Task Modelling in Multiple Contexts of Use

Quentin Limbourg, Nathalie Souchon and Jean Vanderdonckt
Université catholique de Louwvain, Institut d’Administration et de Gestion
Place des Doyens, 1 - B-1348 Louvain-la-Neuve, Belgium

{souchon, limbourg,vanderdonckt} Qisys.ucl.ac.be

08 march 2002

Abstract

The context of use in which users are carrying out their interactive
tasks is continuously submitted to an evolution in the user population, the
computing platforms used for the tasks, and the physical environment in
which users are living. This evolution process raises a need for extending
traditional task modelling to support multiple contexts of use simultane-
ously. To address this problem, this paper first provides a formal notation
of a task model that is further refined to support the variation of condi-
tions depending on multiple contexts of use. Key concepts are then intro-
duced to support the task modelling process so as to create a clear frontier
between the Context-dependent Task Model and the Context-Independent
Task Model. The Context-Partially-Independent Task Model attempts to
capture subtasks shared in many contexts of use, but not all. The use of
these key concepts enable designers to build a Multi-Context Task Model,
notably, by factoring out common parts from Context-dependant Task
Models. All these key concepts are equally denoted with the introduced
formal notation. In addition, they support designers in adopting the task
modelling approach of their choice in multiple contexts of use, which is so
far not allowed.

1 Introduction

For many years, user interfaces (UIs) have been developed assuming that the
context of use in which they work remains constant over time: the user consid-
ered to have little or no variation, interacting with the same computing platform
to carry out the same task in a non-changing physical environment. Today, this
assumption is no longer satisfied as we observe:

1. A multiplicity of users: not only types of users become more numerous
(e.g., more people are willing to interact with computers, tasks previously
assigned to other types of users are now devoted to new types, the user
population is increasing in diversity), but also types of user are subject to
many redefinitions (e.g., users do evolve over time dynamically).

2. A proliferation of computing platforms: existing computing plat-
forms, like the desktop PC, are progressively enhanced with new interac-
tion capabilities while new platforms are emerging, such as cellular phone,
Personal Digital Assistant (PDA), Pocket PC, Web Appliance, or dedi-
cated interaction devices.

3. A continuing evolution of the physical environment: the organi-
zational structure may change (thus leading to moving a role from type
of user to another), the office location may change (thus resulting in task
reallocation), the working circumstances may change (e.g., the user moves
with her computing platform from one place to another or the user is
moving across computing platforms at the same place).

Existing conditions in which users carry out their interactive tasks are pro-
gressively evolving, while new conditions are appearing. Therefore, the capa-
bility of task-based UI design (i.e., with a single, all-encompassing task model)
to initiate the development process and to ensure user-centered design is ques-
tioned. In other words, a task model valid for a single predefined context of use
may become no longer valid for multiple, possibly largely different, contexts of
use or for variations of the context of use.

The aim of this paper is to address the problem of task modelling in multiple
contexts of use by augmenting the capabilities of traditional single-context task
modelling to support multiple contexts of use simultaneously. The remainder
of this paper is structured as follows: Section 2 situates the scope of this pa-
per and motivates it by highlighting some shortcomings of existing approaches.
Section 3 selects a well-established task model that will be subject to a for-
mal definition of its form and properties. Section 4 introduces our detailed
definition of the context of use in terms of the previously defined formal nota-
tion and provides four key concepts (i.e., the Context-Dependent Task Model,
the Context-Independent Task Model, the Context-Partially-Independent Task
Model, and the Residual Context-Dependent Task Model) to support an orig-
inal multi-context task model. Section 5 exemplifies the above concepts on a
case study in tele-medicine. Section 6 concludes the paper by reporting on the
benefits of the four key concepts supporting the multi-context task modelling
and suggests some future work.

2 The development process of multi-context user
interfaces
To define the scope of this paper, we rely on the reference framework for plastic

UIs introduced by Calvary, Coutaz & Thevenin [4]. It identifies four major
levels for producing context-sensitive Uls (Fig. 1).

1. A Concepts and Task Model describes how a particular task can be
carried out and the domain-oriented concepts related to this task.

2. An Abstract UI defines working spaces (or presentation units) by group-
ing subtasks according to various criteria (e.g., cognitive load, semantic
relationships, shared concepts), a navigation scheme between the working
spaces, and selects Abstract Interaction Objects [23] for each concept.

3. A Concrete UI results in a UI full description in terms of Concrete
Interaction Objects [23] and calls to semantic functions belonging to the
semantic core.

4. A Final Ul is represented by the complete piece of code required to
run/execute the UL

In a given context of use (e.g., the first C'1 context in Fig. 1), each non-initial
level is reached from the previous one by applying iteration (i.e., redefinition
or recomposition performed at the same level of abstraction - T’ loop in Fig.
1) and reification (i.e., transformation of an abstract level into a more concrete
one - 'R’ top-down arrow in Fig. 1). A second context of use (C2 in Fig. 1) can
be reached at any level thanks to a translation (i.e., production of a level of the
same abstraction that is tailored to another context of use). The higher level a
translation is applied, the wider and the richer the range of obtainable Uls can
be (the larger the plasticity domain can be” [4]). Our approach for considering
multiple contexts of use consequently focuses on the ’Concepts and Task Model’
level. At this level, Thevenin [21] introduced the notion of description to refer to
as a unified way to represent various models used in UI design. In addition, three
modelling activities are introduced: corrective decoration depicts any description
modification resulting from a modelling consideration; factoring out decoration
separates for a given description parts common to several contexts of use from
uncommon parts, generation decoration expresses a generation directive.

|
! C1 C2
Concepts & T Concepts &

Task Model Task Model
e iy
Abstract T Abstract
Ul Ul

R = reification
T = translation

|
| =iteration O Rl Rl /)
Concrete T Concrete

Ul Ul
e i ?| S
Final UI T Final UI

Figure 1: The reference development process for supporting context-sensitive
Uls ([4]).

With respect to these three modelling activities, task modelling in multiple
contexts of use can be achieved according to:

1. A ’Factoring out’ approach: build one task model for each context of
use and apply factoring out decoration to separate common parts from
uncommon ones. While easy to conduct, this approach can become tedious
(e.g., when contexts of use are numerous), redundant (e.g., when many
identical parts are considered due to the activity), unstructured (e.g., when
performed with no methodological guidance), error-prone (e.g., when done
by hand), or widespread (e.g., when documentation is scattered across the
various models).

2. A Minimalistic approach: build one task model containing all parts com-
mon to all contexts of use and apply decoration for all uncommon parts
resulting from specific contexts of use. While this alternative straightfor-
wardly identifies the common parts by construction, it can be revealed
hard to achieve (e.g., when numerous contexts of use or complex tasks are
considered).

For example, ArtStudio [4, 21] enables designers to start from a task
model representing the intersection of all contexts of use and to apply
corrective/factoring out decoration for multiple contexts of use. The *One
Model, Many Interfaces’ developed by Paterno and Santoro [9] also relies
on this approach.

3. A Prototypicalistic approach: build one task model for a context of use
considered as representative of most cases (e.g., a more important one,
a more frequent one, or a more comprehensive one) and apply correc-
tive/factoring out decoration when appropriate. While offering a natural
starting point, this approach does not specify any stopping criteria: when
and where decoration should be applied is not obvious.

For example, the polymorphic task hierarchy concept in the Unified UI
Design Method [17] starts from a prototypical task model (e.g., delete a
file), then apply decoration in the form of alternative task decomposition
depending on the the user type (e.g., select file, then select the delete
command for a blind user, select the delete command, select a file, and
confirm the command for a motor-impaired user). In this case, the context
of use is restricted to the user part.

4. A Maximalistic approach: build the most comprehensive task model with
all subtasks for all contexts of use, derive from this maximal model a
specific task model for each specific context of use by applying correc-
tive/factoring out decoration. The main advantage of this approach is that
the designer always relies on the same maximal model to apply decoration,
thus preserving consistency. However, a shortcoming of this approach is
that the quality of derived specific task models highly depends on the
modelling skills of the designer. In addition, structuring subtasks in the
maximal model may become complicated for sophisticated task models.

For example, the designer in xCA [1] first draws up a hierarchy of con-
cepts and subtasks in a project tree (Fig. 2). Then, s/he drags some
of these elements from the project tree and drops them into a channel
tree representing a task model for a particular computing platform (e.g.,
a WebTV, a cellular phone mini-browser). In this case, the context of
use is restricted to one component: the computing platform. Note that
UIML [2] also follows a maximalistic approach without any decoration:
the model is supposed to work without any variation on all intended com-
puting platforms.

[l «Ca.project - [http://w2k-cons-wv:80] - [CA_showcase] = |D ﬂ
I File | Edit View Tools Window Help ‘
lelDe@.|=»al s ealdls vx.
M B webTy browser (Set-top boxes) = [Structures E
¥ B 1o //=bTY browser (Set-top boxes) :IName Description
I Hame L= General page...
E] Horme [Table of thre. .
{21 xCA developer | #C4 press rel...
] xCAinvestars
] xCA partners
] =CA news and
[m xChproducts ¥
«| | B | | >
E x
& D 1317 E(,%:::lo:e brawser {Simple WAP) I ame m Desos
MName About xCh t E:, Home [A] Impartant SPAN
Description - JFw Paragraph_c.. P
Structure LA press relea: A Title SPAN Thisi
Default St... <C& press releas
Content P...
Orline True 5l
-
Orling Time
D T ST | I g 1 |
|Heady | |\I'ersinn: 1.05 4

Figure 2: Specific models for specific contexts of use in xCA.

The above examples show how important are the consideration of multiple
contexts of use at the same time, the need for a formal notation, and an ap-
propriate way to factoring out parts that are common to different context and
for differentiating parts that are dissimilar in these context. They argue for the
need of a sound basis for task modelling in multiple contexts of use.

3 Task Model

3.1 Introduction

A task model describes tasks that users need to perform in order to reach a goal
when interacting with a computer-based system. Tasks are typically recursively
decomposed into a hierarchy of subtasks. A task model can be represented by
a graph structure where:

e Nodes are the different tasks and subtasks a user has to carry out.

¢ Edges denote either a decomposition relation (a task ¢; is decomposed into
several subtasks) or a temporal relation (e.g., a task must be performed
before another) between nodes.

Task modeling has been extensively researched for years without any con-
sensus on a formal notation. Various formalisms have been proposed (e.g.,
formal grammars, transition networks, Petri nets) that cover different types of
information for different types of task model. Some are more oriented towards
identifying the activities and their logical decomposition whereas others are in-
cluding indications of temporal relationships and adding information related to
various concepts such as task objects, rules or agents [14].

The selection of ConcurTaskTree (CTT) as a starting task model results from
a careful analysis of several task models [13] based on the following rationale:

e CTT is more oriented towards software engineering than towards psycho-
cognitive analysis (like TKS [12] for instance).

e CTT has a rich set of formally defined temporal operators (i.e. LOTOS
operators) [15], probably the most extensive one.

e CTT is supported by a usable graphical tool (CCTE) which facilitates its
dissemination and communication among practitioners.

This section sets the basis of a formal notation of a CTT task model in order
to support task modelling for multiple contexts of use.

3.2 Definition and Properties

Let us assume that the task model is a directed graph. Let RO be the set
of relationship operators. RO is partitioned into temporal and decomposition
relationships. The Task Model 7TM is defined by a tuple < TASK , ¢, , T >
where:

e TASK is a finite set, called the set of tasks. TASK = {to,t1,...,tn} where
the t; are the different tasks and subtasks that have to be carried out.

e ty € TASK is the root of the graph, that is to say the initial task.

e T C TASK x RO x TASK is a set of transitions, which can be noted by
the triplet < ¢;,70;,t; >. As it is a directed graph, ¢; is the source node
whereas t; is the target node.

For example, the task tree represented in Fig. 3 would be denoted as:
TM =<A{to,t1,ta,t3,ts}, 0, {(to,r01,11), (fo, 701, t2), (t1, 702, t2),

(tl,’f'Ol,t3), (t17r017t4)7 (t37T037t4)} >

Moreover, some properties can be asserted:

Figure 3: Example of Task Graph.

Vt; € TASK, Tt (t;) = {t; € TM | Iro; € RO : < t;,r0;,t; >} denotes
the set of all the successors of ;.

Vt; € TASK, I (t;) = {t; € TM | 3ro; € RO : < tj,ro;,t; >} denotes
the set of all the predecessors of t;.

Vt; € TASK, father(t;) = set of all the predecessors of ¢; where ro; is a
relationship of decomposition in the triplet < ¢;,ro;,t; >.

Vt; € TASK, brother(t;) = set of all the successors or predecessors of ¢;
where r0; is a temporal relationship in the triplet < t;,70;,t; > or in the
triplet < t;,70;,8; >.

the nodes of 7M will be organized in layers from the root. We define L;
(the layer of range 7) as the set of the nodes resulting from applying Deo’s
level decomposition algorithm [6]. Moreover, Vi Vj, L; C TM, can be
verified. In the above example, Lo = {to}, L1 = {t1,t2} and Ly = {t3,%4}.

if T~ (t;) = 0, then t; = to: the root denotes the main task.
if T (t;) = 0, then ¢; is a leaf: a leaf denotes a basic task.

T™M; C Wj iff V< ti, 105, t; > € T™; = < ti,r0i,t; > € Wj: TM; is
included 7TM; iff all the transitions of 7M; are included in TM;.

For the purpose of this paper, the following hypotheses are stated:

Vi, t; € TASK, ! ro; € RO = < t3,r04,t; > : TM is a 1-graph, that is
to say that there exists only one directed edge between two nodes;

TM is not a tree because V¢;, # I'~(¢;) < 3: a node can have up to three
predecessors : its father, its brother or itself (via iteration relationship);

Vt; € TASK, # Tt (t;) # 1: there must be more than one successor for
each task, otherwise this task should not have been decomposed;

Vt; € T (t;): 3 one brother(¢;), a corollary of the previous property;

A t; | T=(¢;) = 0 : there can be one and only one root for each TM .

4 Task Model for Multiple Contexts of Use

4.1 Introduction to the Context of Use

Task models attempt to systematically represent the way users achieve a goal
when interacting with a system. Some factors largely influence how a user
performs tasks to achieve a goal. We group these factors under the term context
of use.

The concept of context is extensively investigated in various areas of com-
puter science, leading to no unique definition. Schilit et al [18] define context
by three important aspects : where you are, who you are and what resources
are nearby. It means that they include the computing environment, the user
environment and, finally, the physical environment. Chen and Kotz [5] added
to this definition the time context, because the moment the user has to perform
a task is also an important and a natural factor.

Some authors consider context to be the user’s context while others consider
it to be the applications environment [20]. Petrelli et al [16] define the context
as any information that can be used to characterize and interpret the situations
in which a user interacts with an application at a certain time.

Dey and Abowd [7] define context to be any information that can be used
to characterize the situation of an entity, where an entity can be a person, a
place or objects that is considered relevant to the interaction between a user
and an application, including the user and the application themselves. From
this definition, almost any information available at the time of interaction can
be interpreted as contextual information (e.g., social situation, physiological
measurement, and schedules).

Schmidt et al [19] define context as knowledge about the user’s and IT de-
vice’s state, including surroundings, situation and location.

We define the context of use as the complete environment in which a task is
carried out. Two types of characteristics simultaneously and univoquely deter-
mine the context of use [7, 8, 11, 10, 22, 3]:

e Characteristics that are internal to the system containing the application
and its UI (e.g., the computing platform, the software/hardware param-
eters, the interaction devices, the network bandwidth, the latency, or the
screen resolution).

e Characteristics that are external to this technical system (e.g., the type
of user, her skills and knowledge, her preferences, the sound and light
conditions, her geographic position in a building, the stress level, the or-
ganization structure, the information channels).

The concept of context of use is partitioned into three models:

1. The User Model (UM) is a finite set {uy,us, ..., u,} where each u; repre-
sents a specific stereotype of user;

2. The Platform Model (P.M) is a finite set {p1,p2, ..., pn} Where each p; rep-
resents any property of the computing platform , such as screen resolution,
operating system, or network bandwidth.

3. The Environment Model (€M) is a finite set {e1,ea,...,e,} where each
e; represents a specific configuration of physical conditions (e.g., light or
pressure), location-, social and organizational environment (e.g., stress
level or social interactions) in which a task is carried out;

A context C; is denoted by a tuple < u;, p;, e; >. A context variation appears
when, at least, one element of a context tuple is modified.

A Contextual Task Model (CTM) is defined as a task model associated with a
specific context of use. A CTM is denoted by a tuple < TASK , t,, T, [Cetm] >,
where [Cetm] is a matrix of context of use which holds one element: C;.

From the example of Fig. 3, a CTM can be denoted as follows:

CTM =< {to, t1,t2,t3,ts4}, 0, {(to,r01,%1), (to,ro1,t2), (t1, 702, t2),

(t17T017t3)7 (tla ro1, t4)7 (t37 T037t4)}7 [Cl] >

where C1 would be for instance: < u1,p1,e1 >.

If an application is used in different contexts of use, a matrix [C] would have
more than one element of context. Some properties of an application can be
asserted from its matrix of context. An application is said to be mono-user,
respectively multi-user when (UM) = 1, respectively (UM) > 1. By analogy
an application is said to be mono/multi-environment and mono/multi-platform.

4.2 Context-Independent and Context-Partially-Independent
Task Model

In task modelling for multiple context of use, we notice that some tasks or
subtasks are carried out the same way in all (or several) different contexts of
use. Thus, isolating context-dependent tasks from context-independent ones
may be considered useful.

In this section, two new concepts are defined to support this isolation: the
Context-Independent Task Model (CZTM) which is a task model valid for all
considered contexts of use and the Context-Partially-Independent Task Model
(CPZTM) which is a task model valid for a subset of considered contexts of use.
Links between different task models will be also considered.

4.2.1 The Context-Independent Task Model.

A Context-Independent Task Model (CZTM) integrates tasks and transitions
that are common to all different contexts of use. The CZTM is defined by a
tuple < TASK , t), T, [Ceitm] >, where:

e TASK is a finite set of tasks {to,%1,...,t,} where the t; are tasks and
subtasks that belong to each CTM .

e ty € TASK is the root of the graph and of each CTM .
o T C TASK x RO x TASK is a set of transitions common to all CTMs.

o [Ceitm] is a matrix containing all the different contexts of use.

Ci uy p1 el
Cs uz p2 €
[Ccitm] = . = .

The following conditions must hold:

o tp € CITM & ty € CTM; Vj: in order to find a CZTM, all the different
CTMs need to have at least the same root. Indeed, two CTM having parts
in common but not their root can not be considered to form a CZTM as
their main purpose is different.

o CITM C CTM; Vi and Vt; € {CITTM \ to} = 3 father(t;): a CZTM is
included in all CTMs. Moreover, each task in the CZTM (except the root)
must have a father.

e # L; of the CZTM > threshold : the Context-Independent Task Model
must have at least threshold layers. Indeed, the number of desired layers
in our CZTM should be adjustable by the designer. The relevancy of the
CZTM depends indeed on the granularity of task analysis;

o if T (t;) = 0, then t; is a leaf task or a hinge task. A hinge task t; is a
task which is the source node of at least one conditional relationship with
a task belonging to another task model.

4.2.2 The Context Partially Independent Task Model.

A Context-Independent Task Model is made up of tasks that must be carried
out in all different contexts of use. But how do we represent a task model valid
for only some of those contexts of use? For instance, if we want to develop a
multi-platform application for a laptop, a desktop PC and a handheld PC, it
is likely that factoring out common tasks between a laptop and a desktop PC
would be useful.

A Context-Partially-Independent Task Model (CPZTM) integrates tasks that
are valid in a subset of considered contexts of use. A CPZTM is defined by a
tuple < TASK , ty, T, [Cepitm] >, where [Cepitm] is a matrix containing the
different contexts of use C; withi: 1.. m and m > 2 and [Cepitm] C [Ceitm)]-

Moreover, the following conditions must hold:

o tp € CPITM; < 3 t; € {CITM or CPLZTM;} | t; is a hinge task and 3
< tj,ro;,tg > where ro; is a conditional relationship;

10

o Vj, CPITM,; C CTM; where [Cetm] C [Cepitm] and Vt; € {CPITM \ to}
= 3 father(¢;);

e if TH(¢;) = 0, then t; is a leaf task or a hinge task.

We can now define more precisely a hinge task. t; is a hinge task iff 3 t;
€ {CZTM or CTM; or CPZTM;} | T~ (t;) = 0 and 3 < t;,70;,t; > where ro;
is a conditional relationship between two graphs (CZTM and CTM;) or (CZTM
and CPITM;) or (CPZTM; and CPLZT M;) or (CPZTM; and CTM;).

4.2.3 Remark on CZ7TM and CPZTM.

Two properties of the general 7TM have been relaxed in order to obtain a tran-
sient representation that shows intersection between CTMs:

e Unique children are allowed. A TM is said to be well-formed iff the
minimal number of children for a task is set to two. In other words, it
does not make sense to decompose one task into a single task. In a CZTM
or a CPZTM, a task having only one subtask is just the sign that only one
subtask is common between the different CTMs from which the CZTM (or
CPITM) is constructed;

e Isolated brothers are allowed. Each task of a well-formed 7M has to
be related at least with one of his brother. In a CZTM (or a CPZTM),
only common transitions between CTMs are shown. As temporal relations
between two brother tasks can vary from one context to another, it is
admitted that two brother tasks may share no temporal relationship with

each other in a CZTM (or a CPZTM).

4.3 The Multi-Context Task Model

The Multi-Context Task Model (MCTM) represents all possible variations of a
task model for a given application. The MCTM components are presented in
Fig. 4. A MCTM is the union of identified CZTM, CPZTMs and residual parts
of CTM . All components are linked with conditional relations. The residual
part of CTMs represents parts that could not be factored out in a CZTM or
CPITMs.

A residual CTM for a context C; is defined as the set of t; € TASK and
< tj,rop,t; > € T, such that

Vi, Vj, Vk, V1, t; and < t;,ro,t; > € CTM\ (CZTM U | J(CPTTM))

where C; € [Cepitm]- A residual CTM can be a well-formed subgraph, a single
task or a single transition.

To relate the different components of the MCTM, a conditional expression
is introduced. This condition relates a CZTM to a CPZTM or a residual CTM;
a CPZTM to another CPZTM or a residual CTM. A condition has the form

11

-N cond. rel. >—1-1—{ cITH }—\b_N

0-M 0-N

0-1

Residual CTh

Figure 4: Multi-Context Task Model concepts.

X/p, where X specifies the contexts of use for which a subgraph is valid and
p specifies a relationship type (decomposition or temporal) between two tasks
situated on different task models (Fig. 5).

To take into account the condition, relationship type of RO must be sub-
typed into two types : simple and conditional. Four types are thus obtained:
simple decomposition relationship, conditional decomposition relationship, sim-
ple temporal relationship and conditional temporal relationship.

oo o o0

CIT™M CPTIM1 CPITM2

Figure 5: Conditional relations.

5 A Case Study

To illustrate how this can be applied, a case study is introduced that refines a
set of scenarios taking place in a medical institution. In all scenarios, a patient
is treated in an hospital and a medical staff needs to obtain all the information
relative to the patient’s case. Two types of person can access this information:
doctors and nurses. The computing platforms on which they have to carry out
their task are various: a desktop PC, a handheld PC and a Cellular Phone.
Three different contexts and associated scenarios are defined:

1. A doctor with a desktop PC (context 1): A doctor, in his office at
the hospital, wants to prepare the visit she has to do to a patient during
the afternoon. In order do this, she logs in into the system and queries
a database to access the patient’s medical information (Fig. 6). This
information consists in medical files which are composed of text and/or

12

images (e.g., x-ray pictures). She may want to update this information,
by adding additional observations on the patient state for instance. More-
over, for severely ill patients, the doctor also wants to monitor real-time
information on the patient state (for instance, vital parameters like heart
rate, body temperature).

AL anagd Patief on
/ﬂﬂat\on Mana fient Infd Close Sessian
o o s
B —u— G2 — b
InsertLogin Inser Password Manage RPaflentyie le Monitor Real Tirme Patient Information
E’.‘.‘f = G >

RequestPatientFile Visualize'Patrent File Modify Patien

BM—n— 88 B—n—8

Visualize Pictures Visualize Text Add information Delete infarmation

Figure 6: The CTM for the doctor using a desktop PC.

. A nurse with a handheld PC (context 2): A nurse is working in
her service with a handheld PC. She wants to access the medical file of a
patient. After logging in, the nurse queries the system to check the medical
file of the patient. Considering the size of the screen of the handheld PC,
the nurse can only visualize text or images one at a time. The nurse is
not allowed to modify the file. Like the doctor the nurse has access to
real-time parameter of a patient (Fig. 7).

/_,/AQEW
o - @ - 2
ificath Manage Patient Inforfimath Close Session
= ot =
B < " i
InsertLagin Inser Password Manage Pafient cal File Monitar Real Tirme Patient Infarmation
F——>0
Request PatientFile Wisualize'Patient File
B

Visualize Pictures Visualize Text

Figure 7: The C7M for the nurse using a handheld PC.

. A doctor with a Cellular Phone (context 3): At lunch time, the
doctor wants to check a patient’s medical file. After logging in into the
system, she views the available textual information. As she is particularly
worried about this patient, she monitors real-time information (Fig. 8).

13

o)

Ag anagd Patiert tion

5 . e . 5

tifikation Manage Fafient Infa n Cloge Session

B e I &

InsertLogin Insert Password Manage Pafignt Bedical Files Wonitor Real Time Patient Information

H——8

Request Patient File Visualize Text

Figure 8: The C7TM for the doctor using a Cellular Phone.

The CZTM (Fig. 9) is defined as : < { Access and Manage Patient Informa-
tion, Identification, Insert Login, Insert Password, Manage Patient Information,
Manage Patient Medical File, Request Patient File, Monitor Real Time Patient
Information, Close Session }, Access and Manage Patient Information, {(Access
and Manage Patient Information, dec, Identification), (Access and Manage Pa-
tient Information, dec, Manage Patient Information), (Access and Manage Pa-
tient Information, dec, Close Session), (Identification, > , Manage Patient In-
formation), (Manage Patient Information, >, Close Session), (Identification,
dec, Insert Login), (Identification, dec, Insert Password), (Manage Patient In-
formation, dec, Manage Patient Medical File), (Manage Patient Information,
dec, Monitor Real Time Patient Information), (Manage Patient Medical File,
>, Monitor Real Time Patient Information), (Manage Patient Medical File,
dec, Request Patient File)} > where

Doctor desktopPC el
[Ceitm] = Nurse handheldPC e
Doctor CellularPhone e;

S - O E

|dgriificatian Manage Patfent Inforfimath Close Session

= - e I e

InsertLogin Insert Password — Manage Patfent Medical File honitor Real Time Patient Information

K

Request Patient File

Figure 9: The CZTM for the three different contexts of use.

A CPZTM for context 1 and 2 is (Fig. 10) : < { Visualize Patient File,
Visualize Pictures, Visualize Text }, Visualize Patient File, { (Visualize Patient
File, dec, Visualize Pictures), (Visualize Patient File, dec, Visualize Text) } >

where
Doctor desktopPC el)

[Cepitm] = (Nurse handheldPC e;

14

&

Yisuall Fatignt File

ks b

Visualize Pictures Visualize Text

Figure 10: The CPZTM for two contexts of use.

A MCTM can be defined from the different CZTM, CPZTM and residual

CTMs (Fig. 11).

@
- 108
Jl_c;‘e:.saWag? |ETT T oration
" —
3 Q—-—MW
o~ al
Idsritfication Manage P Entl_r?o_r‘n'iaﬁak__ Close Session
’/;::13 f:\‘ .
8 < il i
Inseﬂl-ogi::l InsertPassword Manage Patient r-ﬂ'd\i.tal-:ﬁj?i_ “WlrteFeal Tims Patient normation g gy
- - ——
e Jf Il vl o M Tn=m
F—--—--—‘--— e s e et 2
= x s i Yisualize Text
Request Patient Fire- N a A Lgl]/DEC e 2
™] - .
~ . CITDEC Residual CTM for C3
CITM for the three contexts of use c1 L .
DECT = ™ %
©2 o
. Iy
G"—E’ Cl)== i
Visuayed Pt Fie mewe
ﬁ‘: 3 i B
R - % % Ik E{'

Wizuall |ctures i x 2
ualizeichires Wigualize Teut Add information Delete information

CPITM for Cl and C2 Residual CTM for C1

Figure 11: Multi-Context Task Model for the Case Study.

6 Conclusion and Future Work

Thanks to the approach developed in this paper, a Ul intended to cover multi-
ple contexts of use can be related to several CTMs depending on the different
contexts of use, having small or large differences depending on:

o tasks: (i) the task remains the same while the context of use changes; (ii)
some tasks (or subtasks) are removed when the context of use changes,
because either there is no possibility to perform the removed task in the
new context or some tasks appear to be unnecessary or irrelevant for a
certain context of use; (iii) task ordering is modified without modification
of the tasks themselves. In this case, only the transition differ; (iv) some
tasks (or subtasks) are added because a new context requires more tasks
to achieve the same goal;

e relationships: the temporal relationship between two tasks may differ
from one context to another. In the case study presented in Section 5, the

15

two subtasks of the ”log in” task are concurrent in one case and sequential
in another case.

In order to formally represent those possible variations, several key concepts
have been defined, each of them associated with a formal notation:

e The Context-Dependent Task Model (CTM) associates a task model
with a context for which it applies.

e The Context-Independent Task Model (CZTM) represents common
parts between all CTM of a same application;

e The Context-Partially-Independent Task Model (CPZTM) repre-
sents common parts between some CTM of a same application;

e The Residual Context-Dependent Task Model represents parts of
the CTM that can not be factored out into a CZTM or a CPZTMs;

e The Multi-Context Task Model (MCTM) is a view that represents
conditional relations (depending on the context variation) in the set {CZTM

U UJ(CPITM) U Residual CTM }.

The formal notation introduced for a general task model, based on CTT,
along with their use for all components of a task model for multiple contexts of
use are the original contribution of this paper. They enable designers to adopt
any approach discussed in Section 2 in a more formal and structured way. In
particular, there is now a clear frontier between task model elements that change
or do not change when the context of use is varying. The formal notation also
makes it appropriate for inclusion in a tool like CTTE as it provides an internal
format that can be manipulated by an automata.

With respect to the reference framework presented in Fig. 1, this work
can be situated at the ’Concepts and Task Model’ level and deals with the
translation relationship. This study could be extended by defining a formal
concept model, analyzing <task, concepts> relationships and considering the
influence of context of use variations on these relationships. In particular, it
could be worth to represent constraints imposed by a computing platform on
the selection of presentation elements (e.g., availability vs unavailability) or
preferred by a user type. Furthermore, there is a need for a formal abstract
UI model and concrete UI model that could in their turn be subject to a study
on context of use variation. In addition, some patterns should be identified to
represent the translation relationship in prototypical context variation. Finally,
the notation developed here should be extended to represent run-time adaption
mechanisms, as run-time subtask switching, branching, or migrating.

References

[1] The xCA suite, 2002. accessible at http://www.x-
ca.com/xca/Products/xCA.suite/.

16

[2]

[5]

[9]

[10]

[11]

[12]

M. Abrams, C. Phanouriou, A.L. Batongbacal, S. Williams, and J. Shus-
ter. UIML: An Appliance-Independent XML User Interface Language. In
A. Mendelzon, editor, Proceedings of 8th International World-Wide Web
Conference WWW’8 (Toronto, May 11-14, 1999), Amsterdam, 1999. El-
sevier Science Publishers. Accessible at http://www8.org/w8-papers/5b-
hypertext-media/uiml/uiml.html.

P.J. Brown, J.D. Bovey, and X. Chen. Context-Aware Applications: From
the Laboratory to the Marketplace. IEEE Personal Communications, 4(5),
pages 58—64, 1997.

G. Calvary, J. Coutaz, and D. Thevenin. Supporting Context Changes
for Plastic User Interfaces : A Process and a Mechanism. In A. Bland-
ford, J. Vanderdonckt, and P. Gray, editors, Joint Proceedings of HCI’2001
and IHM’2001 (Lille,10-14 September 2001), pages 349-363, London, 2001.
Springer-Verlag.

G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Re-
search. Technical Report TR2000-381, Dept. of Computer Science, Dart-
mouth College, November 2000.

N. Deo. Graph Theory with Applications to Engineering and Computer
Sciences. Prentice-Hall, Englewood-Cliffs, 1974.

A K. Dey and G.D Abowd. Toward a better understanding of context and
context-awareness. Technical Report GIT-GVU-99-22, College of Comput-
ing, Georgia Institute of Technology, 1999.

J. Eisenstein, J. Vanderdonckt, and A. Puerta. Applying model-based tech-
niques to the development of Uls for mobile computers. In Proceedings
of ACM Conference on Intelligent User Interfaces IUI’'2001 (Albuguerque,
January 11-13, 2001), pages 69-76, New York, 2001. ACM Press.

Paterno. F and Santoro. C. One model, many interfaces. In Ch Kolski and
J. Vanderdonckt (Eds.), editors, Proceedings of the Jth International Con-
ference on Computer-Aided Design of User Interfaces CADUI’2002 (Valen-
ciennes, 15-17 May 2002), pages 143-154, Dordrecht, 2002. Kluwer Aca-
demics Publishers.

J. Gwizdka. What’s in the context. In Proc. Of CHI’2000 Workshop on
Context Awareness (The Hague, April 1-6, 2000), Atlanta, 2000. GVU
Center, Georgia University of Technology, Research report 2000-18e.

P. Johnson. Human-Computer Interaction: Psychology, Task Analysis and
Software Engineering. McGraw-Hill, London, 1992.

P. Johnson, P. Markopoulos, and H. Johnson. Task knowledge structures:
A specification of user task models and interaction dialogues. In Proceedings
of Task Analysis in Human-Computer Interaction, 11th Int. Workshop on
Informatics and Psychology (Schraeding, June 9-11), 1992.

17

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Q. Limbourg, C. Pribeanu, and J. Vanderdonckt. Towards uniformed of
task models in a model-based approach. In C. Johnson, editor, Proceedings
of the 8th International Workshop on Design, Specification and Verifica-
tion of Interactive Systems Workshop DSV-152001 (Glasgow, June 13-15,
2001), volume 2220 of Lecture Notes in Computer Science, pages 164-182,
Berlin, 2001. Springer-Verlag. to be published.

F. Paternd. Model Based Design and FEvaluation of Interactive Applications.
Springer-Verlag, Berlin, 1999.

F. Paterno, C. Mancini, and S. Meniconi. ConcurTaskTree: A diagram-
matic notation for specifying task models. In S. Howard, J. Hammond, and
G. Lindgaard, editors, Proceedings of IFIP TC 13 International Conference
on Human-Computer Interaction Interact’97 (Sydney, July 14-18, 1997),
pages 362-369, Boston, 1997. Kluwer Academic Publishers.

D. Petrelli, E. Not, C. Strapparava, O. Stock, and M. Zancanaro. Modeling
context is like taking pictures. In Proc. Of CHI’2000 Workshop on Con-
text Awareness (The Hague, April 1-6, 2000), Atlanta, 2000. GVU Center,
Georgia University of Technology, Research report 2000-18e.

A. Savidis, D. Akoumianakis, and C. Stephanidis. The Unified User In-
terface Design Method, chapter 21, pages 417-440. Lawrence Erlbaum
Associates, Mahwah, 2001.

B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applica-
tions. In Proceedings of the Workshop on Mobile Computing Systems and
Applications WMCSA’94 (Santa Cruz, December 1994), pages 85-90, Los
Alamitos, December 1994. IEEE Computer Society Press.

A. Schmidt, K. Asante Aidoo, A. Takaluoma, U. Tuomela, K. Van Laer-
hoven, and W. Van de Velde. Advanced interaction in context. In Pro-
ceedings of First International Symposium on Handheld and Ubiquitous
Computing HUC’99 (Karlsruhe, 27-29 September 1999), pages 89-101.
Springer-Verlag, 1999.

A. Schmidt, M. Beigl, and H.W. Gellersen. There is more to context than

location. In Workshop on Interactive Applications of Mobile Computing
IMC’98 (1998), 1998.

D. Thevenin. Adaptation En Interaction Homme-Machine : Le Cas de la
Plascticité. PhD thesis, Université Joseph Fourier, 21 December 2001.

G. Tsibidis, T.N. Arvantitis, and C. Baber. CHI 2000 proposal for the
what, who, where, when, why and how of context-awareness. In Proc. Of
CHI2000 Workshop on Contert Awareness (The Hague, April 1-6, 2000),
Atlanta, 2000. GVU Center, Georgia University of Technology, Research
report 2000-18e.

18

[23] J. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent
automatic interaction objects selection. In S. Ashlund, K. Mullet, A. Hen-
derson, E. Hollnagel, and T. White, editors, Proceedings of the ACM Con-
ference on Human Factors in Computing Systems InterCHI’93 (Amster-
dam, 24-29 April 1993), pages 424-429, New York, 1993. ACM Press.

19

