

A Systems Perspective on Software Process
Improvement

Authors:
Andreas Birk
Dietmar Pfahl

Accepted for publication in
proceedings of PROFES’2002

IESE-Report No. 047.02/E
Version 1.0
August 12, 2002

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Abstract

Software process improvement often lacks strong links to project management
and control activities, which are concerned with identifying the need of process
change and triggering improvement initiatives. Project management, on the
other hand, often fails at selecting appropriate software engineering methods
and technology that help to ensure project success. This paper proposes a
model that guides project managers (1) to set up a project so that it can reach
its specific goals and (2) to identify corrective actions (or changes) once a pro-
ject is at risk of failing its goals. The model complements established improve-
ment methods such as CMMI, GQM, and Experience Factory and links them to
those project management activities that often are the starting point of im-
provement initiatives.

Copyright © Fraunhofer IESE 2002 v

Table of Contents

1 Introduction 1

2 Systems Thinking 3

3 A Systems Thinking Foundation of SPI 5
3.1 Control and Feedback 5
3.2 The SPI Systems Model 6

4 Deployment and Systems Thinking in SPI 10
4.1 Goal-Driven Project Planning 10
4.2 Project Monitoring 11
4.3 Determination of Change Actions 12
4.4 Performing Root Cause and Impact Analysis by Simulation 13

5 Discussion 15
5.1 CMMI-Based Improvement 15
5.2 GQM Measurement 16
5.3 Experience Factory 16
5.4 Appropriateness and Justification of the SPI Systems Model17

6 Conclusion 18

7 References 19

Copyright © Fraunhofer IESE 2002 vii

Introduction

1 Introduction

Today's software process improvement (SPI) methods offer little guidance for
decision making on concrete improvement actions. For instance, when a project
manager identifies a schedule overrun that threats timely product delivery, then
improvement methods hardly give any specific recommendations nor guidance
to get the project into schedule again. At the other hand, improvement meth-
ods are useful for emphasizing the role of software engineering methods and
technology within a project, an aspect that conventional project planning
widely neglects.

Instead of offering concrete problem solutions, improvement methods either
guide organizations towards the identification of general improvement poten-
tial (i.e., benchmarking-based improvement) or help an organization to en-
hance its basic problem solving capabilities (i.e., feedback-based improvement).
Examples of benchmarking-based improvement are ISO/IEC standard
9000:2000 [14] and the Software Engineering Institute's (SEI) Capability Matur-
ity Model (CMMI) [10]. Examples of feedback-based improvement are the Ex-
perience Factory approach [2], measurement methods like Goal/Question/
Metric (GQM) [3][7][18][25], the SEI's PSM [11], and the Balanced Scorecard
[15], as well as knowledge management approaches to SPI (e.g., project post
mortems [16][5]).

Project planning focuses on aspects like deliverables, milestones, staff and other
project resources, time, budget, risk, etc. Software engineering method and
technology do usually not play a central role in project planning, although it
can be crucial for project success to chose the right methods and to deploy
them in the right way. For instance, an insufficient integration and testing
strategy can easily make a project fail, even if all other project phases went ex-
traordinary well.

This paper proposes a model that guides project managers (1) to set up a pro-
ject so that it can reach its specific goals and (2) to identify corrective actions (or
changes) once a project is at risk of failing its goals. Both aspects are equally
relevant to project management and software process improvement. The model
adds a focus of software engineering method and technology to project man-
agement. It also complements established software process improvement
methods and grounds them stronger in core project management activities.

The model is defined as a systems model, which facilitates rapid and well-
informed decision making. It also provides a framework for the detailed analysis
of specific project phenomena, such as identifying root causes of schedule over-

Copyright © Fraunhofer IESE 2002 1

Introduction

runs and assessing the effects of adding new staff to the project. Throughout
this paper, the model is denoted SPI Systems Model. This name is not fully ap-
propriate, because we focus on the project management related aspects of SPI
and do not address long-term organizational improvement activities in the first
place. However, those long-term aspects of improvement are covered by most
established improvement methods, and it will become clear how the proposed
model integrates with them. For this reason we find it acceptable to stick with
the simplifying but concise model name.

The sections of this paper briefly introduce the fundamentals of systems think-
ing (Section 2), present the SPI Systems Model (Section 3), and explain how the
SPI Systems Model can be deployed by project management (Section 4). Section
5 discusses the presented approach with regard to project management and
other SPI approaches. Section 6 summarizes the main conclusions of the paper.

Copyright © Fraunhofer IESE 2002 2

Systems Thinking

2 Systems Thinking

In this paper we use systems thinking and cybernetics as a paradigm for model-
ing and discussing software project management and software process im-
provement. Systems models contain the main concepts of a phenomenon of in-
terest (e.g., software projects) and describe how these concepts interact with
each other (e.g., a project goal determines some aspects of a project plan, and
an external event can impact the course of a project).

The usual paradigm for analyzing software projects is the process paradigm. It
focuses on sequences of activities and addresses questions like "what is done
when and by whom?". We want to take a different perspective: Our interest is
not "what" is done, but "why" it is being done. For this purpose, systems
thinking is a much better paradigm for analyzing and understanding the mana-
gerial, organizational, and socio-technical problems in software projects. It de-
scribes how and why systems behave the way they do.

Originating in the seminal work done by Norbert Wiener on cybernetics [28],
until today there have probably been given as many definitions of systems
thinking as there were scientists working in the field (e.g., Forrester [13],
Checkland [8], Weinberg [27], van Bertanlaffny [4], etc.). In this paper, we fol-
low the sufficiently broad but still concise definition given by Peter Senge who
considered systems thinking the activity of contemplating the whole of a sys-
tem and understanding how each part influences the rest [24]. In the case of a
socio-technical system, like, for example, a car with a driver and passengers,
this would include the analysis of how the actions of the individuals sitting in
the car influence the behavior of the system.

DeviceInput Output

Disturbances

System

Figure 1: Open system without feedback

An important step toward systems thinking is to recognize that the internal
structure of a system and the feedback processes that govern the relationships
between system elements are the explanatory factors for its overall behavior
rather than external disturbances. This way of looking at the source of system
behavior requires that the system be considered essentially closed and not

Copyright © Fraunhofer IESE 2002 3

Systems Thinking

open. An open system (cf. Figure 1) basically is considered a device, e.g., a car
without driver and passengers, that receives some input, e.g., the pressure on
the gas pedal executed by the driver, and produces some output, e.g., the ve-
locity with which the car moves. In a closed system (cf. Figure 2), e.g., a car
with driver, again there is some input, e.g., the request or goal to reach the
next town within 30 minutes, and some output, e.g., the velocity with which
the car has to move in order to reach the goal.

DeviceInput Output

Controller

Controls Measurements

Disturbances

System

Figure 2: Closed system with feedback and control

In contrast to the case of the open system where the velocity of the car was
dependent on some external influence, in the case of the closed system, the ve-
locity of the car is controlled by the system itself. This happens through infor-
mation feedback. By collecting measurement data, i.e. observing the speed-
ometer and the clock, the driver (the controller in Figure 2) can calculate at any
point in time how fast he must drive in order to achieve the defined goal. Based
on measurements and some calculations, the driver decides whether he should
change the pressure on the gas pedal (the control in Figure 2). It should be
mentioned that in the case of the closed system, the controller would auto-
matically take under consideration external disturbances (e.g. a steep hill) as
long as the effect on the device is adequately reflected by the measurements –
and neither misperceptions nor miscalculations occur.

Copyright © Fraunhofer IESE 2002 4

A Systems Thinking Foundation
of SPI

3 A Systems Thinking Foundation of SPI

In the previous section we argued that systems thinking is the application of
feedback control systems principles and techniques to managerial, organiza-
tional, and socio-technical problems. In this section, we will discuss further the
assumptions and concepts that are important in the context of systems think-
ing, and – by using these concepts – we introduce the SPI Systems Model.

3.1 Control and Feedback

Control theory is based on the explicit premise that the change of a system is,
or can be planned. Control is the process of ensuring that operations proceed
according to some plan by reducing the difference between the plan (or goal)
and reality. Control can only be exercised over the components internal to the
system and cannot be affected upon the external environment. Using feedback
mechanisms facilitates control over the system.

Feedback is concerned with the control of a mechanism (or device) on the basis
of its past performance. It consists of procedures that determine deviations
from plans and desired states and that indicate and execute corrective action
regarding these deviations. This entails gathering data on the state of the out-
put, searching for deviations from the plan, and adjusting the input based on
the results of the output. It thus establishes a relatively closed system of causes
and effects. It also reduces the risk of failure and the effect of residual complex-
ity and ambiguity.

Both feedback and control presuppose planning, at least in the form of setting
goals and performance levels, as plans furnish the baselines and standards of
control. The pattern of goal seeking behavior exhibited by a system is then ex-
pected to stay true to the identified goal. The implicit and rather mechanistic
assumption is that the plan or target does not change and that future condi-
tions will remain identical to past conditions. In a change intensive environment
these assumptions, and the resulting self-regulating mechanisms, clearly do not
work and either a forward looking anticipation strategy or a double-loop feed-
back system must be employed.

Double-loop feedback offers a more sophisticated alternative that allows for
the adjustment of the input variables to the process as well as the adjustment
to plans that are used to dictate performance standards. The ability to respond
to change and alter performance standards encourages adaptability and im-
proves the chance of long-term survival. It also enables the control mechanism

Copyright © Fraunhofer IESE 2002 5

A Systems Thinking Foundation
of SPI

to benefit from most feedback data and avoid defensive routines to discredit
suspect data.

Double-loop control requires long-term planning in designing the double-loop
and will consume larger resources. It enables the system to become more
adaptable and to do so more rapidly rather than bind itself to historical pat-
terns. This adaptation means that the system is capable of long-term learning
and continuous improvement in a search for greater efficiency. In contrast, sin-
gle-loop feedback only focuses on the short-term adjustments during the dura-
tion of the control activity that will maximize the efficiency of the current prod-
uct. Such improvements only apply to the current control loop and do not feed
back into long-term changes to the overall process. In other words, lessons are
neither learned nor retained.

The phenomenon that double-loop learning requires substantial investments
which will pay-off only on a long-term time scale, while simple (isolated) single-
loop feedback will only have local impact that is not sustained, is quite well re-
flected in the SPI literature by the duality of strategic management and project
management. By offering an SPI Systems Model that has well-defined links to
strategic management, we offer a perspective on organizational learning that
puts the focus to the project as the heart of any sustained SPI program without
de-coupling it from the strategic level.

3.2 The SPI Systems Model

Figure 3 presents the SPI Systems Model. The initiation of a software develop-
ment project is triggered by business goals (BusG) from which the specific pro-
ject goals (ProjG) are derived (arc 1). An example of a business goal would be:
”We need to increase our market share in the database marked from 10% to
20% within the next two years”. The project goals for the development of the
next database release could then be: ”Compared to the previous release,
shorten lead time by enforcing concurrent engineering and reuse; at the same
time, improve product quality by at least 20% and reduce development cost by
10%”.

In order to make ProjG operational, a transformation into product goals (ProdG)
and process goals (ProcG) is necessary (arcs 2). Typically, ProdG is associated
with functionality and quality (i.e. functional and non-functional requirements),
while ProcG is associated with time and cost (or effort). In our example, ProdG
would relate to the planned increase of quality by at least 20%, while process
goals would relate to the planned reduction of lead time and development
cost. It should be noted that the definition of ProcG not only depends on ProjG
but also on ProdG (arc 3). For example, the improvement of product quality
might impose a change in the process that is going to be executed, say by in-

Copyright © Fraunhofer IESE 2002 6

A Systems Thinking Foundation
of SPI

creasing the inspection intensity (i.e., the number of inspections) during the de-
sign phase.

The joint set of ProdG and ProcG forms the starting point for developing ProjP
(arcs 4). ProjP is the result of the planning stage and the central control for the
development stage of the project. It can be seen as an instantiation of available
process, product and resource models in the organization (yielding, for exam-
ple, a Gantt chart, a resource allocation plan, and a high-level product architec-
ture) that serves project management (ProjM) as an instrument to define and
control development activities such as execution of processes and creation of
product-related artifacts (arcs 5). The process situation (ProcS) can be deter-
mined based on observation (measurement) of project progress, i.e. activities
that have been concluded, milestones that have been passed, resources that
have been consumed, etc. The product situation (ProdS) can be determined
based on observation (measurement) of certain characteristics (e.g., size, qual-
ity) of intermediate products and the final product. Because creation of inter-
mediate and final products is inherently dependent on the execution of proc-
esses, and thus the current process situation, Figure 3 shows a synchronization
link between ProcS and ProdS (arc 6).

BusG ProjG

ProdG

ProcG

ProdS

ProcSProjP

ProjM

ProjS

ExperienceContext

Planning Development

Unexpected EventsPlanning Errors

2

10

1

2

3

6

54

5

7

7

8 8

9

14 13

1211
Project

4

16 16

ProdC15

Figure 3: SPI Systems Model with single-loop and double-loop feedback

The project situation is a result of combining ProcS and ProdS (arcs 7). Based on
measurement data and by using adequate models, e.g., static predictive models
or dynamic process simulation models, a projection can be made until project
end in order to facilitate comparison with ProjG for project control. This projec-
tion is labeled with ProjS in Figure 3.

Copyright © Fraunhofer IESE 2002 7

A Systems Thinking Foundation
of SPI

Project management (ProjM) takes the role of the controller. Its main task is to
compare ProjG with ProjS (arcs 8) and to initiate a change action if needed,
e.g., when project deadline or product quality are at risk. There are two types
of change actions possible that would create a single-loop feedback (arcs 9 and
10). The first case (arc 9), which can only induce a corrective change of ProjP
without changing ProjG is labeled ”single-loop feedback (inner loop)”. The
second case (arc 10), which may induce a corrective change of ProjG and, due
to that, a change of ProjP, is labeled ”single-loop feedback (outer loop)”. Since
it is not realistic to assume that ProjM can simply change ProjG without asking
for and receiving the agreement from higher-level management, the outer loop
feedback cycle is not fully endogenous to the system.

In addition to BusG, there are two important concepts that serve as an input to
the system (i.e., the software project): Information and knowledge about the
Context of the project (arc 11) and Experience about planning and develop-
ment (arc 12). Context information is a relevant input to many planning and
development activities and thus should be reflected in ProjP. Also Experience,
e.g., best practices, should be taken into account when developing ProjP. Typi-
cally, Experience is available in the form of personal and implicit mental models,
or it is made explicit and stored in an experience base in the form of quantita-
tive and qualitative models (e.g., process models, product models, and resource
models) that represent the past and current state-of-practice.

There are two major types of disturbances that impact the system: Unexpected
Events (arc 13) and Planning Errors (arc 14).

The system output (arc 15), i.e., the project outcome, is the end product that
will be delivered to the customer after project end (ProdC).

By extending the system boundaries and including strategic management (deal-
ing with BusG) and experience management (dealing with Experience) into the
system under observation, i.e., the software organization is the ”device” on
which the ”controllers” strategic and experience management work, estab-
lishment of double-loop feedback becomes possible. In the extended model,
double-loop feedback is possible in two ways (arcs 16). Either observations, les-
sons learned and best practices resulting from the project (and reported by
ProjM) are used by strategic management (StratM) to alter BusG, or they are
used by experience management (ExpM) to alter the models in the experience
base.

It should be noted, that the structural similarity between Figure 2 and Figure 3
is not directly visible, because in Figure 3, apart from the project plan (ProjP),
which represents the control, and the project management (ProjM), which
represents the controller, no real world entities are depicted that would repre-
sent the device (or mechanism) on which control is applied. In the SPI Systems
Model, the device is constituted by (1) the set of real world artifacts – besides

Copyright © Fraunhofer IESE 2002 8

A Systems Thinking Foundation
of SPI

ProjP – ,i.e., process handbooks, standards and guidelines, development docu-
ments, technical documentation, test reports, user documentation, etc., and (2)
all persons – besides ProjM – that assume a certain role within the project and
their interaction. It can be argued, however, that project goals (ProjG), product
goals (ProdG), and process goals (ProcG), are associated with the device during
the planning stage, while the project situation (ProjS), process situation (ProcS),
and product situation (ProdS) are associated with the device during the devel-
opment stage. Inputs to the system are business goals (BusG), and – in a more
indirect way – context information and experience from previous projects. Out-
put from the system is the product that is eventually delivered to the customer
(ProdC).

Copyright © Fraunhofer IESE 2002 9

Deployment and Systems
Thinking in SPI

4 Deployment and Systems Thinking in SPI

This section illustrates how the SPI Systems Model can be deployed by project
management. It addresses the following four kinds of deployment: (1) Goal-
driven project planning, (2) project monitoring, (3) determination of change ac-
tions, and (4) performance of root cause and impact analysis by simulation.

4.1 Goal-Driven Project Planning

The key principle of the SPI Systems Model is that software development should
be goal-driven, i.e., projects should be planned based on explicitly set goals.
But how can this be done effectively?

First, it must be noted that the SPI Systems Model is not a process model. This
means that one does not need to start with identification of project goals but
can also start with an existing project plan and re-examine it in the light of rele-
vant product and process goals. At the end it is important that the various goals
and the project plan are consistent with each other. There are various ways
through which this can be ensured.

Project goals are those that are raised by the project's customers and those set
by the development company's internal authorities (e.g., product management
or senior management). Each project goal should be written down together
with information about who has raised it.

Product goals are related to functionality and quality of the product to be de-
veloped. They can also be related to cost or time. Table 1 contains several ex-
amples of product goals.

Product goal Goal category Notes

The software system shall have a
maximum downtime of 6 h / year.

Quality This is a Reliability goal, a typical kind
of Quality goal.

It shall be possible to operate the
system from web browsers (via HTTP)
and from mobile phones (via WAP).

Functionality Functionality is usually defined in the
system requirements; the most im-
portant such requirements should be
made explicit as product goals.

The first product release shall not cost
more than € 1,2 Million.

Cost Cost and Time can also be process
goals. However, here they are clearly
attributed to product.

Table 1: Examples of product goals

Copyright © Fraunhofer IESE 2002 10

Deployment and Systems
Thinking in SPI

Process goals are related to project performance. They can (1) be related to cost
and time, (2) address other project performance attributes (e.g., agility of the
project organization, flexibility of the project processes, or work-based qualifi-
cation objectives of the project staff), or (3) be derived from quality- and func-
tionality-related product goals. Example process goals are shown in Table 2.

Process goal Goal category Notes

The total project budget until product
release 1 shall be € 1,04 Million.

Cost

Project duration for stage 1 (pilot appli-
cation) shall be four months.

Time

These Cost and Time goals are
attributed to process. They are
associated to similar product goals.

It shall be possible to introduce addi-
tional browser compatibility require-
ments until two months before delivery
of release 2.

Flexibility Flexibility goals usually address the
project's software development
process and project organization.

The entire development staff shall gain
experience in development and testing
of internet software.

Staff Qualifica-
tion

Process goals can also relate to
human resources aspects of project
performance.

System tests shall document that the
system will have a downtime not longer
than 6 h / year.

Quality

The project shall develop the system for
operation with web browsers (via HTTP)
as well as mobile phones (via WAP).

Functionality

The Quality- and Functionality-
related process goals are derived
from the respective product goals.

Table 2: Examples of process goals

For defining a complete and consistent set of goals, a four-section grid can be
used, which contains one section for each kind of goal: Initial project goals,
product goals derived from project goals, process goals derived from project
goals, and process goals derived from product goals. Each individual product
and process goals should be checked for consistency with the other goals.

Once a consistent set of product and process goals is defined explicitly, a pro-
ject plan can be developed that ensures that the goals can be fulfilled. For each
goal, it should be possible to justify how the project plan helps attaining it. Pro-
ject planning can be supported by repositories that document experience about
how specific software engineering methods facilitate the achievement of cer-
tain goals (cf. [23][6]).

4.2 Project Monitoring

Project monitoring is the prerequisite for identifying the possible need for
change and improvement actions. It consists of tracking product and process
situation, and checking whether it is still likely that the respective goals can be
attained. It is essentially based on software measurement. Therefore, indicators
of goal attainment must be defined. They must allow for projecting the project

Copyright © Fraunhofer IESE 2002 11

Deployment and Systems
Thinking in SPI

situation at any given point in time to the expected situation at the end of the
project. There are two basic strategies through which such project monitoring
can be performed: Projection and milestone checkpoints. In practice, both
strategies are usually combined with each other.

The projection strategy requires the identification of project indicators that can
be identified (i.e., measured) in relatively small time intervals (e.g., on a weekly
basis) to allow for sufficient projection quality. In addition, a projection function
is required using which the current project indicators can be transformed into
the expected project situation at project end time. Hence, in this case, monitor-
ing is the comparison of a measurement-based estimation (e.g., derived from
measurement of weekly staff effort) with the respective project goal (e.g., total
effort budget of the project).

The strategy of milestone checkpoints breaks down the expected project situa-
tion at project end time into several project situations at major milestones. This
requires some model from which the target values for each milestone can be
derived (e.g., a model of typical effort distribution across development phases).
The milestones are usually defined with time intervals of several weeks (e.g.,
each one or three months). Indicator measurement (e.g., measurement of ac-
cumulated staff effort) is required at least shortly before each milestone. In this
case monitoring involves comparing the actual measurement data at each mile-
stone with the previously defined target value for the respective milestone.

4.3 Determination of Change Actions

Change actions must be determined as soon as it occurs that the project is not
likely to meet its goals. This can be due to two reasons: (1) The project plan is
not appropriate for attaining the goals, or (2) the goals are not realistic. Both
situations can happen because initial planning did not consider all relevant deci-
sion criteria, or because of the event of external changes that affect project
goals or plan (e.g., customer changes strategy and wants the system to be de-
veloped on a different platform).

In the following, we will focus on the case that the project plan must be
changed while the original goals can be kept. The other case (i.e., re-setting the
goals) will not be considered here any further. It is widely similar to the initial
project planning.

Figure 4 shows the input and output of project management activity ProjM (De-
termine Improvement Action), which establishes a feedback loop for project
plan updates based on identified deviations of product and process situations
from the respective goals. Input to the "Determine Change" activity are: Prod-
uct goal and situation, process goal and situation, project plan (current status
prior to change), context, and experience. Result and output of the Determine

Copyright © Fraunhofer IESE 2002 12

Deployment and Systems
Thinking in SPI

Improvement Action activity is a process change decision, which leads to a
change of project plan (ProjP).

ProjM
Determine
Improvement

Action

ProjP

ProdG ProdS

ProcG ProcS

Context Experience

ProjG ProjS

Figure 4: Input and output of the ProjM Activity (Determine Improvement Action).

Project managers can use this decision model for delineating their own individ-
ual decision making process, or for structuring a decision-making workshop
with selected team members. In both cases it is useful when product and proc-
ess goals are documented explicitly, an up-to-date project plan is available, and
key indicators of the product and process status are known (cf. Section 4.2). In
addition, information about relevant project context as well as experience
about appropriate improvement measures for specific product or process goals
will be helpful.

4.4 Performing Root Cause and Impact Analysis by Simulation

The SPI Systems Model provides a framework for the further refinement of
model components and the relationships between them. In particular, the SPI
Systems Model can be used as a blueprint for the simulation of project per-
formance. Systematic application of simulation, in combination with measure-
ment, can help uncover root causes of unexpected project behavior. It can also
be used for evaluating planning alternatives and for performing impact analyses
of proposed change actions prior to the actual implementation of the change
[9][22].

The System Dynamics (SD) simulation modeling approach [12] closely follows
the principles of Systems Thinking (cf. Section 2). Hence, SD is the recom-
mended choice for building simulation models that represent and refine the SPI
Systems Model [1][17][26]. SD simulation models focus on the formal (i.e.,
mathematical) representation of circular cause-effect structures that are held to
be responsible for generating observed behavior of a system. Due to their flexi-
bility and the possibility to combine hard data (empirical measurement) with
soft data (beliefs and tacit knowledge), the SD approach allows for constructing
adequate project models on different levels of detail according to the specific

Copyright © Fraunhofer IESE 2002 13

Deployment and Systems
Thinking in SPI

needs of project management. A methodology that systematically integrates
measurement, quantitative modeling, process modeling, and project simulation
using the SD approach has been presented in [19] under the name IMMoS (In-
tegrated Measurement, Modeling and Simulation). Empirical evidence for the
effectiveness and efficiency of the IMMoS methodology was collected in indus-
trial case studies [20][21].

Copyright © Fraunhofer IESE 2002 14

Discussion

5 Discussion

The management of complex systems, like those typically underlying industrial
software development processes, is very difficult. Based only on intuition and
experience, it is generally not possible to comprehend the dynamic implications
of so many interrelated loops carrying the system structure. If problems occur,
their diagnosis is far from trivial. People often fail to think in terms of circular
causal relationships and confound symptoms with causes. As a consequence,
corrective policies implemented supply poor results for three main reasons: (1)
The treatment of symptoms does not suppress the structural cause of the prob-
lem; (2) feedback systems resist policy changes because of internal compensa-
tion mechanisms; (3) the long term effects may be very different from short
term effects, so that the implemented policy may actually worsen the problem
in the long run.

For these reasons, we advocate the use of systems thinking in software process
improvement. Established improvement methods implement systems thinking
principles only to a limited extent. Several of these principles are often ne-
glected. The SPI Systems Model presented in Section 3 aims at compensating
this gap in established improvement methods. It can help leveraging the
strengths of individual improvement methods and points out how specific im-
provement methods can be combined in order to receive maximum benefit for
a software project or improvement program.

This section discusses the SPI Systems Model in the light of several improvement
methods: CMMI-based SPI, measurement-based improvement using GQM, and
the Experience Factory. Each method is compared with the SPI Systems Model,
and integration possibilities of improvement method and the SPI Systems
Model are outlined. The last subsection discusses appropriateness and justifica-
tion of the proposed SPI Systems Model.

5.1 CMMI-Based Improvement

Improvement based on CMMI and other process assessment approaches (e.g.,
ISO 15504/SPICE or ISO 9001) compare (or assess) a project's or organization's
software processes with a reference model of processes and evaluate the de-
gree at which the assessed processes cover the reference model. Improvement
suggestions can then be derived from the assessment results. However, the as-
sessment methods do not include any specific recommendations on specific
improvement suggestions or on the order in which possible process changes
should be conducted.

Copyright © Fraunhofer IESE 2002 15

Discussion

From the viewpoint of the SPI Systems Model, assessment methods such as
CMMI are a means for monitoring a project's process situation. They do not
explicitly address any of the following concepts: Product-related aspects, pro-
ject-specific process goals (i.e., other goals than those implicitly underlying the
reference model of processes), specific decision making support for the identifi-
cation of improvement suggestions, nor explicit support for specific project
management activities. Even though it must be acknowledged that experienced
process assessors usually take care of all these aspects when performing an as-
sessment, the method itself does not address such issues.

5.2 GQM Measurement

Goal/Question/Metric (GQM) is a method for measurement and analysis in
software engineering. Starting from the definition of project-specific measure-
ment goals, appropriate measures (or metrics) are derived via a framework of
question types. Usually, this is done by a measurement engineer, who acquires
the needed information during interviews or group discussions with project
team members. Afterwards, GQM addresses the preparation and execution of
measurements and guides the analysis and interpretation of measurement re-
sults. Analysis and interpretation are usually performed in structured group dis-
cussions (so-called feedback sessions) of the project staff.

Concerning GQM's relation to the SPI Systems Model, GQM addresses the
monitoring of both product and process situation with regard to individual pro-
ject goals, offers a means for identifying improvement suggestions (i.e., the
feedback sessions), and has been positioned as a tool for project management's
monitoring and control tasks. Critics of GQM have argued that the approach is
still too general, offering little specific guidance for standard measurement
tasks. Likewise, it does not offer any specific decision making rules for the iden-
tification of improvement suggestions. In general, the implementation of soft-
ware measurement can involve technical difficulties that make it not always
easy to find a pragmatic approach to implementing measurement. For instance,
it might take a relatively long time until measurement results are available and
the first improvement suggestions can be made. From this viewpoint, GQM is
one candidate solution (among others) for performing or supporting the meas-
urement and control activities of the SPI Systems Model.

5.3 Experience Factory

The Experience Factory (EF) is a paradigm for experience-based (or learning-
based) continuous improvement in software engineering. It builds on a cyclic
process (the Quality Improvement Paradigm, QIP) of goal setting, planning, con-
trolled action, and learning-based improvement. It also offers an organizational
infrastructure that supports experience collection and deployment.

Copyright © Fraunhofer IESE 2002 16

Discussion

With regard to the SPI Systems Model, the EF is a conceptual framework that
addresses most aspects of the SPI Systems Model. However, it does so on a
relatively abstract level and does not offer operational guidance for the various
tasks: The EF does not explicitly distinguish between product and process as-
pects, does not include specific monitoring and control mechanisms (EF imple-
mentations often use GQM for that purpose), and does not include specific im-
provement suggestions.

5.4 Appropriateness and Justification of the SPI Systems Model

The previous subsections have pointed out that the proposed SPI Systems
Model complements established improvement methods by shifting focus on
important project-related aspects of improvement. The SPI Systems Model in-
cludes key principles of systematic, feedback-based improvement: Explicit goal
setting, systematic planning, informed decision making, and the need for ac-
cumulating experience (or best practice or patterns) about improvement actions
that are appropriate within a specific given situation.

The importance of explicit goal setting and the separation of product goals
from process goals have been emphasized by the PROFES improvement method
[23]. Its relevance has been demonstrated in the PROFES application projects.
The need for informed decision making, which should be supported by a sound
understanding of the project situation and be based on accumulated past ex-
perience has been emphasized since the introduction of the Experience Factory.
Recent contributions include the model-based simulation of software projects
[19] and methods for knowledge management within SPI [6].

The SPI Systems Model formulates a project-based feedback system similar to
GQM. However, it is not focusing on measurement alone and emphasizes the
need for combined product and process monitoring. The SPI Systems Model
also is linked to cross-project or organizational feedback (i.e., double-loop
feedback) as formulated in the Experience Factory.

Concerning cross-project feedback, the SPI Systems Model addresses the core
activity of identifying change actions. This is widely neglected in project man-
agement methods as well as in established SPI methods. For this reason, the SPI
Systems Model guides project management's change activities and grounds es-
tablished (organizational) SPI methods in software projects. It can be expected
that such a link of project management and SPI helps overcome the still existing
gap between both fields: Project management might gain a higher awareness
of software engineering methods and technology, and SPI might easier attract
project management's attention for the importance of long-term, sustained
improvement activities.

Copyright © Fraunhofer IESE 2002 17

Conclusion

6 Conclusion

This paper has introduced the SPI Systems Model that builds on explicit goal
setting, separates software product from process, emphasizes monitoring of
project state, and seeks for understanding the "why" of improvement needs
and improvement actions. Anchor point of all these aspects is the software pro-
ject plan, which transforms project goals into appropriate planned action. For
this reason, the SPI Systems Model is grounded in project management: It views
SPI as a tool that enables project management to keep a project in line with its
goals.

The SPI Systems Model complements established improvement methods, which
are usually not rooted in project management and lack guidance for the identi-
fication of concrete improvement suggestions. The model offers a pragmatic
starting point for understanding how software project phenomena interrelate
with each other, and why specific improvement suggestions might be superior
to others in a given project situation. In cases where additional rigor and justifi-
cation of decisions are needed, the SPI Systems Model can be refined and pro-
vide the basis for simulation-based root cause and impact analysis.

Copyright © Fraunhofer IESE 2002 18

References

7 References

[1] Abdel-Hamid, T.K., Madnick, S.E.: Software Projects Dynamics – an Integrated
Approach. Prentice-Hall (1991)

[2] Basili, V.R., Caldiera, G., Rombach, D. H.: Experience Factory. In: Marciniak, J.:
Encyclopedia of Software Engineering, Vol. 1, pp. 511-519, Wiley (2001)

[3] Basili, V.R., Caldiera, G., Rombach, H.D., van Solingen, R.: Goal Question Metric
(GQM) Approach. In: J. Marciniak: Encyclopedia of Software Engineering, Vol. 1,
pp. 578-583, Wiley (2001)

[4] von Bertalanffy, L.: General Systems Theory, Foundations, Development, Appli-
cations. Georges Braziller, New York (1968)

[5] Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never leave a project without it.
IEEE Software, 19(3), pp. 43-45, (2002)

[6] Birk, A.: A Knowledge Management Infrastructure for Systematic Improvement
in Software Engineering. PhD Theses in Experimental Software Engineering, Vol.
3, Fraunhofer IRB, Stuttgart, Germany (2001)

[7] Briand, L.C., Differding, Ch., Rombach, H.D.: Practical Guidelines for Measure-
ment-Based Process Improvement. Software Process Improvement and Practice 2
(4), pp. 253-280, (1996)

[8] Checkland, P.: Systems Thinking, Systems Practice. (1981)

[9] Christie, A.M.: Simulation: An Enabling Technology in Software Engineering. In:
CROSSTALK – The Journal of Defense Software Engineering, pp. 2-7 (1999)

[10] CMMI Product Team. Capability Maturity Model Integration (CMMI), Version
1.1. Software Engineering Institute, Pittsburgh, PA (2002)

[11] Florac, W.A., Park, R.E., Carleton, A.D.: Practical Software Measurement. Soft-
ware Engineering Institute, Pittsburgh, PA (1997)

[12] Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961)

[13] Forrester, J.W.: Principles of Systems. Productivity Press, Cambridge (1971)

[14] International Organization for Standardization: ISO 9001:2000: Quality Man-
agement Systems - Requirements. International Organization for Standardization
(2000)

[15] Kaplan, R.S., and Norton, D.P.: The Balanced Scorecard: Translating Strategy into
Action. Harvard Business School Press, Boston (1996)

[16] Kerth, N.L.: Project retrospectives: A handbook for team reviews. Dorset House,
New York (2001)

[17] Lin, C.Y., Abdel-Hamid, T.K., Sherif, J.S.: Software-Engineering Process Simula-
tion Model (SEPS). In: Journal of Systems and Software 38, pp. 263-277 (1997)

Copyright © Fraunhofer IESE 2002 19

References

[18] van Latum, F., van Solingen, R., Oivo, M., Hoisl, B., Rombach, D.H., Ruhe, G.:
Adopting GQM-based measurement in an industrial environment. IEEE Software,
15(1):78–86 (1998)

[19] Pfahl, D.: An Integrated Approach to Simulation-Based Learning in Support of
Strategic and Project Management in Software Organisations. PhD Theses in Ex-
perimental Software Engineering, Vol. 8, Fraunhofer IRB, Stuttgart, Germany
(2001)

[20] Pfahl, D., Lebsanft, K.: Knowledge Acquisition and Process Guidance for Building
System Dynamics Simulation Models. An Experience Report from Software In-
dustry. In: International Journal of Software Engineering and Knowledge Engi-
neering 10, 4, pp. 487-510 (2000)

[21] Pfahl, D., Lebsanft, K.: Using Simulation to Analyse the Impact of Software Re-
quirement Volatility on Project Performance. In: Information and Software Tech-
nology 42, 14, pp. 1001-1008 (2000)

[22] Pfahl, D., Ruhe, G.: System Dynamics as an Enabling Technology for Learning in
Software Organisations. In: 13th International Conference on Software Engi-
neering and Knowledge Engineering. SEKE'2001. Knowledge Systems Institute,
Skokie, IL, pp. 355-362 (2001)

[23] The PROFES Consortium: PROFES User Manual. Fraunhofer IRB Verlag, Stuttgart,
Germany (2000)

[24] Senge, P.M.: The Fifth Discipline – the Art & Practice of the Learning Organiza-
tion. Doubleday, New York (1990)

[25] van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A practical
guide for quality improvement of software development. McGraw-Hill, London
(1999)

[26] Waeselynck, H., Pfahl, D.: System Dynamics Applied to the Modelling of
Software Projects. In: Software Concepts and Tools 15, 4, pp. 162-176 (1994)

[27] Weinberg, G.M.: An Introduction to General Systems Thinking. Wiley, New York
(1975)

[28] Wiener, N.: Cybernetics. Wiley, New York (1948)

Copyright © Fraunhofer IESE 2002 20

Document Information

Title: A Systems Perspective on
Software Process Improve-
ment

Date: August 12, 2002
Report: IESE-Report No. 047.02/E
Status: Final
Distribution: Public

Copyright 2002, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	Abstract
	Table of Contents
	Introduction
	Systems Thinking
	A Systems Thinking Foundation of SPI
	Deployment and Systems Thinking in SPI
	Discussion
	Conclusion
	References

