Skip to main content

Change of Height: An Approach to the Haptic Display of Shape and Texture Without Surface Normal

  • Conference paper
  • First Online:
Book cover Experimental Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 5))

Abstract

Several haptic shape display methods rely on the surface normal to compute a force response. Instead, it is possible to use the change of height of an interaction point to compute a force response when a subject explores the surface of an object. The notion of surface normal is no longer needed, and the difficulties associated with it are eliminated. An experiment is designed to illustrate some differences between this approach and previous ones. Open questions are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buttolo, P., Hannaford, B. 1995. Advantages of actuation redundancy for the design of haptic-displays. ASME Fourth Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. DSC-57-2, pp. 623–630.

    Google Scholar 

  2. Hayward, V., Choksi, J., Lanvin, G., and Ramstein, C. 1994. Design and multi-objective optimization of a linkage for a haptic interface. Advances in Robot Kinematics, pp. 352–359. J. Lenarcic and B. Ravani (Eds.), Kluver Academic.

    Google Scholar 

  3. Hayward, V., Armstrong, B., 2000. A new computational model of friction applied to haptic rendering. In Experimental Robotics VI, P. I. Corke and J. Trevelyan (Eds.), Lecture Notes in Control and Information Sciences, Vol. 250, Springer-Verlag, pp. 403–412.

    Google Scholar 

  4. Han, H., Yamashita, J., Fujishiro, I. 2002. 3D haptic shape perception using a 2D Device, in Technical Sketches, SIGGRAPH 2002.

    Google Scholar 

  5. Keyson, D. 1996. Touch in user interface navigation. Doctoral dissertation, Eindhoven University of Technology.

    Google Scholar 

  6. Lederman, S. J., Klatsky, R. L., 1987. Hand movements: a window into haptic object recognition. Cognitive Psychology, vol. 19, pp. 342–368.

    Article  Google Scholar 

  7. Lederman, S.J., Klatzky, R.L. 1996. Action for perception: Manual exploratory movements for haptically processing objects and their features. In Wing, A., Haggard, P., Flanagan, R. (Eds.), Hand and Brain: Neurophysiology and Psychology of Hand. pp. 431–446. San Diego: Academic.

    Google Scholar 

  8. H. Massie, T., Salisbury, J. K. 1994. The Phantom interface: A device for probing virtual objects. Proc. ASME Winter Annual Meeting, Symposium on Haptic Interfaces for a virtual environment and teleoperator systems. DSC-Vol. 55–1, pp. 295–301.

    Google Scholar 

  9. Minsky, M. 1995. Computational haptics: The sandpaper system for synthesizing texture for a force feedback display. Ph.D. dissertation, Massachusetts Institute of Technology.

    Google Scholar 

  10. Morgenbesser, H. B., Srinivasan, M. A. 1996. Force shading for haptic shape perception. Proc. Fifth Annual Symp. on Haptic Interfaces for Virtual Envir. andTeleop. Syst., ASME Dyn. Syst. and Cont. Div., DSC-Vol. 58. pp. 407–412.

    Google Scholar 

  11. Prisco, G.M., Frisoli, A., Salsedo, F., Bergamasco, M. 1999. A novel tendon driven 5-bar linkage with large isotropic workspace, Proc. ASME Eight Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. DSCD/DSC-6B-3.

    Google Scholar 

  12. Ramstein, C. Hayward, V 1994. The Pantograph: a large workspace haptic device for a multi-modal Human-computer interaction. Proc. CHI’94, Conference on Human Factors in Computing Systems ACM/SIGCHI.

    Google Scholar 

  13. Ramstein, C. 1995. MUIS: Multimodel user interface with force feedback and physical models. Proc. IFIP International Conference Interact’95, Lillehammer, Norway, pp. 157–162.

    Google Scholar 

  14. Robles-De-La-Torre G., Hayward, V 2000. Illusory surfaces and haptic shape perception. 2000 Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, Proc. ASME Vol. DSC-69-2, pp. 1081–1087.

    Google Scholar 

  15. Ruspini, D., Khatib, O. 2000. A framework for multi-contact multi-body dynamic simulation and haptic display. Proc. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems.

    Google Scholar 

  16. Weisenberger, J. M., Kreier, M. J., Rinker, M., A. 2000. Judging the orientation of sinusoidal and square-wave virtual gratings presented via 2-DOF and 3-DOF haptic interfaces. Haptics-e, vol. 1, No. 4.

    Google Scholar 

  17. Zilles, C. B., Salisbury. J. K., 1995, A constraint-based god object method for haptic display. Proc. IEEE Int. Conf. Intel. Rob. and Syst., vol. 3, pp. 146–151.

    Google Scholar 

  18. Yamashita, J., R. W. Lindeman, Y Fukui, O. Morikawa, and S. Sato. 2000. On determining the haptic smoothness of force shaded surfaces, in Conference Abstracts and Applications of SIGGRAPH 2000, p. 240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hayward, V., Yi, D. (2003). Change of Height: An Approach to the Haptic Display of Shape and Texture Without Surface Normal. In: Siciliano, B., Dario, P. (eds) Experimental Robotics VIII. Springer Tracts in Advanced Robotics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36268-1_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-36268-1_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00305-2

  • Online ISBN: 978-3-540-36268-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics