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Abstract. We present an experimental validation of a recently proposed solution to the prob-
lem of finding the input torque command that provides rest-to-rest motion in a given time for
a one-link flexible arm. The basic idea is to design an auxiliary output such that the associated
input-output transfer function has no zeros. Planning a smooth interpolating trajectory for this
output imposes a unique rest-to-rest motion to the whole arm, with automatically bounded link
deformations. The nominal torque is then obtained by standard inverse dynamics computation.
The method is presented for a linear model of an Euler-Bernoulli flexible beam, satisfying
dynamic boundary conditions and taking into account also modal damping. We illustrate the
dynamic identification of the experimental flexible arm, the handling of static/viscous joint
friction within the proposed method, and the way to include a stabilizing feedback based only
on joint measurements. Finally, we report on comparative experimental results.

1 Introduction

Consider the basic problem of moving a flexible manipulator from one equilibrium
configuration to another in a prescribed time. This problem arises when fast and
precise end-effector positioning of a long reach lightweight arm is desired [1].
The gross (rigid) motion typically induces residual oscillations at the nominal task
completion time, delaying the final instant at which the arm can be considered
at rest. Adding dissipative feedback control [2] or relying on intrisic structural
damping [3] are only partial remedies, while the design of a suitable feedforward
motion command has been recognized as a critical step.

Two main model-based approaches have been proposed at the beginning of the
90’s for designing a feedforward input solving the rest-to-rest motion problem in
flexible mechanical systems (in particular, manipulators): input shaping [4,5] and
inverse dynamics trajectory design [6,7]. Input shaping consists in convolving the
reference command (typically, a step input) with impulses, suitably located in time,
that ‘kill’ the modal frequencies of the flexible arm. The method is straightforward
for one or few flexible modes [4], but more complex when increasing the number of
considered modes or for achieving robustness [5]. It also introduces some delay in
the actual system response. On the other hand, one can design a smooth interpolating
trajectory for the end-effector of a flexible arm and then use stable (i.e., with bounded
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link deformations) input-output inversion for computing the rest-to-rest torque com-
mand in the frequency [6] or time domain [7]. However, the resulting torques are
non-causal, extending in time both before the start and after the completion of the
planned end-effector trajectory, while practical accuracy and exact motion timing are
limited by the finite window in time (or in frequency) used in the implementation.
Residual vibration suppression has been obtained with a different method in [8]. A
combination of sinusoidal components is used to build up a rest-to-rest trajectory,
from which the nominal torque is computed by inversion: the solution of a linear
algebraic system is needed, which becomes ill-conditioned for increasing number
of flexible modes.

In [9], a novel approach has been presented for a one-link flexible arm. The main
idea was to design an auxiliary output with maximum relative degree, namely such
that the input torque affects only the highest-order time derivative of the output. When
facing a scalar flexible system with linear dynamics, this is equivalent to obtaining
a transfer function between the input torque and the defined output that has no
zeros. The rest-to-rest motion problem can be then easily solved by fitting to this
output a smooth polynomial that interpolates the start and final rest configurations.
In addition, the design output and the associated nominal rest-to-rest torque obtained
by system inversion are both determined in closed form for any number of flexible
modes.

In this paper, we show the practical feasibility and performance of the method
proposed in [9], by addressing the following additional issues for a one-link flexible
arm:

• Inclusion of modal damping in the method
• Handling of static/viscous friction at the joint
• Identification of the dynamic model
• Addition of a robustifying feedback based only on joint measurements
• Experimental validation and performance comparison

The paper is organized as follows. In Sect. 2 we shortly review the dynamic mod-
eling. The design method in the frequency domain is described in Sect. 3, including
the presence of modal damping. Section 4 presents the dynamic identification of our
flexible arm and some comparative experimental results on a rather fast rest-to-rest
motion.

2 Dynamic Modeling

We consider a one-link flexible arm, of length A and uniform linear mass density ρ,
rotating on a horizontal plane. The arm is driven by an actuator at the base, with
inertia J0 and torque τ(t), and may carry a tip payload of mass Mp and inertia Jp.
The flexible link is modeled as an Euler-Bernoulli beam with Young modulus E and
inertia of the cross section I , assuming small deformations limited to the plane of
motion. Let θ(t) be the angle to the instantaneous center of mass of the link (see
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Fig. 1). The transversal bending deformation at a point x ∈ [0, A] along the link is
described by w(x, t).

From Hamilton principle, the motion equations of the flexible arm are [10]

EIw′′′′(x, t) + ρ
(
ẅ(x, t) + xθ̈(t)

)
= 0, τ(t)− Jθ̈(t) = 0,

where J = J0 + (ρA3)/3 + Jp + MpA
2 is the total inertia of the arm w.r.t. the joint

axis, with associated dynamic boundary conditions given by

w(0, t) = 0 EIw′′(0, t) = J0

(
θ̈(t) + ẅ′(0, t)

)
− τ(t)

EIw′′(A, t) = −Jp

(
θ̈(t) + ẅ′(A, t)

)
EIw′′′(A, t) = Mp

(
Aθ̈(t) + ẅ(A, t)

)
,

(1)

in which a prime denotes the spatial derivative w.r.t. x. By separation in space and
time, assuming a finite number ne of deformation mode shapes φi(x) with associated
deformation coordinates δi(t),

w(x, t) =
ne∑
i=1

φi(x)δi(t)

and imposing the boundary conditions (1), the mode shapes take the form

φi(x) = Ai sin(βix) + Bi cos(βix) + Ci sinh(βix) + Di cosh(βix), (2)

where β4
i = ρω2

i /EI and β1, . . . , βne
are the first ne roots of the following charac-

teristic equation

(c sh− s ch)− 2Mp

ρ
βi s sh− Mp

ρ2
β4

i (J0 + Jp)(c sh− s ch)− 2Jp

ρ
β3

i c ch

−J0

ρ
β3

i (1 + c ch) +
J0Jp

ρ2
β6

i (c sh + s ch)− J0JpMp

ρ3
β7

i (1− c ch) = 0,

with s = sin(βiA), c = cos(βiA), sh = sinh(βiA), and ch = cosh(βiA). The
coefficients Ai, . . . , Di are determined up to a normalization factor and the ωi are
the eigenfrequencies of the flexible arm, for i = 1, . . . , ne.

The resulting Euler-Lagrange equations for the N = ne + 1 generalized coordi-
nates q = (θ, δ) = (θ, δ1, . . . , δne) are

Jθ̈ = τ (3)

δ̈i + ω2
i δi = φ′i(0)τ, 1, . . . , ne. (4)

Modal damping is taken into account by modifying eqs. (4) as

δ̈i + 2ζiωiδ̇i + ω2
i δi = φ′i(0)τ, 1, . . . , ne, (5)

where ζi ∈ [0, 1) are the non-dimensional damping coefficients.
Note finally that the two transfer functions τ → θc (clamped joint angle output)

and τ → θt (tip angle output), where (see Fig. 1)

θc = θ +
ne∑
i=1

φ′i(0)δi, θt = θ +
ne∑
i=1

φi(A)
A

δi (6)
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are, respectively, minimum phase (strictly, if ζi > 0), i.e., with zeros only in the
(open) left-hand side of the complex plane, and non-minimum phase1.

X
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0J

Jpmp

Fig. 1. Definition of variables for a one-link flexible arm

3 Design Method

Consider a rest-to-rest motion task for the one-link flexible arm modeled by eqs. (3)
and (5). The arm should be moved from an initial undeformed configuration qi =
(θi, 0) at time ti = 0 to a final undeformed configuration qf = (θf , 0) at time
tf = T , with q̇(0) = q̇(T ) = 0.

We solve this planning problem by designing a suitable output function y such
that the associated transfer function τ → y will have no zeros. This design output
should have the form

y = θ +
ne∑
i=1

ciδi + γθ̇ +
ne∑
i=1

diδ̇i, (7)

with the coefficients γ, ci, and di (i = 1, . . . , ne) to be determined by imposing the
condition that the output (7) has maximum relative degree (equal to the state space
dimension 2(ne + 1) of the flexible arm), i.e., y and its first 2ne + 1 derivatives are
independent from the input τ . The actual computation of this output can be performed
in the time domain (in fact, this may allow the generalization to a nonlinear setting).
Details for the case of no modal damping are given in [9]. However, one can exploit
the linearity of the system dynamics and work in the Laplace domain. We present
here the extension of this closed-form calculation when including modal damping,
namely for eqs. (3) and (5).

1 From the boundary conditions (1), one has φ′i(0) = limx→0
φi(x)

x
.
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The transfer function associated to the input-output map τ → y is derived from
eqs. (3), (5), and (7), and then equated to one having no zeros, i.e.,

y(s)
τ(s)

=
γs + 1
Js2

+
ne∑
i=1

(dis + ci)φ′i(0)
s2 + 2ζiωis + ω2

i

=
K

s2
∏ne

i=1(s2 + 2ζiωis + ω2
i )

, (8)

for a suitable scalar K. The unknown coefficients in eq. (8) are determined by using
partial fraction expansions of the last two terms and imposing their equality. We
obtain the following expressions:

K = 1
J

∏ne

i=1 ω2
i

γ = −∑ne

i=1
2ζi

ωi

ci = 2ωi

φ′
i
(0)

[
aiζi − bi

√
1− ζ2

i

]
, i = 1, . . . , ne

di = 2ai

φ′
i
(0) , i = 1, . . . , ne,

(9)

where Ri = ai ± jbi are the (complex conjugate) residuals associated to the poles
(−ζi ± j

√
1− ζ2

i )ωi, for i = 1, . . . , ne. The real and imaginary parts of Ri are
computed as follows. For i, k = 1, . . . , ne (with k &= i), let

ρi = 4ω3
i ζi(1− ζ2

i )

σi = 2ω3
i (2ζ2

i − 1)
√

1− ζ2
i

vik = ω2
i (2ζ2

i − 1) + ω2
k − 2ωiωkζiζk

wik = 2ωi

√
1− ζ2

i (ωkζk − ωiζi)

and

∆i =
K

(ρ2
i + σ2

i )
∏ne

k #=i(v
2
ik + w2

ik)
Γi = (ρi − jσi)

ne∏
k #=i

(vik − jwik).

We finally have, for i = 1, . . . , ne, ai = ∆i · Re [Γi] and bi = ∆i · Im [Γi]. The
previous formulas determine uniquely the design output. In the absence of modal
damping (ζi = 0, for all i), it is easy to verify that the output coefficients reduce to
the expressions given in [9]:

γ = 0, di = 0, ci = − 1
Jφ′i(0)

ne∏
j=1

j #=i

ω2
j

ω2
j − ω2

i

, i = 1, . . . , ne.

Once the output has been defined according to eqs. (9), one can establish a
transformation between the state (q, q̇) = (θ, δ, θ̇, δ̇) and the output y with their time
derivatives up to the (2ne + 1)-th order, as

[ y ẏ . . . y[2ne+1] ] = [ θ δT θ̇ δ̇T ] Q, (10)

with the invertible matrix Q depending on the coefficients ci’s and di’s. In particular,
it can be shown that a generic undeformed configuration at rest (δ = 0, and θ̇ = δ̇ =
0) maps into y = θ and ẏ = ÿ = . . . = y[2ne+1] = 0.

The rest-to-rest motion problem can then be solved by defining an interpolating
trajectory y = yd(t), t ∈ [ti, tf ], with appropriate boundary conditions at time
ti = 0 and tf = T . From the structure of eq. (10), it is enough to set yd(0) = θi,
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yd(T ) = θf , with all derivatives up to the (2ne + 1)-th order equal to zero at the
initial and final time. For satisfying these boundary conditions, a polynomial of
degree 4ne + 3 will be sufficient. Choosing polynomials of higher (odd) degree,
with symmetric zero boundary conditions on the derivatives at initial and final times,
provides further desired smoothness of the nominal torque.

A closed-form expression of the nominal torque τd(t) can be obtained without
the need of computing the coefficients γ, ci’s, and di’s. In fact, setting y = yd in
eq. (8) and using K from eqs. (9), we obtain in the Laplace domain

τd(s) =
J∏ne

i=1 ω2
i

[
s2

ne∏
i=1

(s2 + 2ζiωis + ω2
i )

]
yd(s)

and thus in the time domain

τd(t) =
J∏ne

i=1 ω2
i

[
y
[2(ne+1)]
d (t) +

2ne−1∑
i=0

αiy
[i+2]
d (t)

]
, (11)

with real constants αi easily obtained by convolution of polynomial coefficients. In
the absence of modal damping only even derivatives of the output trajectory appear.

It is interesting to note that the designed output has a clear physical interpretation
in case of no modal damping (γ = 0, di = 0, i = 1, . . . , ne). In analogy with the
clamped joint and tip angle outputs (6), the output function (7) is the angle to a
specific point along the link located at a distance x = x∗ ≤ A from the base:

y = θ +
ne∑
i=1

ciδi = θ +
ne∑
i=1

φi(x∗)
x∗

δi.

At x∗, there is a transition between stable and unstable inverse dynamics. In fact,
while displacing x from 0 to A, the zeros of the input-output transfer function
slide along the imaginary axis (passive minimum-phase output θc), overpassing
the location of the poles (losing the passivity property) and then going to infinity
(vanishing) for x = x∗ (design output y). Beyond this point, the zeros of the transfer
function reappear in symmetric positive/negative real pairs (non-minimum phase
output θt).

Finally, in a real implementation it is convenient to add a feedback action that
stabilizes the flexible arm along the nominal trajectory. This can be achieved by a
purely joint-based PD controller (see, e.g., [11])

τ = τd + kp(θc,d − θc) + kd(θ̇c,d − θ̇c), (12)

where kp > 0, kd > 0, τd(t) is given by eq. (11), and θc,d(t) is the reference
trajectory for the clamped joint angle (directly measured by the motor encoder).
This joint reference trajectory is computed off-line either in an algebraic way, by
inverting eq. (10) for y = yd(t) and using eq. (6), or by simulation of the system
dynamics (3) and (5) under the nominal torque τd(t).
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4 Experimental Results

We have implemented the rest-to-rest method on the flexible arm available at the
DMA of our University (see Fig. 2). The arm has length A = 0.655 m and is
made of an harmonic steel sheet (2 mm thick and 51 mm wide) with measured
EI = 6.22 Nm2 and ρ = 0.7733 kg/m. The actuator is a current-driven DC motor
directly coupled to the link with maximum torque of about 1 Nm. The motor inertia
is J0 = 1.888 · 10−3 kg m2, while its actual current-to-torque gain is 0.2966 Nm/A.
The arm has no tip payload (Mp = Jp = 0). The encoder mounted on the motor
has a resolution of 4000 pulses/turn, amplified by a factor of 4 through electronics.
Seven full bridges of strain gauges are mounted on the link in order to measure
deformation. In this work, these measures have been used only for assessing the
vibrations along the arm (and not for feedback). The used sampling frequency of the
controller is 4 KHz.

Fig. 2. The experimental one-link flexible arm and one of the seven strain gauges

Before applying the method, the friction acting at the joint needs to be taken into
account. We have modeled it as

τF = Fs sign(θ̇c) + Fv θ̇c,

where Fs and Fv are, respectively, the static and viscous friction coefficients. Friction
has been identified separately, recording the current needed to keep the arm rotating
at different constant speeds in a series of experiments. By linear regression we
found Fs = 0.0504 Nm and Fv = 0.0282 Nm/(rad/s). Since joint friction acts on
the system in the same way as the input torque command, we can obtain (partial)
friction compensation by adding to the nominal feedforward torque τd(t) the term

τF,d = Fs sign(θ̇c,d) + Fv θ̇c,d. (13)

In order to identify the dynamic model (3) and (5), we have excited the structure
with a frequency sweep signal, with constant amplitude and frequency linearly
increasing with time. Up to five resonant frequencies were identified using the
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MATLAB Frequency Domain System Identification toolbox. The first three modal
eigenfrequencies and associated damping coefficients were found to be:

f1 = 14.4, f2 = 34.2, f3 = 69.3 (Hz) ζ1 = 0.0001, ζ2 = 0.001, ζ3 = 0.008.

Using the experimental values ωi = 2πfi and the mode shape expressions (2), the
associated mode shape spatial derivatives at the link base are:

φ′1(0) = 11.7699, φ′2(0) = 16.4439, φ′3(0) = 8.6898.

Figure 3 shows the comparison of experimental vs. analytical frequency responses,
providing a very good validation of the model. The errors between model-based and
measured eigenfrequencies are below 1%.
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Fig. 3. Joint acceleration frequency response (plant vs. model) [dB/Hz]

We report here experimental results using only ne = 3 modes in the dynamic
model and executing a slew of 180◦ in T = 2.2 s. The designed output trajectory is a
19th-degree polynomial, which guarantees also zero torque and zero time derivative
of the torque at the initial and final instants.

The first set of plots show the typical performance of a pure feedforward strategy.
The nominal torque in Fig. 4 is almost symmetric w.r.t. motion midtime, apart from
the off-set due to the compensation of static friction (kept also beyond T = 2.2 s).
The measured rotation at the link base (the clamped joint angle in Fig. 5a) shows
that a residual position error is left at the end of the motion. This is mainly due to the
actual non-uniform friction along a full rotation of the arm. In other experiments,
no residual error was found. Figure 5b shows the bending angle at the tip w.r.t. the
rigid angular motion (i.e., θ).

The second set of results are obtained with the addition of a joint PD feedback as
in eq. (12), with gains kp = 36.25 Nm/rad and kd = 0.02 Nm/(rad/s). The applied
torque in Fig. 6a is more nervous but quite similar to the nominal one. The joint and
tip evolutions (Fig. 7) are almost perfect, with a peak error of less than 0.15 deg in
both cases. In order to better evaluate the vibrational behavior of the arm, the bending
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Fig. 4. Applied feedforward torque
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Fig. 5. Clamped joint angle (a). Bending deformation at the tip (b)
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Fig. 6. Applied torque including joint PD feedback (a). Bending deformation at the tip (b)
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Fig. 7. Clamped joint angle (a). Tip angle (b)

deformation at the tip is also shown in Fig. 6b. These results are very repetitive in
all performed experiments.

As a final comparative test, we have used the simple feedback controller

τcomp = Jÿd + kp(yd − θc) + kd(ẏd − θ̇c) (14)

where J , kp, and kd are the same as before, while yd(t) is a 7-th order polynomial
with zero boundary conditions on velocity, acceleration, and jerk. We note that,
apart from the simpler feedforward term (based here only on the rigid model), the
main difference between eq. (12) and (14) is the use of the model-based computed
reference θc,d(t) in place of yd(t). The nominal compensation of friction (13) is also
added to τcomp. Figure 8 shows that both the torque and the tip bending deformation
are more affected from oscillations than before. Finally, Fig. 9 compares the tip
acceleration profiles with the rest-to-rest method and when using the control law (14).
In the presence of a maximum angular bending of 1.5 deg, the tip acceleration profile
in Fig. 9a shows neglectable oscillations after T = 2.2 s with our method. On the
other hand, although the applied torque and the tip bending deformation are both
much smaller using (14), the tip angular acceleration in Fig. 9b is still considerably
large after the nominal completion time, indicating the presence of undesired residual
oscillations.

5 Conclusions

We have presented an experimental validation of a new method for computing the
nominal torque that achieves rest-to-rest motion in given time for a one-link flexible
arm, based on the definition of a design output with maximum relative degree. The
obtained results show the feasibility of the method and its robustness, when adding
a simple joint PD feedback, to unmodeled dynamics such as high-frequency modes
and friction.

The same approach can be applied in principle to any controllable linear single-
input system. Interestingly enough, the time-based version of this design method
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Fig. 8. Applied torque including PD feedback for a smooth rigid motion with 7th-order
polynomial joint trajectory (a). Bending deformation at the tip (b)
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Fig. 9. Comparison of tip angle acceleration. Rest-to-rest method (a). Smooth rigid motion
(b)

can be extended also to nonlinear multi-input systems, by finding an output vector
without zero dynamics. A first example has been provided in [12], where rest-to-
rest motions were successfully planned for a two-link planar robot with a flexible
forearm.

In terms of residual vibrations, our method showed improvements in comparison
with the use of smooth model-independent polynomials as reference trajectory for
the flexible arm. The differences would become even larger if faster execution times
were allowed by the actuator capabilities. Actually, the simple interpolation with
high-order polynomials used within our method leads to large peak torque values
attained only for few instants around the motion midpoint. However, the presented
method can be modified so as to generate bang-bang or bang-coast-bang type torque
profiles, with suitable interpolating phases near the start and final (and midway)
instants. Preliminary results indicate that a reduction of about 70% (!) of the peak
torque can be obtained in this way for the same motion time.
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