Noema: a metalanguage for scripting Versionable Hypertexts

loannis T. Kassios and m. c. schraefel
Department of Computer Science, University of Toronto

Toronto ON M53S 3G4 Canada

{ykass, mc} @cs.toronto.edu

Abstract

In this paper we present Noema, a new intensional
hyper-text metalanguage based on both intensional
HTML and XML. The design of Noema aims at
the improvement of the expressiveness of intensional
HTML and introduces principles such as intensional
XML-like entities, versioning / hypertext unification
and implicitly created dimensions. The bigger expres-
sive power of Noema doesn’t mean that one has to
program hypertext, as is the case with ISE/IML, so
Noema is proposed as a better solution to the prob-
lems encountered in intensional HTML.

1 Introduction

In 1997, the Intensional Programming community
was first introduced to the concept of treating the
Web as a series of possible worlds, and to web pages
as instances of a demand driven data flow stream.
Since that time, there have been three core versions
of intensional markup for bringing user-determined
versioning to web site use: THTML-1[10], THTML-
2[1], and currently ISE/IML [7]. While the first two
versions of the markup language to support version-
ing were similar, the third was a significant departure.
The first two attempted to use a markup approach
that would only add a few HTML-like tags to HTML,
making versioning accessible to the majority of non-
programmer Web page authors.

As the limits of this approach became appar-
ent through various test sites, a more robust
programming-like solution was sought. The result

was ISE/IML. This approach, while robust, lost the
immediate accessibility for non-programmers to build
their own page effects, forcing them to rely on pre-
fabricated intensional macros instead.

As the authors of these systems have stated [1],[3],
neither the THTML nor ISE/IML approach is op-
timal for bringing flexible version control to non-
programmer web authors. In this paper, therefore,
we present Noema as meta-language, middle ground
approach to the problems posed by both IHTML
and ISE/IML. In the following sections, we briefly
overview IHTML and ISE to situate the problem
space. From here, we introduce Noema and demon-
strate how we can use this as a markup interface
for versioning primitives which will let authors have
more direct, but interpretable control of the version-
ing functionality.

2 Overview of IHTML and
ISE/IML

Intensional HTML (THTML) was a first step imple-
mentation towards proposing the Web as an inten-
sional set of possible worlds. That is, each site could
be treated in the manner of Plaice and Wadge’s In-
tensional Programming [5]. That is, sites, like soft-
ware, could be represented as versionable compo-
nents, rendered on the fly to satisfy a user’s request
for a particular version. Three of the key benefits
of creating demand-driven pages are (a) the reduc-
tion of duplication/cloning if maintaining multiple
versions/localizations of a particular site; (b) the pos-
sibility for a wide range of version combinations po-

tentially not anticipated by a site designer, and (c)
the concept of ”best match” for any given version
request.

The first implementation of an intensionalized
web, IHTML, took the form of an extended HTML
markup. THTML markup was relatively straightfor-
ward for an author to create and for another human
to interpret. For instance

<a href="page.html"
version=lang:frenchicanadian>
french version

meant render this particular page with all attributes
on the language dimension set to French Canadian-
where those components are available. Where French
Canadian is not available, default to French.

Simple statements like the above made THTML
immediately appealing. There was however a high
cost for creating the version components and label-
ing them. The markup itself, for things no more com-
plex than simple case statements for offering possible
versions of a page became cumbersome.

For instance, the intensional concept would make
it possible to create a ”slide show” as a series of pos-
sible versions of a page. The markup costs are high,
however, as the following sample demonstrates:

<ISELECT>
<ICASE version="slide:1">
<P>
Next
</ICASE>
<ICASE version="slide:2">
<P>
Next
</ICASE>

<ICASE> I'M DONE AT LAST!!
</ICASE>
</ISELECT>

A programmer would be frustrated if s/he was
forced to write in a language that can not take advan-
tage of the fact that all 250 cases above are instances
of the same generic template, namely

<ICASE version="slide:X">

<P>
Next
</ICASE>

In other words, 1t was difficult for IHTML to handle
simple functionality. To address this problem, a new
approach was taken with the development of ISE and
IML. ISE is an intensionalized version of the Perl lan-
guage. As such it is custom-designed to handle any
of the functional requirements missing from IHTML.
IML was developed as a kind of front end for ISE. It
would provide a set of predefined macros (in TROFF)
for page authors to use to embed intentional function-
ality into a page. For instance, Nelson’s drop text
could easily be embodied as an ISE function through
a macro call:

.bdrop - 1 Info about fish

The fish will be spawning here in three weeks
[whatever HTML markup the author wishes]

.edrop
The result of this call would be
> Info about Fish

where the > is a link. Click the > and the page reveals
the material under the header, re-orienting the page
to the header (-1) of this point (info about fish).

When the author finishes the markup, they run a
process to convert the file into ISE. They create a link
to the .ise file, such as "fish.ise", and a server-side
process renders the ise into the appropriate HTML
for a given version request of that file. Any link re-
quests from the page are sent to the server as ise pa-
rameter requests causing a new html page to be sent
to the client that represents the new version request.
Like the original IHTML, ise pages are always repre-
sented to a browser as HTML, so they are accessible
from any browser. The browser is only limited by the
Jjavascript/html or whatever effects the author adds
to the page. IHTML and ISE are otherwise platform
agnostic.

With macro calls like this available to an au-
thor, clearly the weight of having to write Perl (or
javascript or for that matter reams of THTML) is

highly diminished, allowing the author to concentrate
on their design rather than on programming effects.
On the down side, the IML approach does lose some
of IHTML’s more intuitive clarity and also requires
someone proficient in both TROFF and ISE’s spe-
cialties to create new macros.

Indeed, several papers on IML have lamented the
“ugliness” of IML [9],[4] and have expressed a desire
to convert it into a more XML-like form for better
integration into the markup of the page - recovering
some of what was lost from THTML.

The challenge, therefore, is to find a middle ground
between the full-fledged programming functional-
ity of ISE and the benefits of more markup-like
integration of IHTML. The solution should allow
the author to create customized constructs (missing
from THTML) without escaping from the authoring
language (as TML requires by backing up through
TROFF to ISE). Such a solution is achievable by
consideration of what is to be gained by adding func-
tionality at the markup level. In the following paper,
we present one possible solution: Noema. Noema 1is
a hypertext metalanguage that generalizes IHTML
in describing intensional hypertext. The three main
ideas underlying Noema are: the unification of hy-
pertext and versions, the use of versionable XML-like
entities (and the version changes in pieces of a hyper-
text file) and the implicit dimensions as a substitute
for state. We describe each of these concepts below
and conclude with a discussion of future work.

3 Introduction of Noema

As demonstrated above, a concern with THTML 1is
the absence of markup reuse and of textual manip-
ulation of versions. The missing features are not as
general as programming functionality, nor do we need
the imperative paradigm with states and the like to
implement them. However they are very broad to be
implemented by defining new constructs, because our
ultimate goal is generation of specific markup from
generic markup (that is, certain text manipulation
facilities)®.

I Arithmetic may be regarded as text manipulation too

In this section, we propose a different approach to
the problem. The goal for our design is to create a
meta-language (not necessary an HTML, or IHTML
superset), that is going to encompass the enhanced
handling of versions we require:

Manipulation of versions as hypertext

Text reuse in a parameterizable fashion
e Some notion of state

e As friendly to the author as possible; markup
rather than imperative

In the following sections, we present the design of
Noema, such a meta-language. It i1s important to
note here that this isn’t a complete presentation of
the language. Many design details have been delib-
erately left out. The focus here is on the ideas that
underlie the design and Noema syntax is meant to
help demonstrate these ideas in a more concrete way.
The ideas under discussion are:

e Use of hypertext to denote versions: We will ex-
ploit the tree-like structure of hypertext to ex-
press the tree-like structure of versions. In this
way, we may use both interchangeably and this
results in a nice uniformity when it comes to pa-
rameter passing.

e Versioned entities: Entities are an XML concept
missing from HTML and IHTML. With entities
one names a piece of hypertext to be used several
times in the document. What we are going to de-
fine is versioned entities. This makes Noema be
to IHTML what XML is to HTML. Versioned
entities can be seen also as parameterizable en-
tities, because we can invoke any version of an
entity we want. Versioning is enough to pass pa-
rameters, so we will not use any novel machinery
for that.

e Implicit versions as a substitute for state: An
invocation of an entity generally implies that we
are going to use a specific dimension in our ver-
sion space as “state”. We make the existence
of this dimension implicit and this choice makes
the language strictly more expressive.

Noema is a metalanguage that describes hypertext.
A Noema file prescribes various version-dependent
hypertexts. We therefore need two levels in our lan-
guage: that of meta-hypertext, and that of literal
hypertext. Our conventions will be the following;:

e A Noema file consists of a declaration section
and a meta-hypertext section (divided by %%).

e When writing meta-hypertext we may include
literal hypertext within braces ({}).

e When writing literal hypertext we may include
a meta-hypertext expression preceded by & and
succeeded by ; (like XML entities)

o Special characters such as & and {} within literal
hypertext, are preceded by & if they are to be
taken literally

3.1 Versions themselves are hypertext

Version space in IML/ISE is currently very advanced,
if compared to the first tries in [5]. The current ver-
sion space (see [7]) supports nesting, as the following
abstract syntax shows (V' is the non-terminal for ver-
sion, s is just any string):

Voels: VI V4V

(also assume that s will be equal to the version s : €).

This syntax is readily expressible with markup,
under the following translation scheme ([V] is the
markup that corresponds to version V):

[] = <!--EMPTY MARKUP-->

[s: V] = <s>[V]</s>
Vi+ Ve = [W][V5]

Versions are a limited form of hypertext because
not all hypertext can count as versions under this
translation scheme. For example<A> rep-
resents version A:B. But <A><A><C/>
doesn’t count as a version, because the A dimension
appears twice.

This scheme offers a uniformity, with certain ad-
vantages. For example, later we introduce parameter

passing to an entity via versioning. Because versions
and hypertext are considered the same, we can thus
pass pieces of hypertext as parameters. We can also
version versions and so on.

Since we express versions as hypertext, our meta-
language should have some operators that handle ver-
sioning. To that end we also borrow the semantics of
most of the original IHTML constructs:

e cvis a nullary operator, that returns the current
version

e vmod is a binary operator. a vmod b means ver-
sion a modified by modifier b (modifiers are also
expressed as hypertext). We may also use it as
a unary operator, where vmod b means cv vmod
b. Version modification is exactly the same as in

IHTML

e ++ stands for version algebra 4 and : stands for
version algebra :

e (/) is the vanilla version (or the empty hyper-
text)

e ’ followed by an identifier denotes that ver-
sion name, e.g. °’A:’B stands for hypertext
<A>2

Note that the + operator of version algebra is not
exactly the same as hypertext concatenation, since
for example it is idempotent®. Operator , denotes
pure hypertext concatenation.

3.2 Limited scope version modifiers

We introduce the @ binary operator whose purpose is
to modify the current version within its scope. If a
and b are meta-hypertext expressions, then a@b de-
notes a at version b. For example,

{someHypertext}@(vmod someModifier)

changes the current version by someModifier so that
someHypertext is evaluated in the changed version.
Similarly,

2Note that we use the XML abbreviation <X/> for <X></X>
3In general, any version is hypertext, but not any hypertext
is version

{someHypertext}@(someVersion)

sets the version of someHypertext into someVersion
altogether. The difference of @ and vmod and version
attributes of IHTML is that in Noema we may change
the version of an arbitrary piece of hypertext, instead
of just one link.

3.3 Versioned entities

The main problem is to make text re-usable. Here’s
where the entity idea comes: we name a piece of text,
so that we can reproduce the text by using only its
name. This exactly what XML entities are doing [2].
But we want more than that: as we’ve already seen in
our examples, the text to be re-used is not exactly the
same, but rather it depends on parameters. Adding
simple XML entities to IHTML won’t solve the prob-
lem. Instead, we need to make parameterized entities
possible. Instead of new machinery for parameters,
we prefer to use something already existing: versions.
Not only does this avoid the formal clutter by not in-
troducing new constructs that are not needed, it also
has the well known advantages of versionning, such
as the use of version refinement etc.

Noema introduces entities and entity references (in
the XML sense) that have versions. For that matter,
we use the entity meta-construct in Noema, for the
creation of entities in the declaration part of a file:

entity name_of _entity{noema_code}

where in noema_code we have a Noema file again
(declarations / meta-hypertext etc.).

What is contained in this construct defines exactly
what markup is going to be generated when the entity
is referenced. The markup depends on a version, so
by referencing the right version of the entity*, we
get the exact markup we want. Entity declarations
may be nested, but then the inner one is regarded as
“local” to the entity definition and is not available out
of it. Recursion is allowed. To reference the entity
within meta-hypertext we just use its name.

4We can do that using the @ operator

3.4 Other primitives

Except from what we’ve shown so far, Noema also
supports as meta-hypertext numeric values (that
stand for their corresponding decimal representation)
and all usual mathematical operations, and it also
supports the logical operations and, or and not.
These operate on “boolean” hypertext, that is, meta-
hypertext that either equals to *TRUE or to (/).
There are comparison operators, that return such
boolean hypertext:

e Hypertext comparisons: = and !=

e Numerical comparisons: >= etc. (numerical
equality and inequality coincide with their hy-

pertext counterparts)

e Version comparisons: version equality ~ 1is
weaker than hypertext equality. The appropri-
ate notions of version inequality !~ and version
refinement [~ and other derived operators such
as [, 1° and T are also supported

The conditional hypertext takes a boolean meta-
hypertext expression and two other meta-hypertext
expressions. Its semantics is obvious. For example:

if cv [* ’language:’french
then {bonjour}
else {good morning}

To get the hypertext within a tag we use get as a
binary operator. a get b gets the value of version b
within hypertext a, for example

(’language:’french) get ’language
evaluates to *french. Or, similarly,

{
<GREETING>Hi!</GREETING>
} get ’GREETING

evaluates to Hi!. get will work on cv when used as a
unary operator. strip is a unary operator that strips
off the outermost tag in its parameter.

Operator 1inkto creates a link to a Noema file de-
scribed by its parameter. We usually write a filename

5Strict refinements

in braces for literacy (but the filename could also be
an arbitrary meta-hypertext expression!) and we de-
fine a specific version of the file using the @ operator.
link is a parameterless version of the operator, that
refers to the same file it appears in.

A further abbreviation: Suppose we want to create
an entity a equal to the hypertext that lies under
dimension d®. We normally include in the declaration
part:

entity a { %% get d }
We may abbreviate this declaration to:

par a d;

3.5 The drop markup example

The drop text effect could be implemented in Noema
(figure 1)

The few nested par’s just give convenient names
to the parameters of the entity. The value of di-
mension *MODE can be either *EXPANDED or *HIDDEN.
>CONTENT and °’ABSTRACT contain the two versions
and META describes the version of the document to
be modified, if the user clicks on the link [+] or [-].
So a “client” of the drop entity would do something

like:

drop @ vmod

(’CONTENT:{Blah blah}
++ ’ABSTRACT:{Blah}

++ ’'META:’MODE

)

This code says that the state of the drop markup
depends on the version dimension ’MODE.

3.6 Implicit dimensions as state

The code we created is still unsatisfactory, since we
need to write all this information about the ’META
dimension (on which depends whether the markup is
“hidden” or “expanded”). Tt would be nicer if the
inclusion of a drop markup control within the doc-
ument implicitly created such a dimension, already

6Thus i.e. we name “formal” parameters within an entity
declaration

known to the control, which is then able to adjust
itself. That among others would spare us the clut-
ter of creating the *META dimension ourselves in the
previous example.

To achieve this we introduce the implicit dimension
concept. Each reference to an entity in the document
implicitly creates a new version dimension which can
be used to change the status of the document. We
access this dimension within the entity definition by
i(x) where x will be the entity name. A command
this(x) re-invokes entity x using the same implicit
dimension. The drop markup example is now as seen
in figure 2.

The point of this example is, apart from showing
the actual Noema code, to demonstrate that it is very
easy to write a Noema entity definition. When defin-
ing an entity, unlike in IML, the user has at his or
her disposal the full power of the language”. The
language is only one and it is the same for both def-
initions and invokations of entities. The definition
syntax is also considerably less cluttered than the
IML counterpart. It i1s therefore believed that the
Noema framework is better in many ways than the
IML front-end. It remains to be proved that it is
actually so.

Now the client is:

drop @

(’CONTENT:{Blah blah}
++ ’ABSTRACT:{Blah}

++ ’INITIAL:’HIDDEN

)

Note that the number of implicit dimensions added
1s not fixed. This is because the number of actual
entities invoked is not fixed in a Noema document: it
i1s a variable that depends on the version, as shown
in the code below:

entity multiply {
par num ’NUM;
par markup ’MARKUP;
he

if num = 0

7In IML, we either don’t have ISE at our disposal, or we
have to resort to programming

entity drop {
par mode ’MODE;
par content ’CONTENT;
par abstract ’ABSTRACT;
par meta ’META;
hh
if mode = ’EXPANDED
then (link @ meta:’HIDDEN):{[-]1} , content
else (link @ meta:’ABSTRACT):{[+]} , abstract

}

Figure 1: The drop-markup in Noema

entity drop {
par initialmode ’INITIAL;
par content ’CONTENT;
par abstract ’ABSTRACT;
D
if get i(drop) = ’EXPANDED
then (link @ vmod i(drop):’HIDDEN):{[-]} , content
else if get i(drop) = ’'HIDDEN
then (link @ vmod i(drop):’EXPANDED):{[+]} , abstract
else this @ vmod i(drop):initialmode

Figure 2: The drop-markup with implicit dimensions

then (/)
else markup ,
multiply @ vmod ’NUM: (num - 1)
}

This construct is given a markup m and a number
n and its output is n consecutive copies of m. n
may depend on version, so there is no way for the
author to determine how many entities s/he has in
the document if it contains a multiply.

3.7 The slide example

Figure 3 is how we do the slide example in Noema
utilizing everything introduced so far®. We notice
that it takes a very short and easy definition to create
something impossible in THTML and very hard in
ISE. The difference from ISE lies at the functional-
like approach of Noema which makes the definition
of the construct more natural and compact. This is
also true for the previous examples.

4 Conclusion

Noema as presented focuses on and achieves improve-
ment which the IML community has sought for ver-
sioning hypertext:

e First, Noema is an authoring language as op-
posed to a programming language. It is not all-
capable, so it cannot perform tasks unrelated to
web authoring and potentially harmful. It is not
as involved and complicated as a full-fledged pro-
gramming language. However, its functionality
has not been compromised. Text reuse, param-
eterization, recursion and states are supported.

e Versions and hypertext are considered the same
in Noema. The flexibility gained by this syn-
tax unification is very important. A version may
contain hypertext in it (we saw that in the drop
markup example where the <CONTENT> and the
<ABSTRACT> versions are full-fledged hypertext)

8 This example specifies a series of slides found in jpeg files,
where the name of the file for slide X is “prefiz X .jpg”, where
prefix is a parameter to the slide entity

and parts of hypertext may be used (or com-
pactly written) as versions. Versions can them-
selves be versioned.

e Noema allows for parts of the versioned docu-
ment to have different versions. It also allows
XML-like entities. The combination of these fea-
tures offers everything needed for fully parame-
terized hypertext

e Noema can be viewed as a language that pre-
scribes how a hypertext document is going to be,
independent of the target language, that could
be for example XML.

e Another idea introduced in this paper, somewhat
orthogonal to the previous ones, is the concept
of implicit dimensions. We saw that the effect of
this is that entities within a document are given
state. Since the number of entities invoked in
a Noema document depends on the version, the
version space is not definable in authoring time.

e Noema can be a substitute for TROFF macros.
Its syntax is more readable than TROFF. In the
Noema framework, there is but one language. In
IML, if one needs more than what is already 1m-
plemented, they might need to resort to a second
language, ISE.

The next step should be the creation of a formal
specification for the language and an efficient imple-
mentation. From the language design point of view
there is more work to be done to study the strengths
and weaknesses of the language and to discover new
ways of using it or new properties of interest and ar-
eas of improvement. As far as applications of Noema
are concerned, it seems that it has potential to be
used as a versioning tool for XML, for example XML
components of software systems, taking versioning
back to its roots, where 1t was designed for software
component versioning.

References

[1] G. D. Brown. Intensional HTML 2: A prac-
tical approach, MSc Thesis, Computer Science
Department, University of Victoria, 1998.

entity slide {
par prefix ’PREFIX;

A

}

YA
{

}

<P/>

>

(1ink @ vmod i(slide):(get i(slide) + 1)):{ Next }

[2]

Figure 3: The slideshow in Noema

World Wide Web Consortium. Extensible
markup language (XML). Available on-line at
http://www.w3.org/TR/REC-xml.

m. c. schraefel and W. W. Wadge. Two cheers for
the web. In M. Gergatsoulis and P. Rondogian-
nis, editors, Intensional Programming II, pages
31-39. World Scientific Publishing Co. Pte. Ltd,
2000.

m. c. schraefel and W. W. Wadge. Comple-
mentary approach for adaptive and adaptable
hypermedia. In Intensional Hypertext. 3rd In-
ternational Workshop on Adaptive Hypermedia.
Springer-Verlag, 2002. Forthcoming.

J. Plaice and W. W. Wadge. A new approach to
version control. IEEE Transactions on Software

Engineering, 19(3):268-276, March 1993.

P. Rondogiannis and W. W. Wadge.
sional programming languages. In Proceedings of
the First Panhellenic Conference on New Infor-
mation Technologies (NIT’98), Athens, Greece,
pages 85-94. National Documentation Center of

Greece, October 1998.

Inten-

P. Swoboda. Practical languages for intensional
programming. MSc Thesis, Computer Science
Department, University of Victoria, 1999.

B. Wadge, G. Brown, m. c. schraefel, and
T. Yildirim. Intensional HTML. In E. V.
Munson, C. Nicholas, and D. Wood, editors,

[10]

Principles of Digital Document Processing, vol-
ume 1481 of Lecture Notes in Computer Science,

pages 128-139. Springer-Verlag, 1998.

W. W. Wadge. Intensional markup language. In
P. Kropf, G. Babin, J. Plaice, and H. Unger, ed-
itors, Distributed Communities on the Web, vol-
ume 1830 of Lecture Notes in Computer Science,

pages 82-89. Springer-Verlag, 2000.

T. Yildirim. Intensional HTML, MSc Thesis,
Computer Science Department, University of

Victoria, 1999.

