exchanges. The details will be discussed
in 21

Observe however that limiting ourselves to banning communication interferences as
above would result in a poorly expressive calculus (although some of its good properties
have been underlined in [5]]). For instance, in n[P] there would be no way for P to
communicate with its sub-ambients, unless their names were statically known. In our
effort to tackle interference we seem to have killed hierarchical communication at all.
Far from that, as a matter of fact in order to regain expressive power we only need
to reinstate a mechanism for an ambient to learn dynamically the names of incoming
ambients. Essentially, our idea is to introduce co-actions of the form enter(x) that have
the effect of binding such names to the variable x.

Observe that a purely binding mechanism such as this would not in itself be able to
control access, but only to registers it. Similarly to SA, it expresses a general willingness
to accept incoming ambients; in addition to that, the receiving ambient learns the incom-
ing ambient’s name. It can thus be thought as (an abstraction of) an access protocol as
it would actually take place in real computational domains, where newly arrived agents
would have to register themselves in order to be granted access to local resources. In
order to provide ambients with a finer mechanism of access control, we add a second
component to our (co-)capabilities and write rules as the one below.

alenter(b, k). Py | Py]| blenter(z, k).Q1 | Q2] — bla[Py | P2]| Qi{z == a} | Q2]

In practical terms, this enhances our access protocol with a form of controlling the
credentials of incoming processes (k in the rule above), as a preliminary step to the
registration protocol. An example for all of the practical relevance and naturality of

74 Michele Bugliesi et al.

this mechanism, is the negotiation of credential that takes place when connecting to a
wireless LAN or to a LAN using DHCP or to a ISP using PPP.

Remarkably, our admission mechanism resembles quite closely the notion of pass-
words as developed in [8], which thus arises yet again as a natural notion to consider.
As a consequence, we benefit from results similar to those in loc. cit. In particular, we
devise a labelled transition semantics (that due to space limitations only appears in the
full paper) for NBA that yield a bisimulation congruence sound with respect to (reduc-
tion) barbed congruence, and we use it to prove a number of laws. Passwords also have
a relevant role in the type system, where their types keep track of the type of (upward
exchanges of) incoming ambients, so contributing effectively to a clean and easy type
system.

As the paper will show, besides having practical, implementation-oriented features
and enjoying good theoretical properties, such as arich and tractable algebraic theory and
a simple type system, at the same time NBA remains expressive enough. In particular,
by means of examples and encodings in §3] we show that the expressive power we
loose with respect to BA is, as expected and planned, essentially that directly related to
communication interferences.

Structure of the Paper. {I]introduces the calculus, presents the reduction semantics and
the associated notion of behavioural equivalence, and presents some of its characteristic
algebraic laws. The type system of NBA is illustrated and discussed in §2] as §3 focuses
on expressiveness issues in relation to BA and SA, including several examples and an
encoding of BA into (an extension of) NBA.

1 The NBA Calculus

The syntax of processes is given in the following and is similar to that of BA, except
that, as in [8], each of the original capabilities has a co-capability with an extra argument
which may be looked upon as a password. However, unlike [8], the target ambient of a
move gets to know the name of the entering ambient as a result of synchronisation.
Names: a,b,...nx,y, ..€¢ N

Locations: Messages:
n = a nested names M,N == a name
| x upward | enter(M, N) enter M with N
| % local exit(M,N) exit M with N
M.N path
Prefixes:

=M | (x1,...,2x)" | (My, ..., Mg)" | enter(z, M) | exit(x, M)
Processes:
=0 | P |P | (wn)P | wP | M[P] | =.P

The operators for inactivity, composition, restriction and replication are inherited
from mainstream concurrent calculi, most notably the w-calculus [10]. Specific of am-
bient calculi are the ambient construct, M[P], and the prefix via capabilities, M.P.
Meaningless terms such as enter(n, p)[P] will be ruled out by the type system in §2

Communication Interference in Mobile Boxed Ambients 75

We use a number of notational conventions. Parallel composition has the lowest
precedence among the operators. The process M.N.P is read as M.(N.P). We write
(M), (&), (vn) for (My,..., M), (z1,...,2x), (¥ ni,...,n). We omit trailing
dead processes, writing M for M.0, (M) for (M).0, and n[] for n[0]. Finally, the
operators (vn)P, enter(z, M).P, exit(x, M).P, and (Z)".P act as binders for names

n, x, and Z, respectively. The set of free names of P, fu(P), is defined accordingly.

1.1 Reduction and Behavioural Semantics

The dynamics of the calculus is given in the form of a reduction relation — defined
as the least relation on processes closed under parallel composition, restriction, and
ambient operator which satisfies the following rules.

mobility

(ENTER) nlenter(m, k). Py | P,] | m[enter(z, k).Q1 | Q2]
— m[n[P1 | P | Qi{z := n} [Q2]

(EXIT) n[mlexit(n, k).P1 | P2] | Q] ’ exit(z, k). R
— m[P1 | o] [n[Q] | R{z :=m}

communication

(LocaL) (2).P | (M).Q — P{z:=M}|Q

(INPUT 1) (#)".P |n[(M)".Q | R] — P{i:= M} |n[Q | R]
(ouTPUT n) (M)"P | n[(2).Q| R] — P |n[Q{i := M} |R]
structural congruence

(STR CONG) P=Q Q — R R = S implies P — S

As customary in process calculi, the reduction semantics is based on an auxiliary
relation called structural congruence, =, which brings the participants of a potential
interaction to contiguous positions. Its formal definition is similar to that for BA [2].
The reduction rules are divided in two groups: the mobility rules and the communication
rules.

As in [8], mobility requires the ambients involved to agree on a password k. In
addition, the target of the move learns the name of the entering ambient as a result of
synchronisation. Similar ideas apply to the (EXIT) rule: in particular, the co-exit capability
is placed in the target ambient, as in [8]. Unlike loc. cit., however, the co-action does not
mention the name of the travelling ambient.

The communication rules are a simplification of those of BA. As in BA communica-
tion is synchronous, polyadic, and, most importantly, located and across boundaries. In
both rules (INPUT 1) and (OUTPUT n) the underlying anonymous channel is to be thought
of as allocated at the sub-ambient n. In all communication rules we assume that tuples
have the same arity, a condition that later will be enforced by the type system.

As to behavioural equivalences we focus on reduction barbed congruence [6], a
standard equality based on the notions of reduction relation and observability. In am-
bients the observation predicate P |, is used to denote the possibility of process P of
interacting with the environment via the ambient n. In MA [3] this happens whenever

76 Michele Bugliesi et al.

P = (vm)(n[P1]|P2), forn ¢ {m}: since no authorisation is required to cross a bound-
ary, the presence of an ambient n at top level denotes a potential interaction between
the process and the environment via n. In the presence of co-capabilities, however, the
process (vm)(n[P;]|P;) only represents a potential interaction if P, can exercise an
appropriate co-capability.

Definition 1 (Barbs). We write P |, iff P = (vm)(n[enter(z,k).Q | R] | S) for
{n,k} n{m} = 0. We write P\, if P = P’ and P' |,

Definition 2. A relation Z is: (i) reduction closed if P#ZQ and P — P’ implies the
existence of some Q' such that Q = Q' and P'%Q’; (ii) barb preserving if PZQ and
P, implies Q).

Definition 3 (Reduction Barbed Congruence). Reduction barbed congruence, written
2 is the largest congruence relation over processes which is reduction closed and barb
preserving.

Notice that in our setting there is at least another significant choice of barb, reflecting
the other form of interaction an ambient may engage with the context, viz. via commu-
nication. In particular, we could reasonably define that P has a barb at n if and only
if P = (vm)(n[(-).P'| Q]| Q") forn ¢ {m}. However, we can show that either
choices of barb result in the same equivalence. Let | denote the alternative predicate
we just define, and =2, the resulting equivalence.

Proposition 1. P = Q) if and only if P = Q.

1.2 Algebraic Laws

In the remainder of the section we give a collections of laws which hold in NBA. All these
laws can be easily proved using our notion of bisimilarity by exhibiting the appropriate
bisimulation relation. In most cases the bisimulation relation contains only the pair of
the processes of the law plus the identity relation. The first set of laws is about garbage
collection: for I = J = H = () one also derives [[] = 0.

Theorem 1 (Algebraic Laws).

Garbage Collection Laws ~
L A[ier(2:)" . Pi | e 5 (25).Pj | Hper (M)™ Py] = 0

2. [Iier(8:)" . Pi | Hjey(M;).P; | e (My)™ P,] = 0

Communication Laws [f|Z|=| M | then:

L[ey (M;)'] = e 1[(M;)]

2. 1[(&)-P | (M).Q] = I[P{&:= M} |Q]

3. (eD)((@®)LPI[M).Q]) = (w)(P{F:= M} [1[Q])
4. m[(&)".P | 1I(M).Q]] = m[P{F = M} |1[Q]]

Communication Interference in Mobile Boxed Ambients 77

5. Dual laws of BlandHl resulting from exchanging input with output prefixes
Mobility Laws

1. (vp)(mlenter(n, p).P] | n[enter(x,p)-Q]) = (vp)(n[@{x = m} | m[P]])
2. U[mlenter(n,p).P] | nfenter(z, p).Ql] = Un[Q{x := m} | m[P]

3. (vp)(nlmlexit(n. p).P]] | &xit(x,p).Q) = (vp)(m[P] | Q{x :=m})

4. Unlmlexit(n, p).Pl] | &xit(a,p)-Q] = [m[P] | Qfa = m}]. 0

The first law says how parallel composition of upward asynchronous messages dis-
tributes on the ambient construct. The same law holds for BA; in neither case (BA, or
NBA) it extends to the case of (upward) output prefixes with non-nil continuation. Law
shows that NBA is free of interferences on local communications: it holds in SA but
not in MA and BA. The remaining laws are peculiar of NBA and show that, unlike BA,
no interference on upward communications is possible.

2 The Type System

The absence of interferences in communication has other interesting payoffs besides
those we have discussed in the previous section. Specifically, as we illustrate below, it
greatly simplifies the type system over the original definition for BA [2]. The structure
of the types is as follows.

Message Types W = N[E] ambient/password
| ¢ [E] capability
Exchange Types E, F' ::= shh no exchange

Wi x --- x Wy, tuples (k > 0)

Process Types T == [E, F) composite exchange

The main difference with respect to the type systems of [2] and [9] is in the structure of
ambient types, that are defined here as one-place constructors of the form N[E], tracing
the upward exchanges of ambients with this type. This simplification over previous
systems (in which ambient types are two-place constructors) is a direct consequence of
the semantics of communication, which guarantees the absence of interferences between
the local exchanges of an ambient and the upward exchanges of its nested sub-ambients.

In addition, in the present system types of the form N[E] also serve as the types of
passwords. Hence, N[E]] is indeed the class of name types. When used as a password
type, N[E] enables upward exchanges of type F for any process that relies on a password
with this type to cross an ambient boundary. There is no type confusion in this double
role of name types, as different uses of a name have different imports in the typing rules.
An alternative would be to use two different constructors for ambient and password
names: this, however, would have the undesired effect of disallowing the use of the same
name in the two roles, a feature that is harmless and actually rather convenient in many
examples.

78 Michele Bugliesi et al.

Table 1. Good Messages: I' = M : W

(Env @) (ENV NAME) (PROJECTION) (PATH)
I'+o a¢ Dom(I') Fa:W,I"+o I'bM :CE] I' Ms:C[E,]

gro Ia:Wko Fa:W,I'+a:W I'+ M,.M, : C[Ey U Es]

(ENTER) (Bx1T)
I'M:NE] I'N:N[F] (FG) I'M:N[E] TFN:N[F] (F<G)

I' - enter(M, N) : C[G] I' - exit(M, N) : C[G]

The remaining types have the same interpretation as in previous type systems. In
particular, C[E] is the type of capabilities exercised within ambients with upward ex-
change of type E, and [E, F is the type of processes with local exchange of type E and
upward exchanges of type F'. The role of the type shh also is similar to that played by
the corresponding type in the type system of BA. As in that case, it indicates absence
of exchanges, and can be assigned to processes that do not have any local or upward
exchange. In addition, in the type systems for NBA, shh provides for a silent mode
for mobility in a way similar to, but substantially simpler than, the moded types of [2].
Specifically, the typing rules guarantee that a boundary crossing, say by ambient n, via a
password of type N[shh] involves no learning of names. Thus, unless the target ambient
knows the name n statically, the use of a N[shh] password guarantees that ambients can
move irrespective of their upward exchanges.

We proceed with the presentation of the typing rules. Table[lgives the rules for valid
type environments and for messages.

The relation ' < G, with F' and G exchange types, holds true if and only if F' €
{shh, G}. The rules (ENTER) and (EXIT) define the types of capabilities in terms of the
type of the component passwords: together with the typing rules for processes, ambients
and mobility of Table[3] they construe the types of passwords as inferfaces for mobility.
In particular, if the type F' associated with password N is a message type W, then NV
constrains any ambient relying upon it for mobility to have upward exchanges of type
W (cf. rules (PREFIX) and (AMB) in Table[3)). If instead F' = shh, then N enforces no
constraint, as the type G in the conclusion of the rule can be any exchange type. Rule
(PaTH) follows the same intuition: it is applicable only when E; LI E exists, LI being
the lub associated with <.

Tables 21 to [define the typing of processes. The rules in Table Plare standard. The
rules in Table 3] complement those in Table [l in governing mobility. Rule (AMB) is
standard, and construes the type N[E] as the interface of ambient M for any process
which knows name M: any such process may have sound F exchanges with M, as
the process enclosed within M has upward exchanges of this type. The rules for the
mobility co-actions provide similar guarantees for the exchanges a process may have
with ambients whose name the process learns by exercising the co-capability. In this
case, it is the type of the password M that acts as interface: if M has type N[W], as

Communication Interference in Mobile Boxed Ambients 79

Table 2. Good processes I: I' - P : [E, F)

(PAR) (REPL) (DEAD) (NEW)
I'-P:[E,F] 'tQ:[E,F|I'EP:|[E,F] I'ko I'n:N[G]F P:[E,F]

I'P|Q:I[E, F) I'HIP:[E,FITF0:[E F| '+ (vn:N[G)P: [E,F)

Table 3. Good Processes II (mobility)

(AmB) (PREFIX)
I'M:N[E|T'+P:[F,E| '-M:ClF|T'+P:[EG (F<Q)
I'+- M[P]: |G, H] I'-M.P:[E,G)|
(CO-ENTER) (Co-EXIT)

I'tM:NW]z:NW|+P:[E,F] I'tM:NW]Iz:NW]-P:|[E,F]

I' +enter(z, M).P : [E, F] I exit(z, M).P : [E, F)

(CO-ENTER-SILENT) (CO-EXIT-SILENT)
I'-M:Njshh| ' P:[E,F] (z ¢ tv(P)) ' M :N[shh)| '+ P : [E, F] (z & fv(P))

I' +enter(z, M).P : [E, F] I+ exit(z, M).P: [E, F)

in the rules (CO-ENTER) and (CO-EXIT), we are guaranteed that W is indeed the type of
the exchanges of the incoming ambient. If instead the password type is N[shh], then no
such guarantee can be provided, as it is easily verified by an inspection of the (PREFIX)
rule and of the rules for communication in Table @l To recover soundness, rules (co-
ENTER/EXIT-SILENT) require that no use be made of the continuation process P of the
variable x (hence of the name of the incoming ambient, unless the name was known
already to P). An alternative sound solution would be to generalise the (CO-ENTER) and
(co-EXIT) rules by (systematically) replacing the type T with a generic exchange type G.
Although such an approach would allow to dispense with rules (CO-ENTER/EXIT-SILENT)
and (CO-EXIT-SILENT), the resulting system would be less general than the present one, in
that ambients using silent passwords (i.e. of type N[shh]) for mobility would be required
to be upward silent. Notice, in fact, that we impose no such constraint: the typing rules
only prevent upward exchanges with the processes enclosed in ambients reached by the
use of a silent password.
The type system is sound, as expected.

Proposition 2 (Subject Reduction). If I' = P : T is a derivable judgement in NBA,
and P — Q, then I' = Q : T is also a derivable judgement.

80 Michele Bugliesi et al.

Table 4. Good Processes I1I (input/output)

(INPUT) (INPUT) (INpUT M)

Iz:Wk P:[W,E] Ir&:WhrP:[E,W| I'M:NW] Ii:WF P:[G,H]
'+ (2:W).P:[W,E] '+ (z2:W)Y.P:[E,W] '+ (zw)M.p: |G, H)
(OutPUT) (OuTPUT ﬁ) (OutpuTt N)

r'v-M:W,'FP:[W,E|-M:W,'FP:[E,ZW|'FN:N[W|, '+M:W, I'P:[G,H]

I+ (M).P: [W,E) '+ (MY.P:[E,W] '+ (MN.P: |G, H)

3 Examples

We illustrate the expressive power of NBA and its algebraic theory with several examples.
The first is a standard expressiveness test: the encoding of the pi-calculus [10].

3.1 Encoding of Channels

Among the possible solutions, we present the most compact one, which further illustrates
the power of our co-actions. We only show the encoding of channels, the remaining
clauses are defined homomorphically.

{e(M)P} £ (va) (c[(M) .clexit(c,a)]] | exit(z,a).{ P|})
{c@P} =@°{P}

Given the direct nature of the encoding, its operational correctness is simple to prove.
Let > denote the expansion relation [[1], an asymmetric variant of = such that P >)
holds if P ~ (), and P has at least as many 7-moves as ().

Lemma 1 (Operational Correspondence). I[f P P then{ P [} SN >{ P
Conversely, if{ P [} —'s Q. thenthere exists P suchthat P —— P’ and Q >{ P

Proof. By transition induction. Expansion relations are derived by law in Theorem [I3

The result extends to weak reductions. Based on that, and on the compositionality of
{ - I}, we can show that the encoding is sound in the following sense.

Theorem 2 (Equational Soundness). [f { P} = { Q [} then P = Q.

3.2 NBA versus BA and SA

The next suite of examples relates NBA and its ‘parent’ calculi BA and SA, reinforcing
our claim that NBA removes non-determinism from BA, and providing more a formal
statement about their relative expressive power.

Communication Interference in Mobile Boxed Ambients 81

A One-to-One Communication Server. Our first example is a system that represents
a server for point-to-point communication.

w(k) = k| Enter(x, k).anter(y, k).(1()"-(2)" | 1(=)V.(2)")]

Here w(k) is a bidirectional forwarder for any pair of incoming ambients. An agent
willing to participate in a point-to-point communication must know the password k and
should be implemented as the process A(a, k, P, Q) = a[enter(k, k).P | exit(k, k).Q)],
with P performing the expected (upward) exchanges. A complete implementation of the
point-to-point server can be then defined as shown below:

020(k) = (vr) (r[()"][()"-(w(k) | exit(-, k).exit(-, k).r[()']))

The process 020(k) accepts a pair of ambients within the forwarder, provides them
with the necessary support of the point-to-point exchange and then lets them out before
preparing a new instance of w(k) for a new protocol session. Given the configuration
020(k) | A(k,a1,P1,Q1) | --- | A(k, an, Py, @), we are guaranteed that at most one
pair of agents can be active within k at any given time (k is locked until the two ambients
are inside k). In particular, one has:

(vk)(020(k) | A(k, a1, (MY .P1,Q1) | A(k,az, (z).Po{a}, Q) | Hic1 A(K, ai, Ri, Si))
— (I/k)(020(.’{3) ‘ al[Pl | Ql] | ag[Pg{l’ = M} | QQ] | Uie]A(K, ai,R,-,Si))

This says that once (and if) the two agents have reached the forwarder, no other agent
knowing the key £ can interfere and prevent them from completing their exchange.
The equivalence above follows by the ‘garbage collection’ and the ‘mobility’ laws of
Theorem[d]. In particular, once the two ambients are back at top level, the currently active
instance of the forwarder & has the form k[!(2)%.(2)%2|!(2)?2.(2)*] = 0.

The use of the forwarder to implement a point-to-point communication protocol may
at first appear artificial, for it would seem that two ambients wishing to communicate
are likely to know their partner’s name, and could then interact without intervention of a
third party. Indeed, in NBA the example can be simplified with these assumptions. In BA,
instead, the knowledge of names still poses a challenge due to possible communication
interferences. To illustrate the point, let us consider the following BA coding of the
protocol.

afin b.in k.P] | b[E[!(x).(x)® | N(x)*.(x)] | Q]

Here @ can read from and write to k to exchange values with P inside a, but it is not obvi-
ous what P should do. Clearly, with k as above, it must use local communication to talk
with &, and hence with (). However, this would not avoid interference with its own local
exchanges. Not is it clear how to ban such unwanted effect, as there seem to be similar
problems with several different implementations of k. For instance, using k[!(z).(z)] a
and b may end up re-reading their own messages; while with k[!(z).(z) | (z).(z)] the
upward read by k£ may mistakenly synchronise with local output in b.

A Print Server. Our next example implements a print server to print jobs arriving off
the network in the order of arrival. We give the implementation in steps. First consider
the following process that assigns a progressive number to each incoming job.

82 Michele Bugliesi et al.

enqueue(k) = (ve) (e[(1)"]|!(n)c.enter(z, k).(n)*.c[(n + 1))

The (private) ambient ¢ holds the current value of the counter. The process accepts a
job and delivers it the current number. Then, it updates the counter and prepares for the
next round. Now, we can show how this can be turned into a print server (enqueue(k) is
defined as above):

prisrv(k) = k[enqueue(k) | print |
print = (ve) (e[(1)]] Y(n).exit(z, n).(data)®.(P{data} | c[(n + 1)"])

job(M, s) = (vp)p[enter(s, s).(n)".(vq)qlexit(p, n).(M)"]]

Process job(M, s) enters the server prtsrv(s), it is assigned a number to be used as a
password for carrying the job M to the printer process P (note that the use of passwords
is critical here).

This situation appears hard to implement with SA(P) or BA. In SA(P) because one
would need to know the names of the incoming jobs to be able to assign them their
numbers. In BA because dequeuing the jobs (according to the intended FIFO policy)
requires a test of the number a job has been assigned, and an atomic implementation of
such test appears problematic.

BA < NBA + Guarded Choice. In order to relate BA and NBA more formally, and
support our claim that the only loss of expressiveness in the passage is very directly
related the removal of grave communication interferences, we present an encoding of BA
into an extended version of NBA. Precisely, we enrich NBA with a limited, focused form
of nondeterminism, viz. a sum operator, that we use in the encoding to circumscribed
the nondeterminism in communication typical of BA. Besides showing the relationship
between the two calculi, this has the further advantage of localising their differences in
a single construct.

The encoding is defined parametrically over four names n, mv, pr, pw: n is the name
of the ambient (if any) that encloses the process that we are encoding, while the remaining
three names are used as passwords. To ease the notation, we use the following shorthands:
cross = lenter(x, mv) | lexit(z, mv),inn = enter(n,mv),andoutn = exit(n, mv).
The encoding is defined in terms of two mutually recursive translations, { - [}, and -) ,,
with { - [},, leading. The interesting cases are given below, where we assume the implicit
side condition that p, y ¢ fn(P).

1 PLn =cross | (P)n
(m[P])n =m[{Pn]

(@) P)n = (@) (P)n

(@)P)n =@ (P)n+ (@) (P)n+ exit(y,pw)(@)? (P),

((@)'P), = (vp)plexit(n,pr).(z) enter(n,p).(x)"] | enter(y, p)(x)¥ { P) »
((M)P),,=(M)*(P),

((MPYn =(M)(P)n+ (M) (P)n+ exit(y,pr)(M)Y (P),
((M)TP),, = (vp)plexit(n, pw).(M) enter(n,p).()" | | enter(y, p))V { P) n

Communication Interference in Mobile Boxed Ambients 83

The remaining cases are defined homomorphically.

The encoding { - [}, provides unboundedly many co-capabilities, at all nesting lev-
els, so that ambient mobility in BA is rendered faithfully. As for the translation of the
communication primitives, the intuition is the following. The upward exchanges of a
BA term are dealt with by the taxi ambients that exit the enclosing ambient n to deliver
output (or collect input) and then return to n to unlock the continuation P. The use
of restricted names as passwords is essential here for the continuation P to be able to
identify its helper taxi ambient without risk of confusion. As for the translation of a local
input/output, the three branches of the choice reflect the three possible synchronisations:
local, from upward, from a nested ambient. Note, in particular, that the right-most branch
of these choices may only match upward requests that are encodings of upward requests:
this is guaranteed by the use of the passwords pr and pw that regulate the movements
of the read/write taxi ambients. The use of two different passwords ensures that they do
not interfere with each other and with other BA ambients’ moves, as the latter use mv.

Using the algebraic laws in JL.2]we can show that the encoding is operationally cor-
rect in the sense of Lemmal[llfor single-threaded terms. The single-threadedness hypoth-
esis here, although morally identical to SA’s, is adapted to NBA to record that engaging
in inter-ambient communications is an activity across ambient boundaries that may as
well create grave interferences. For instance, a[(z)" | exit(n, k).P] cannot be consid-
ered single-threaded, as illustrated by, say, the context exit(z, k).R | n[(z)°Q | —]. The
technical definition is not particularly enlightening, and we omit it in this presentation.

Theorem 3. If P and Q are single-threaded , then {| P [}, = { Q [}, implies P = Q.

The proof follows the same pattern as the one outlined for the encoding of pi-calculus
channels. The additional hypothesis on the source terms P and () is needed to guarantee
the atomicity of the protocol that implements an upward exchange (once the taxi ambient
leaves n, we need to make sure that no process causes n to move).

4 Conclusion and Future Work

We presented NBA, a new foundation for the calculus of Boxed Ambients that elimi-
nates grave communication interferences without renouncing to mobility and with no
further lost of expressiveness. NBA greatly enhances the distributed nature of BA in the
precise sense of removing some obvious challenges to implementation in a distributed
scenario. The basic mechanism of NBA is to promote co-capabilities to the role of bind-
ing constructs that inform ambients of the incoming ambient’s name. Together with a
system of password control which verifies the visitor’s credentials, this yields an inter-
esting way to learn names dynamically that makes up for most of the expressiveness
lost by removing from BA the interference-prone forms of across-boundary commu-
nication. Furthermore, the access protocol of NBA has a practical, realistic flavour, at
all analogous to the negotiation needed for new computational agents to join existing
agent communities, such as networks. We are currently investigating a variant of our
calculus where co-capabilities are not binding but they rather perform a renaming of
the incoming ambient, as in the Seal calculus [13], giving the recipient full control of
the incoming ambients. This variant would be a perfect candidate to compare ambient

84 Michele Bugliesi et al.

calculi and Seal. Actually, passwords in NBA plays the same role as channels in Seal:
they allow synchronisation for code mobility.

From the theoretical viewpoint, NBA enjoys a rich algebraic theory. Its barbed con-
gruence admits a sound coinductive characterisation built on a LTS semantics. We
strongly conjecture that such characterisation is also complete. We presented a type
system for NBA whose simplicity and generality relies also on passwords. The mobility
types of [9] can be applied in NBA at no additional cost.

Finally, we have characterised the loss of expressiveness by means of several small
examples and an encoding of BA to a version of NBA enriched with guarded choice.
We plan in future work to investigate encodings without sum, following the lines of,
e.g., [11]]. We expect only very weak forms of encoding to hold, so as to confirm the
present characterisation of the expressiveness gap between BA and NBA.

References

1. S. Arun-Kumar and M. Hennessy. An Efficiency Preorder for Processes. Acta Informatica,
29:737-760, 1992.

2. M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambients. In Proceedings of TACS’01, number
2215 in Lecture Notes in Computer Science, 38—63, Springer, 2001.

3. L. Cardelli and A. Gordon. Mobile Ambients. In Proceedings of FoSSaCS’98, number 1378
in Lecture Notes in Computer Science, 140-155. Springer, 1998.

4. L. Cardelli and A. Gordon. Equational Properties for Mobile Ambients. In Proceedings
FoSSaCS’99, volume 1578 Lecture Notes in Computer Science, 212-226, Springer, 1999.

5. S. Crafa, M. Bugliesi, and G. Castagna. Information Flow Security for Boxed Ambients.
In F-WAN: Int. Workshop on Foundations of Wide Area Network Computing, ENTCS 66.3,
Elsevier, 2002.

6. K. Honda and N. Yoshida. On Reduction-based Process Semantics. Theoretical Computer
Science, 152(2):437-486, 1995.

7. F. Levi and D. Sangiorgi. Controlling Interference in Ambients. In Proceedins of POPL’00,
352-364, ACM Press, 2000.

8. M. Merro and M. Hennessy. Bisimulation Congruences in Safe Ambients. In Proceedings of
POPL’02,71-80. ACM Press, 2002.

9. M. Merro and V. Sassone. Typing and Subtyping Mobility in Boxed Ambients. In Proceedings
of CONCUR’02, volume 2421 Lecture Notes in Computer Science, 304—320, Springer, 2002.

10. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II. Infor-
mation and Computation, 100:1-77, September 1992.

11. B.C. Pierce and U. Nestmann. Decoding Choice Encodings. Information and Computation,
163:1-59, 2000.

12. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST-99-93, Department of Computer Science, University of Ed-
inburgh, 1992.

13. D. Sangiorgi. Bisimulation for Higher-Order Process Calculi. Information and Computation,
131(2):141-178, 1996.

14. D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proceedings of
CONCUR’92, volume 630 of Lecture Notes in Computer Science, 32-46. Springer, 1992.

15. J. Vitek and G. Castagna. Seal: A framework for Secure Mobile Computations. In Internet
Programming Languages, 1999.

	Introduction
	1 The NBA Calculus
	1.1 Reduction and Behavioural Semantics
	1.2 Algebraic Laws

	2 The Type System
	3 Examples
	3.1 Encoding of Channels
	3.2 NBA versus BA and SA

	4 Conclusion and Future Work
	References

