Skip to main content

Visual Servoing Along Epipoles

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 4))

Abstract

A visual servoing algorithm for hand-eye robotic system based on epipolar geometry is proposed. The control law is based on the estimation of the epipoles position obtained by points correspondences extracted from the current and target images. The camera-robot motion is computed from the observation of the epipoles coordinates. Only the principal camera point is assumed to be known but not the other intrinsic parameters. Experimental results are reported to validate the visual servoing algorithm proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Bien, W. Jang, and J. Park. Characterization and use of featurejacobian matrix for visual servoing. In K. Hashimoto, editor, Visual servoing: realtime control of robot manipulators based on visual sensory feedback, Series in Robotics and Automated Systems, pages 317–363. World Scientific, 1993.

    Google Scholar 

  2. F. Chaumette. Potential problems of stability and convergence in image-based and positionbased visual servoing. In G. Hager, D. Kriegman, and A. Morse, editors, The confluence of vision and control, pages 66–78. Springer-Verlag, 1998.

    Google Scholar 

  3. F. Chaumette and E. Marchand. A redundancy-based iterative approach for avoiding joint limints: Application to visual servoing. In IEEE Transaction on Robotics and Automation, volume 17(5), Oct. 2001.

    Google Scholar 

  4. G. Chesi, A. Garulli, A. Vicino, and R. Cipolla. Estimating the fundamental matrix via constrained least squares: a convex approach. In IEEE Trans. on Pattern Analysis and Machine Intelligence, volume 24(3), Mar 2002.

    Google Scholar 

  5. G. Chesi, E. Malis, and R. Cipolla. Automatic segmentation and matching of planar contours for visual servoing. In Proc. of IEEE Int. Conf. Rob. Autom., San Francisco, CA, 2000.

    Google Scholar 

  6. G. Chesi, J. Piazzi, D. Prattichizzo, and A. Vicino. Epipole—based visual servoing using profiles. In Proc. IFAC’02 World Congress, Barcellona, Spain, July 2002.

    Google Scholar 

  7. G. Chesi, D. Prattichizzo, and A. Vicino. A visual servoing algorithm based on epipolar geometry. In Proc. IEEE Int. Conf. on Robotics and Automation, May 2001.

    Google Scholar 

  8. G. Chesi, D. Prattichizzo, A. Vicino, and K. Hashimoto. Keeping features in the camera’s field of view: a visual servoing strategy. In International Symposium on Mathematical Theory of Networks and Systems, pages 2321–2326, Notre Dame, IN, August 12-16 2002.

    Google Scholar 

  9. R. Cipolla and P.J. Giblin. Visual Motion of Curves and Surfaces. Cambridge University Press, 2000.

    Google Scholar 

  10. P. Corke and S. Hutchinson. A new partitioned approach to image-based visual servo control. In IEEE Transaction on Robotics and Automation, volume 17, Aug. 2001.

    Google Scholar 

  11. B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in robotics. In IEEE Trans. on Robotics and Automation, volume 8(3), pages 313–326, June 1992.

    Google Scholar 

  12. F. Espiau, E. Malis, and P. Rives. Robust features tracking for robotic applications: towards 2 1/2d visual servoing with natural images. In Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, May 2002.

    Google Scholar 

  13. O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge, 1993.

    Google Scholar 

  14. G. D. Hager. A modular system for positioning using feedback from stereo vision. In IEEE Trans. on Robotics and Automation, volume 13, pages 582–595, 1997.

    Article  Google Scholar 

  15. R. Hartley. In defence of the 8-point algorithm. In Proc. of IEEE Int. Conference on Computer Vision, Cambridge MA,USA, June 1995.

    Google Scholar 

  16. R. Hartley and A. Zisserman. Multiple view in computer vision. Cambridge University Press, 2000.

    Google Scholar 

  17. K. Hashimoto and T. Noritsugu. Performance and sensitivity in visual servoing. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 2321–2326, 1998.

    Google Scholar 

  18. J. Hill and W. T. Park. Real time control of a robot with a mobile camera. International Symposium on Industrial Robots, pages 233–246, 1979.

    Google Scholar 

  19. S. Hutchinson, G.D. Hager, and P.I Corke. Tutorial on visual servo control. IEEE Trans. Rob. Autom., 1996.

    Google Scholar 

  20. F. Janabi-Sharifi and W. J. Wilson. Image features for visual servoing. 13(6):890–903, Dec. 1997.

    Google Scholar 

  21. H.C. Longuet-Higgins. A computer algorithm for recostructing a scene from two projections. Nature, 293:133–135, 1981.

    Article  Google Scholar 

  22. Q.-T. Luong and O.D. Faugeras. The fundamental matrix: theory, algorithmsm and stability analysis. Int. Journal of Computer Vision, 17(1):43–76, 1996.

    Article  Google Scholar 

  23. E. Malis, F. Chaumette, and S. Boudet. 2 1/2d visual servoing. In IEEE Trans, on Robotics and Automation, volume 15, pages 238–250, Apr. 1999.

    Google Scholar 

  24. J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User guide for minpack-1. In Argonne National Laboratory Report ANL-80-74, Argonne, Ill, 1980.

    Google Scholar 

  25. O. Faugeras Q. T. Luong, R. Deriche and T. Papadopoulo. On determining the fundamental matrix: analysis of different methods and experimental results. In INRIA, volume 1894, Apr. 1994.

    Google Scholar 

  26. E. Rivlin R. Basri and I. Shimshoni. Visual homing: Surfing on the epipoles. 33(2):705–710, 1999.

    Google Scholar 

  27. R. Vidal, S. Soatto, Y. Ma, and S. Sastry. Segmentation of dynamic scenes from the multibody fundamental matrix. In ECCV Workshop on Vision and Modelling of Dynamic Scenes, 2002.

    Google Scholar 

  28. Z. Zhang. Determining the epipolar geometry and its uncertainty: a review. In Int. Journal of Computer Vision, volume 27, March 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piazzi, J., Prattichizzo, D., Vicino, A. (2003). Visual Servoing Along Epipoles. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-36224-X_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00251-2

  • Online ISBN: 978-3-540-36224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics