
Organisational Culture in Agile Software Development

Peter Wendorff

ASSET GmbH, Am Flasdieck 5,
46147 Oberhausen, Germany
P.Wendorff@t-online.de

Abstract. Recently a number of so-called "agile" software development meth-
ods have been proposed. Interestingly, these approaches have been met with
"both enthusiastic support and equally vigorous criticism" among experts in the
field. At present the software engineering community is split, and seemingly ir-
reconcilable "schools of thought" have emerged. In this paper we identify an
important characteristic of any software engineering method: its set of tacit ba-
sic assumptions. We retrieve some important basic assumption that underly ag-
ile software development and discuss an example to illustrate in detail how
conflicting basic assumptions can lead to fundamental disagreement about
software development methods.

1 Introduction

A software development method (SDM) provides a prescriptive, systematic, and ex-
plicit description of resources, activities, and artefacts in order to produce software. In
the late 1990s a number of so-called "agile" SDMs have been proposed, for example
"Extreme Programming" (XP) [2], the "Crystal" family [5], or "Adaptive Software
Development" (ASD) [7]. They claim to be superior to other methods in some situa-
tions that are characterised by vague requirements and rapid change. They share a
core of values and principles published as the "Manifesto for Agile Software Devel-
opment" on the World Wide Web [1]. XP is by far the most widely used agile SDM at
the moment, and even the first ever dynabook of the Institute of Electrical and Elec-
tronics Engineers (IEEE) has been devoted to it [9].

Agile SDMs have quickly gained a remarkable degree of acceptance in parts of the
software engineering community. Interestingly, they have provoked a vivid and often
controversial exchange of opinions, for example, published in the dynabook men-
tioned above. The observation by Jawed Siddiqi of "both enthusiastic support and
equally vigorous criticism" of XP in the dynabook [9] extends to agile SDMs in gen-
eral [8].

Highsmith introduces the term "rigorous" software development method [8] for
most methods that do not explicitly focus on agility, and we will adopt his terminology
in this paper.

There is yet no convincing empirical evidence that agile SDMs outperform other
approaches, but there is equally little empirical evidence to suggest the opposite. This

situation of uncertainty calls for an unprejudiced discussion of agile methods, but the
debate has become weirdly polarised and opinionated in many instances (cf. [9]).

Jim Highsmith makes an important point when he remarks: "Many of the debates
about Agile versus rigorous practices have no basis in fact - they are purely emotional
and based on one's culture, one's values and beliefs. Now, emotion-based reactions are
at least as valid as fact-based ones, but they do tend to create high-volume rhetoric"
[8, p. 167].

We agree with Highsmith's view that much of the debate aboute agile software de-
velopment is due to cultural differences. We believe that in order to understand and
appreciate any software development method it is necessary to understand its under-
lying culture. The cultural perspective illuminates the influence of conflicting, uncon-
scious basic assumptions as a primary source of disagreement over different software
development methods. Basic assumptions derive much of their power from the fact
that they operate outside awareness. They are the sublime result of complex and pro-
longed learning processes and therefore difficult to detect and decipher.

Agile software development is based on some basic assumptions that seem to con-
tradict the basic assumptions on which many other approaches are based. We believe
that a clear elaboration of these basic assumptions is a necessary prerequiste for an
unprejudiced discussion of agile software development within the whole software
engineering community. The aim of this paper is to contribute to this process of elabo-
ration by suggesting some basic assumptions of agile software development.

In section 2 we will present a brief description of organisational culture and the
model developed by Schein, that will be used as conceptual framework in subsequent
sections. In section 3 we will elaborate some basic assumptions that underly agile
software development.

2 Organisational Culture

The concept of organisational culture has attracted much attention from scholars as
well as managers recently. Much of this interest has been due to the apparent failure of
traditional organisational analysis to explain phenomena in organisations based on
objective and formal structural characteristics.

The culture perspective uses established ideas from fields like anthropology, psy-
chology, and sociology. One of its central assumptions is, that organisations cannot be
understood comprehensively in terms of their formal characteristics alone, but that
there exist influential informal elements in organisations. Informal elements within
organisations may include myths, heroes, traditions, mental models, animosi-ties,
patterns of behaviour, social perceptions, bias, groupthink, group dynamics, politics,
coalitions, friendship, revenge, etc. The culture perspective emphasises the importance
of these informal aspects of organisations for the analysis of organisa-tional life. Much
of the informality in organisations results from the fact that their members are human
beings, and that human behaviour defies a definition in purely formal and rational
terms. Therefore, the analysis of processes in organisations should take these informal
aspects into account.

2.1 Elements of Organisational Culture

A look at contemporary textbooks on management shows, that there is no single, uni-
versally accepted definition of organisational culture. Nevertheless, most defini-tions
refer to some points in the following definition:

Organisational culture refers to

− a common set of beliefs, attitudes, perceptions, assumptions, and values,
− that is shared by the majority of an organisation's members,
− where it is clearly observable who shares in the culture and who does not,
− while it reflects accumulated common learning by organisational members,
− who develop it as a response to perceived internal or external requirements,
− regarding it as a valid source of appropriate explanations for relevant situations,
− for which it suggests or prescribes a range of acceptable behaviour,
− that is taught to new members to facilitate their understanding and integration,
− and is therefore stable and persistent over long periods of time.

As organisational culture is a theoretical artefact, that can only be measured indirectly,
it is important to identify elements of an organisation that indicate its culture. A
popular layered conceptualisation of organisational culture has been introduced by
Schein [10], who differentiates three levels of manifestation. At the first level there are
"artefacts", that are most easily discernible by an observer. At the second level there
are "espoused values", that are more difficult to observe. The third level are "basic
assumptions", that are most difficult to detect and express. We will now briefly ex-
plain these three levels.

Artefacts are the most visible manifestations of organisational culture. Usually they
are created by humans in order to solve a problem. Artefacts comprise rules, jargon,
stories, symbols, office layouts, and ceremonies. These elements of a culture are visi-
ble to an outside observer directly by watching the behaviour of the organisational
members.

Espoused Values are consciously held reasons for behaviour. They are strongly re-
lated to ethical codes, and they express what ought to be done. Values are not directly
discernible for an outside observer, instead they can only be investigated indirectly
through interpersonal communication.

Basic assumptions are the least obvious manifestation of culture. They comprise
reasons for behaviour that are not consciously held by organisational members, be-
cause they are taken for granted. Basic assumptions are not confrontable or debatable,
and examples include the basis on which individuals are respected, whether coopera-
tion or competition is desirable as mode of behaviour, and how decisions are made.
These unconsciously held assumptions guide human behaviour, and they are not di-
rectly observable for an outside person.

The relationship between the three levels of organisational culture described above
can be demonstrated by the following example. We assume two basic assumptions,
namely (a) humans are generally lazy and try to avoid effort, or (b) humans are gener-
ally motivated and enjoy to do good work. Depending on our basic assumption we
could then proceed to the level of values and find that (a) strict control of procedures

is desirable, because it leads to productivity, or (b) a motivating workplace that pro-
vides opportunity is desirable, because it leads to productivity. Depending on these
values, we might then choose an appropriate artefact to serve our value, for example,
by (a) using a production line, or (b) forming a semi-autonomous work team.

2.2 Functions of Organisational Culture

The importance of culture for the smooth functioning of organisations has been em-
phasised by many writers. Organisations provide venues where people with differing
backgrounds meet, and clearly this creates a potential for disagreement. In order to act
effectively, an organisation has to achieve some degree of consensus and cooperation,
for example, through formal regulations. This formal approach often results in organ-
isational designs that rely on extrinsic motivation of organisational members. There is
strong evidence that common and intrinsic motivation of members does often increase
the effectiveness of organisations. An organisational culture represents a shared basic
mindset, and therefore it can motivate action, facilitate agreement, and encourage
cooperation. In this way it can lead to intrinsic motivation, thereby reducing the need
for extrinsic motivation [4, pp. 89].

3 Organisational Culture in Agile Software Development

In February 2001 many of the leading inventors and proponents of agile SDMs met to
identify common core elements of agile SDMs. This has led to the formulation and
publication of the "Manifesto for Agile Software Development" on the World Wide
Web [1]. An annotated version of the Manifesto can be found in [5]. This manifesto is
still the most up-to-date and most comprehensive attempt to compile and publish the
defining commonalities of different agile SDMs. The manifesto defines 4 values and
12 principles.

On the backcloth of Schein's layered conceptualisation of organisational culture the
12 principles from the manifesto clearly qualify as artefacts in Schein's hierarchy,
while the 4 values from the manifesto are in fact espoused values according to Schein.
But there is one layer in Schein's model of organisational culture that is not matched
by any material provided in the Manifesto: the underlying basic assumptions of agile
software development.

In the following subsections we will attempt to recover some basic assumptions un-
derlying agile software engineering. We have mainly relied on the books by Highs-
mith [7], Cockburn [5], and Beck [2], as well as material from the manifesto.

The following six subsections all correspond to the same structural pattern. First,
the headings of the subsections correspond to the six categories defined by Schein to
categorise basic assumptions [10, pp. 94]. After a short introduction of the general
category we narrow the context to a subject with particular relevance to our discus-
sion. After that we present some references that illustrate some aspects of different
agile SDMs regarding the given context. Then we present a brief summary of our
deliberations, and finally we formulate a basic assumption.

Generally, our work does owe much credit to the book [8] by Jim Highsmith, in
which he presents a very readable overview of many current agile SDMs as well as
material on the biographies of their founders.

3.1 Assumptions About the Nature of Reality and Truth

Assumptions about reality are a cornerstone of any culture. The members of the cul-
ture share an understanding of what is real, how things are perceived, what is impor-
tant and what is not, how to gather and use information, when and how to act, etc.

Context. An important distinction can be made due to different levels of reality. For
example, external physical reality can be determined empirically by objective tests,
while subjective perceptions shared by a group of people, that cannot be tested
empirically, are referred to as social reality. Not all questions concerning reality and
truth can be answered at the level of external physical reality, and indeed it is one of
the important functions of culture to provide orientation in these cases where objective
tests are impossible or too difficult to construct [10, pp. 97].

References. Fenton and Pfleeger use a quotation from a popular book by DeMarco,
"You cannot control what you cannot measure" [6, p. 11] to express their belief that
classical engineering techniques like scientific measurement should be adopted in
software engineering. They explain: "Even when a project is not in trouble,
measurement is not only useful but necessary. After all, how can you tell if your
project is healthy if you have no measures of its health? So measurement is needed at
least for assessing the status of your projects, products, processes, and resources" [6,
p. 11]. In their book, "Software Metrics - A Rigorous and Practical Approach", they
describe the quest in rigorous software development for objective definitions of
software quality attributes like size, structure, complexity, understandability, etc.
Unfortunately, there is good reason to believe that these objective definitions are not
feasible, because concepts like complexity are in fact highly subjective, and for
example, often one person's simplicity is another person's complexity [6]. Many
software developers are quite opionionated regarding software quality attributes, and
this is a constant source of disagreement in software projects.

Highsmith notes that in agile software development decision making is generally
based on power sharing. If decision-making authority is delegated, then it is granted
from below, not from above [7, pp. 214]. Different opinions must be reconciled
through compromise, and Highsmith regards the willingness to compromise as neces-
sary behaviour of developers. He notes that, for example, in the field of software
quality attributes trade-offs are often unavoidable, and that these necessitate the in-
volvement of relevant stakeholders. Given the fuzzy nature of software quality attrib-
utes he concedes that, "compromising on values and beliefs is much stickier" [7, p.
217]. Highsmith proposes three types of compromise, namely synergy, mutual conces-
sion, and appeasement. Obviously, all of these three types of compromise are primar-
ily based on intensive social interaction among equals, not on coercive authority or
authoritative science.

Cockburn observes, "on an effective team, the people pull approximately in the
same direction. They actually all pull into slightly different directions, according to
their personal goal, personal knowledge, stubbornness, and so on. They work together
at times and against each other at times" [5, p. 99]. In order to increase alignment
within the team he recommends "microtouch" intervention by the team leader, where a
small increase in alignment of all team members can effect large changes in team
performance. On the role of conflict within an organisation Cockburn notes that con-
flict is even desirable in some instances, for example in order to alert the team to de-
sign problems. Accordingly, he contemplates "the intentional use of small doses of
conflict to get people to meet and learn to talk with each other" [5, p. 101].

Beck gives an important role to the concept of simplicity in XP, as it is one of the
four values [2, pp. 30], one of the basic principles [2, p. 38], and one of the core prac-
tices [2, p. 54]. Beck does not provide any sophisticated, objective definition of the
concept of simplicity, and the explanations he gives (cf. [2, p. 57 and p. 109]) are
vague and questionable. So, how can simplicity be a meaningful concept in XP if there
is no objective definition? Beck provides the answer referring to the levelling effect of
communication: "The more you communicate, the clearer you can see exactly what
needs to be done and the more confidence you have about what really doesn't need to
be done" [2, p. 31]. The core practice of pair programming, where two developers sit
in front of a single computer and work together, increases the mental alignment of the
two programmers and thereby increases the mutual understanding of the two persons
[2, pp. 66 and pp. 100].

The following practices taken from the Manifesto [1] relate to the assumptions
about the nature of reality and truth in agile software development.

− Working software is the primary measure of progress.
− Continuous attention to technical excellence and good design enhances agility.
− Simplicity -- the art of maximizing the amount of work not done -- is essential.
− The best architectures, requirements, and designs emerge from self-organizing

teams.

These principles are based on terms like "working software", "technical excellence",
"good design", "simplicity", and "best architectures, requirements, and designs". It is
obvious, that there doesn't exist any consensus in the software engineering community
about the definition of these terms. Nevertheless, because many crucial artefacts in the
Manifesto rely on these notions, it is necessary that some consensus about these con-
cepts exists, at least at the level of social reality.

Discussion. Rigorous software development has a low tolerance toward ambiguity,
and the obvious solution is to adopt traditional engineering practices, e.g. scientific
software measurement, to reduce ambiguity. Thus, consensus is established on the
basis of scientific authority at the level of external physical reality. Nevertheless, this
approach suffers from a number of inevitable drawbacks, and admittedly, many
software measures that have been proposed are of questionable practical value [6].
The culture of agile software development is more tolerant toward ambiguity, and, for
example, a concept like simplicity is obviously regarded as useful. In the absence of a
convincing objective, scientific definition for such a concept agile methods rely on the
emergence of consensus at the level of social reality. This desired consensus emerges
over time as the result of intensive social interaction, and that is one of the reasons
why agile methods try to sustain a high level of social interaction.

Basic Assumption. "Social interaction leads to consensus."

3.2 Assumptions About the Nature of Time

A "natural" notion of time is taken for granted in most cultures, yet there exist differ-
ent assumptions about the nature of time in different cultures. One aspect of this is the
perception of "being on time", obviously an important issue in software engineering
that is traditionally focused on deadlines.

Context. A shared notion of time is important to synchronise activities in an
organisation in an orderly way. If different assumptions about time exist within an
organisation, tremendous problems can emerge. For example, in a biotechnology
company serious communication problems developed because managers used a notion
of time labelled "planning time", while scientists used a different notion of time
labelled "development time" [10, p. 109].

References. Boehm, in his landmark book "Software Engineering Economics" [3],
used classical engineering practices and ecomomic models as basis for a rigorous
approach to software effort estimation. His work has influenced generations of
managers and developers since then. It is fundamentally based on the notion of
"monochronic time" [10, p. 107], where time is measured by hours, where a man-hour
is a standardised measure of production capacity, and hitting a deadline is the ultimate
measure of success. Effort is meticulously calculated in hours, and completion dates
are set as precise calendar dates. Time is seen as a linear resource that is
compartmentalised into appropriate assignments that are then completed according to
plan. The COCOMO model developed by Boehm has later been refined, and it is one
of the most popular frameworks for effort estimation and project planning in software
development. COCOMO, as well as many other frameworks of its kind, heavily relies
on data of past projects that are regarded as a valid predictor for future projects.

Highsmith contrasts workflow-oriented models that focus on tasks, as the basis of
rigorous software engineering, to workstate-oriented models that focus on resulting

artefacts, as the basis of agile software development [7, pp. 235]. He continues: "The
workstate approach says, 'Don't bother me with the detailed activities, just let me
know when the work product (component) has reached a certain completion state' [7,
p. 238]. He claims that a workstate-oriented approach works better in many areas of
software development where "activities are concurrent, with partial completion and
later refinement being the norm" [7, p. 239]. Concurrent development is an inherent
management challenge in adaptive software development, that requires intensive in-
teraction to synchronise activities, according to Highsmith.

Cockburn declares: "Software development is therefore a cooperative game of in-
vention and communication. There is nothing in the game but people's ideas and the
communication of those ideas to their colleagues and to the computer" [5, p. 28]. In a
game the moves of players are not predetermined by a schedule, instead they are co-
ordinated by interaction. Therefore, "the purpose of each activity is to move the game
forward. Work products of every sort are sufficiently good as soon as they permit the
next move" [5, p. 33]. Cockburn applies this viewpoint to the inevitable bottleneck
activities of a software project and concludes that these are the areas where synchroni-
sation of activities based on interaction promises huge performance gains: "The shift-
ing bottlenecks in the system determine the use of overlapped work and 'sticky' infor-
mation holders" [5, p. 201]. He regards this technique as valuable for any software
engineering methodology and makes it a cornerstone of his own Crystal family of
methodologies.

Beck denotes the planning technique used in XP "planning game" [2, p. 86]. The
planning game is a highly interactive, incremental, and iterative technique used to
match software requirements to development capacity. At any time plans can be re-
vised in subsequent iterations as soon as deviations arise.

Discussion. One important function of time is the synchronisation of activities. The
notion of time used in rigorous software engineering can appropriately be described as
"monochronic time", for example implicitly assumed by Boehm. An alternative to
monochronic time is "polychronic time" [10, p. 107]. If time is perceived as
polychronic, then it is not seen as a linear resource that is divided into time units that
can be matched to particular activities, instead several activities may run concurrently
in order to accomplish a task at hand. The above references indicate that in agile
software development monochronic time is seen as a less useful concept, instead the
concept of time used is rather close to polychronic time, where synchronisation does
preferably occur through interaction rather than a clock.

Basic Assumption. "Social interaction synchronises activities."

3.3 Assumptions About the Nature of Space

The use of space is highly visible in organisations and often it does have a powerful
symbolic meaning. One obvious reason is that space is a scarce resource in most or-
ganisations, and therefore its allocation can symbolise the status of a person.

Context. An open-plan office may stimulate communication, but it limits the degree
of privacy, and the opportunity for individual expression. A private office, on the
other hand, provides a high degree of privacy and enables more individual expression,
but it may become a barrier for spontaneous communication [10, pp. 115].

References. Highsmith stresses the role of a shared work space for a team: "A factor
contributing to adaptive project success is shared work space - a war room or team
meeting place. [...] Adaptive teams need a team-owned place in cyberspace where the
team can share context and content, where team members can interact one-on-one or
in groups, where information can be both public and private, where there is an element
of both work and play - a comfortable site to visit and to use." [7, p. 277]

Cockburn remarks that larger teams are often split into groups, and the groups are
then assigned to different, scattered offices. This is a frequent source of problems
because "each group forms its own community and usually complains about the other
group. The chitchat in the osmotic communication is filled with these complaints,
interfering with the ability of people in each group to work with each other in an ami-
cable way" [5, p. 82]

Beck recommends an open workspace that combines a common workspace with
small private spaces for XP. The reason for this arrangement is that, "XP is a commu-
nal software development discipline" [2, p. 79].

Discussion. The above references indicate that in agile software development the
work space is not merely a place where people perform their professional duties.
Instead it is rather seen as a venue where many different social functions, professional
as well as private, take place. This is also reflected in the idea expressed by Cockburn
and Beck that the workspace should provide room where people can socialise or
prepare food. This deliberate integration of social needs into the professional
environment is not accidental, instead it is intended to encourage communal life that
leads to a cohesive team and effective communication.

Basic Assumption. "The workspace is a social venue."

3.4 Assumptions About the Nature of Humans

Every culture conveys assumptions about the nature of humans, for example about
mission, motivation, ability, etc. The view that is hold about human nature inevitably
has a strong influence on the fabric of society and organisations.

Context. The efforts of an organisation to effect certain behaviour will naturally be
based on its prevailing set of assumptions about human nature, for example, its control
and reward systems will be designed accordingly [10, p. 123].

References. Highsmith builds his theory of adaptive software development around the
themes of self-organisation, emergence, and collaboration. In his discussion of
effective collaboration he refers to attitudes like trust, respect, participation, and
commitment [7, pp. 129]. He regards these attitudes as inherent in all humans to
different degree and that the management challenge for an organisation is to activate
this potential. He points out that the willingness of individuals to volunteer high
performance in the workplace depends on the satisfaction of their own physical needs,
emotional needs, and self-interest. Success requires both, ability and motivation [7, p.
133].

Cockburn describes common "failure modes" [5, pp. 48] and "success modes" [5,
pp. 67], but he warns that these generalising statements do only apply to some degree
to any individual [5, pp. 46]. It is the primary management task of an organisation
create an environment where the success modes of individuals can take effect, and
where the need to control their failure modes can be reduced [5, p. 73].

Beck devises in his book on XP to "Work with people's instincts, not against them"
[2, p. 41]. Indeed, it is one of Becks claims that XP is a methodology that reconciles
the instincts of programmers and the interests of the organisation [2, p. xviii].

Discussion. The above references indicate that in agile software development the
individual is seen as a valuable human resource with high potential for productive
work. The exploitation of this potential should not be taken for granted by an
organisation, however, because it is ultimately at the discretion of the individual to put
these capabilities to a productive use for the organisation. Therefore, an organisation
must take human needs into consideration that go far beyond payment.

Basic Assumption. "Happy people do good work."

3.5 Assumptions About the Nature of Human Activity

Humans do not exist in isolation, instead they interact with their environment. A cul-
ture entails assumptions about the appropriate way of interaction with the environment
for individuals and groups.

Context. At the organisational level a key question is whether members are
encouraged to behave proactively, or whether they are assigned a rather passive role
[10, pp. 127].

References. Highsmith states, "Speed is often the least risky course of action" [7, p.
203].

Cockburn, too, expresses a strong preference for action, and regards the willingness
to take initiative as one of the success modes of humans. Referring to the other success
modes of humans he continues, "With these, we see people taking initiative to get the
job done every day, an ongoing activity that keeps the project operating at peak form"
[5, p. 70].

Beck uses the metaphor of learning to drive a car to explain the management phi-
losophy used by XP. The idea is to start early, act small, and prepare for corrections:
"We need to control the development of software by making many small adjustments,
not by making a few large adjustments, kind of like driving a car. This means that we
will need the feedback to know when we are a little off, we will need many opportuni-
ties to make corrections, and we will have to be able to make those corrections at a
reasonable cost" [2, p. 27].

Discussion. The above references indicate that agile software development is strongly
biased in favour of action. In a situation where only incomplete information is
available action is preferred to waiting for more complete information. The general
attitude is that action is preferred to inaction. This may increase the possibility of
undesired effects, but it is assumed that in these effects can be rolled back without
difficulties. Early action usually results in higher risk, and therefore the importance of
rapid feedback increases, to stop inappropriate action quickly.

Basic Assumption. "Action makes a project work."

3.6 Assumptions About the Nature of Human Relationships

A culture contains many assumptions about acceptable forms of human relationships.
Important issues that must be addressed are the distribution of power and authority,
and the nature of peer relationships.

Context. An important characteristic of culture is the dimension of "power distance"
[10, pp. 132]. A fundamental question in this respect is the degree of power distance
that is regarded as acceptable. If, for example, a low power distance is taken for
granted in a culture then a manager may choose to substitute group-decisions for his
own authority.

References. Highsmith notes that agile software development needs strong leadership:
"While the following fact may seem paradoxical, adaptive environments require much
stronger leaders than do deterministic ones" [7, p. 209]. Concerning the expectations
of followers he adds: "Teams want a clear sense of direction and decisiveness from
their leaders; they do not want arbitrariness or authoritarianism" [7, p. 210].
According to Highsmith the leader is empowered by the team to make decisions, and
likewise the leader empowers the team members [7, p. 215].

Cockburn does give numerous examples of successful leadership in [5], but he does
not provide a comprehensive discussion of leadership issues.

Beck vaguely describes the decision-making process in XP as "more like decen-
tralized decision making than centralized control" [2, p. 72]. He has included a special
role, called "coach", in XP: "What most folks think of as management is divided into
two roles in XP: the coach and the tracker (these may or may not be filled by the same

person). [...] The measure of a coach is how few technical decisions he or she makes:
The job is to get everybody else making good decisions" [2, p. 73]

Discussion. The above references indicate that agile software development is
leadership-centric. A manager has formal authority granted by an organisation to act
in certain situations, for example, to demand certain behaviour from others. A leader
has the ability to influence the behaviour of others without using formal authority.
The roles of leader and manager are independent, for example a manager may also act
as leader in a certain situation. Generally, agile software development does not
necessarily rely on strong formal authority, much in contrast to a traditional,
hierarchical team structure with a single, appointed team manager who carries all
responsibility. Nevertheless, in almost all published material about management in
agile projects the figure of a strong and competent leader lurks underneath the
egaliterian surface. This leader is usually described as very competent and successful.
The relation between the leader and his followers is described as very harmonious and
respectful. The impression is that in agile software development leaders are
substituted for managers in a sucessful way, although it remains unclear why and how
these leaders develop.

Basic Assumption. "Leaders influence followers."

4 Conclusion

Organisations provide venues where people meet, learn, and interact. Over time these
social processes often result in organisational cultures that define "how things are
done here". Schein has proposed a layered conceptualisation of organisational culture
where basic assumptions are the least visible yet most influential element of the cul-
ture. Only if these tacit basic assumptions are uncovered it is possible to decipher and
understand the observable behaviour of an organisation.

In this paper we have applied the perspective of organisational culture to agile
software development. Using Schein's model we have retrieved the following six
basic assumptions:

− Social interaction leads to consensus.
− Social interaction synchronises activities.
− The workspace is a social venue.
− Happy people do good work.
− Action makes a project work.
− Leaders influence followers.

We suppose that these basic assumptions are unconsciously held by many proponents
of agile SDMs and are taken for granted by that community, rather than being debat-
able.

Basic assumptions refer to the most fundamental way we expect the world to be,
and therefore they inform our thinking. We can think about them, we can discuss
them, but we are extremely unlikely to change our own basic assumptions. They give
us orientation in a complex world, and therefore, powerful, unconscious defence
mechanisms fight anything that might violate or invalidate them. We treat a challenge
of our basic assumptions as a threat to our identity. Because our defense mechanisms
work unconsciously, we are often not even aware when they operate. This can make us
vulnerable to stagnation, because we may reject new ideas not on the basis of a careful
evaluation, but out of uncontrolled fear.

A look at the concept of simplicity in XP can be used to illustrate the importance of
basic assumptions for our understanding. Assume, for example, a hypothetical soft-
ware engineer who becomes interested in XP, buys a book on the subject, and starts
reading. He will soon read about the core practices in XP, and simple design is one of
these core practices, but he looks for an objective, operational definition of the con-
cept in the book, he will probably be disappointed. He recognises that the core prac-
tice qualifies as a rule, which according to Schein is an artefact, but he cannot make
much sense out of it, because a proper definition is missing. But why is this artefact
there in the book, even in the form of a core practice, if it is indeed useless? Our hy-
pothetical software engineer could proceed to the level of espoused values then, just to
find that simplicity is indeed listed there. He may even agree with the value in the
abstract, because simplicity sounds reasonable after all. Nevertheless, he possibly
feels that he cannot accept the use of such a fuzzy concept without a reasonable defi-
nition. So he might get the impression that XP is disorganised and unscientific, be-
cause it relies on a concept that is not properly defined in an objective way. Without
further consideration he might decide that he had enough of it and dismiss XP com-
pletely.

What is this engineer's basic assumption that unconsciously informed his thinking?
In the best tradition of rigorous software engineering he is searching for an objective,
scientific definition of the concept of simplicity. That is perfectly reasonable behav-
iour, even necessary, if software engineering is ever to become a true engineering
discipline, he might say.

What is the corresponding basic assumption that informs XP as well as agile soft-
ware development in general? It says, "Social interaction leads to consensus." In this
statement "social interaction" is assumed to be trustful, collaborative, and competent
interaction, of course. The term "leads to" refers to a process that takes some time
before palpable results are obtained. The term "consensus" refers to social reality,
basically it is assumed that the relevant team members align their notions of the con-
cept of simplicity sufficiently, but it does not require that people outside the team
agree. The result is a useful, barely sufficient means of communication in the context
of the team.

It does become clear now, that the rejection of XP by our hypothetical engineer was
caused by basic assumptions that he has held, that conflict with those that underly XP.
For example, he is arguing at the level of external physical reality, whereas XP does
only address the level of social reality in this case. This case shows that subtle differ-
ences in basic assumptions can only be detected when these basic assumptions are
retrieved, elaborated, and subjected to analysis.

Agile software development is based on many basic assumptions that conflict with
the school of rigorous software development. We think that this is the cause for the
sometimes strong rejection of agile practices in the software engineering community.
An open, unprejudiced discussion and appreciation of agile software development is,
therefore, dependent on a thorough analysis of basic assumptions in both communi-
ties. In this paper we have presented some of the important basic assumptions in agile
software development, but there exist many more.

References

1. The Agile Alliance: Manifesto for Agile Software Development. http://agilemanifesto.org/
(last visited on 16/06/2002), 2001.

2. Beck, K.: Extreme Programming Explained: Embrace Change. Longman Higher Education,
2000.

3. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, 1981.
4. Brown, A.: Organisational Culture. Prentice-Hall, 1998.
5. Cockburn, A.: Agile Software Development. Pearson Education, 2001.
6. Fenton, N. and Pfleeger, S.L.: Software Metrics. International Thomson Computer Press,

1996.
7. Highsmith, J.A.: Adaptive Software Development. Dorset House Publishing, 2000.
8. Highsmith, J.A.: Agile Software Development Ecosystems. Pearson Education, 2002.
9. Institute of Electrical and Electronics Engineers: Dynabook on Extreme Programming.

http://computer.org/seweb/dynabook/Index.htm (last visited on 16/06/2002), 2000.
10. Schein, E. H.: Organizational Culture and Leadership. Jossey-Bass Publishers, 1992.

