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Abstract

We provide a detailed analysis of the insertion and deletion operations for an ER-model
represented in terms of the map calculus. This continues our previous study of compiling an
ER model into the abstract setting of what might be called logic without variables.
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1 Introduction

Entity relationship modelling (ER modelling for short) is a widespread and powerful technique
for data modelling. An ER model captures all the relationships between data using entities
and relations together with attributes on them. The very popular modelling approach through
the Uni�ed Modelling Language (UML, see [12]) is partially based on it. A formal semantics
of ER modelling, however, is not easy to come by: as usual, a popular technique is described
more or less informally, and this is notoriously di�cult to model formally.
There are several approaches at formally describing the semantics of this modelling technique.
They are mainly based on algebraic modelling techniques and capitalize on the semantic
framework that comes with them. Hettler [7] gives a translation of these models into the
speci�cation language SPECTRUM, essentially modelling entities as records with attributes
as entries, but not taking inheritance into account. The formal semantics of an extended
ER-model is investigated in [6, 8] from a database point of view, proposing the semantics of
a database signature as the set of all interpretations; this work does not mention algebraic
speci�cations explicitly. In [5] it is shown how to generate an algebraic speci�cation from
an ER-model, hereby carrying the model based semantics of such a speci�cation over to
ER-models.
The present paper proposes formalizing ER modelling through relational algebra (which is
di�erent from relation algebra so useful in data base programming languages!), a branch of
Logic brought to 
ourish through the work of Ernst Schr�oder (see the historical introduction
in [1]). Relational algebra has been used for decomposing relations in a database according
to functional dependencies in [9], these methods have not yet be utilized for a systematic
investigation of the dynamic behavior of a data base.
We separate the static structure (the topology) of the ER model from its dynamic counter-
part, and we have shown already how to model the static view using relational algebra in a
companion paper [11]. This is obviously not enough, because the dynamic nature of an ER
model cannot be described using the static structure alone. Let us have a look at abstract
data types for just conveying the 
avor of our arguments.

1.1 The ADT view

An abstract data type (ADT) encapsulates data and the operations (usually called methods)
on it. This notion of an ADT is fundamental in object oriented software construction, classes
may be considered as special cases of ADTs. This notion is fundamental because it supports
data abstraction and permits keeping data and their operation in one physically well de�ned
place. ADTs serve as templates, they are instantiated, and the instances of an ADT are the
living capsules data and operations are kept in. The state of an instance is just the collection
of speci�c values the data of this instance are having. The approach Design by Contract,
so forcefully advocated by Bertrand Meyer [10], and realized in his language Ei�el, goes one
step beyond, associating with each ADT speci�c properties called invariants. Operations on
an (instance of an) ADT have to respect these invariants in the sense that each operation
that starts on an instance which satis�es the invariant leaves the instance in a state which
also satis�es it. Each method m of an ADT is associated with a precondition prem and a
postcondition postm indicating a contract: entering m such that prem is satis�ed guarantees
leaving m with postm satis�ed. In Hoare's notation of predicate transforms,

finv ^ premg m finv ^ postmg:
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Actually, Design by Contract entails more, because inheritance comes into the game through
rather involved co- and contravariant rules relating methods from subclasses to superclasses,
but this will not concern us here.
Call an ADT an Ei�el ADT i� it has invariants and pre- as well as postconditions, and if the
Design by Contract rules are imposed on its methods.
An ER model M may be considered as an ADT. The data to be stored in an instance are
composed of the data stored in the entities, relations and attributes, and the invariant is
provided by the conditions imposed on the model's validity (see De�nition 5.4). We should
look for three families of operations:

� initializing an instance of M,

� inserting elements into entities and relations,

� deleting elements from entities and relations.

Note that we do not talk about operations but rather about families of them; this is so since
an operation like inserting an element into a relation R usually entails other operations (like
inserting elements into the domain, and into the codomain of R); there may be more subtle
dependencies as well, as we will see.
The invariant to be maintained by these operations is the validity of the model; this means
that the model before and after one of these families of operations has to conform to the
model's declaration. The postconditions are in every case empty, because the operations
are all geared towards maintaining the ADT's invariant. The preconditions are sketched as
follows:

Initialization: Since this operation initializes every entity and every relation to the empty
set, no precondition needs to be provided. The assumption is that we always start from
an empty model, so we do not cater for this operation.

Insertion: The insertion of elements into an entity or a relation requires a set of conditions
which will force the invariant to hold after the insertions took place. This will provide
the precondition, see Proposition 5.2.

Deletion: Similarly, the deletion of elements requires a set of conditions which will help
maintaining the invariant. The conditions imposed there form the precondition, they
are formulated in Proposition 6.4.

Hence M forms in fact an Ei�el ADT.

1.2 Overview

What needs to be done then is to formulate the invariant and the precondition using the
language we have chosen for our formalization. After we discuss the version of ER modelling
we want to work with in Section 2, we introduce relational algebra (or map algebra, as we
will call it usually) brie
y in Section 3, there we will also provide some abbreviations that
are helpful for the discussions to follow. Section 4 formulates essential pieces of an ER
model in map algebra, borrowing freely from [11]. Section 5 deals with a formulation of
the preconditions for insertions; for reasons of reducing the complexity, this is split into the
bare bones version of an ER model which does not entertain attributes. This leads to the
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notion of a weakly valid ER model, and it is shown under which conditions weak validity is
maintained. Attributes are added to the discussions at that point, leading to the notion of a
valid model, and strengthening the preconditions towards keeping validity invariant. A very
similar procedere is observed when discussing deletions in Section 6, which quite surprisingly
turns out to be easier to handle than insertions. This is mainly due to the fact that most
of the interesting properties are downward closed: if a map expression W observes it, then
all map expressions V � W do, too. Section 7 proposes further investigations along the
lines suggested here, discussing for example how model checking as a technique to ascertain
properties of an ER model could be incorporated.

Acknowledgements. This work was done while the �rst author was visiting the Com-
puter Science Group of the Dipartimento di Matematica Pura ed Applicata at the University
of L'Aquila. This research was in part supported through grants from the Exchange Pro-
gramme for Scientists between Italy and Germany from the Italian Minstry of Foreign Af-
fairs/Deutscher Akademischer Austauschdienst and from Progetto speciale I.N.D.A.M./GNIM
\Nuovi paradigmi di calcolo: Linguaggi e Modelli".

2 Entity Relationship Models

Entity Relationship modelling [4] is a popular and widespread technique for data modelling
which we assume the reader to be familiar with. Many variants have been discussed (Thal-
heim's encyclopedic book [15] provides an overview).

2.1 The variant to be considered

We will restrict ourselves to a rather basic variant in which

� All relations are binary, and the only cardinality restriction that may be imposed on a
relation is that it is left- or right- unique.

� Inheritance is restricted to single inheritance.

� Relations are assumed to be total. In fact, in the presence of inheritance non-total
relations may be transformed into total ones by introducing additional entities for the
domain, and for the range, respectively,

� Attributes are de�ned on entities only.

This is the version of ER modelling investigated in [11] and a bit more restrictive than the
one investigated in [5]. These restrictions can be removed or re�ned at the cost of a more
complicated technical development. We feel, however, that the methods we develop here
provide a way of modelling these more complicated situations.

2.2 The process model

We are given an instance M of an ER model which is valid, so all constraints formulated in
the declaration of the model are satis�ed. We want to investigate change, namely we want
to investigate under which conditions insertions and deletions into M lead to a valid model
again. In order to investigate this for insertions, we assume that we have complete information
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about the items to be inserted. Thus, if E is an entity, we know the items �+E to be inserted
into E, yielding E [ �+E as the new version of this entity. Similarly, we know for relations
R the tuples �+R to be inserted, and we know for attributes � the changes in �+�. What
we want to know is, under which conditions for E; �+E;R; �+R and �; �+� the invariance of
validity of the instance is maintained. The question arises mutatis mutandis for deletions.
Note that the assumption that the change sets �+ and �� are given does not address the
problem of constructing them. When insertion is done interactively, and is not done with care,
situations may arise when an in�nite sequence of insertions may be necessary; this can be
demonstrated through easily found examples. We bypass these complications by postulating
that complete information is available from the outset.

3 Map Calculus

ER models will be formulated in terms of relational algebras. These algebras formalize ax-
iomatically the usual operations on binary relations (like composition or inversion), so that
binary relations appear as one of several models that are possible for these algebras. We will
provide a very brief introduction to these algebras, and we will �x some notations for the
reader's convenience.
A relational algebra (ormap algebra) is de�ned as a Boolean algebra with additional properties
that are imposed because a composition relation is available. The version of relational algebras
we want to use is de�ned below; for variants and further developments the reader is encouraged
to consult [2, Ch. 2] or [1, Ch. 1].

De�nition 1 h�; 1l; \; � ; �; �; ��1i is called a relational algebra i�

1. h�; 1l; \; � i is a Boolean algebra with smallest element �, largest element 1l, intersection
(meet) \, and complementation � ; the associated order relation and union (join) are
denoted by �, and [, resp.

2. � is a binary associative operation on the Boolean algebra with � as the left- and right-
neutral element,

3. ��1 is a unary idempotent operation on the Boolean algebra,

4. the following properties hold:

(a) (P �Q)�1 = Q�1 � P�1,

(b) (P \Q)�1 = P�1 \Q�1,

(c) P � (Q1 \Q2) � P �Q1 \ P �Q2 (\-subdistributivity),

(d) P � (Q1 [Q2) = P �Q1 [ P �Q2 ([-distributivity),

5. P � Q implies P � R � Q � R,

6. (P �Q) \R = � implies (P�1 � R) \Q = � (Schr�oder's Rule).

Map algebra consists of map equalities P = Q, where P and Q are map expressions:
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De�nition 2 Map expressions are terms of the signature according to the table below, where
we have added union [ as an associative operation, and the left-associative set di�erence n
for convenience:

Symbol � 1l � ri \ � ��1 � [ n

Degree 0 0 0 0 2 2 1 1 2 2

Priority 5 6 7 2 2 2

Here ri is one of the countably many map letters which we assume to be available.

Map letters are used to customizing map algebra by attaching additional properties through
additional axioms for the relational algebra, as we will see in the sequel.
An interpretation I over a universe U maps each map expression to a subset of the Cartesian
square U2 �

Def
U � U such that e.g.

�I = ; (P \Q)I = P I \QI ;

1lI = U2 (P �Q)I = P I �QI

�
I = �

�
Q�1

�I
=

�
QI
��1

Here � is the diagonal fha; aij a 2 Ug of U , and the operations on the right-hand side are the
familiar ones manipulating relations over sets. Hence e.g. [-distributivity translates into the
set equality R � (S1 [ S2) = R � S1 [R � S2: that is familiar for the relations R � A�B and
S1; S2 � B � C for sets A;B and C.
Adding new axioms through �xing properties of map letters has the e�ect of restricting
interpretations: they have to satisfy the additional properties for the interpretation of the
map letters, which in turn also have to be provided.
For convenience, we use some abbreviations which are listed in the table below.

Notation Expression Note

Coll(R) R � �

Total(R) R � 1l = 1l

dom(R) R � 1l \ � domain of R

img(R) 1l � R \ � range=image of R

LUniq(R) Coll
�
R�1 � R

�
RI is a partial map

RUniq(R) LUniq
�
R�1

� �
R�1

�I
is a partial map

NonVoid(R) Total(1l � R) RI 6= ;
Snglt(R) NonVoid(R) & LUniq(1l � R) & LUniq

�
R�1

�
RI is a singleton

DomSub(R;S) R � 1l � S � 1l domain containment

ImgSub(R;S) 1l �R � 1l � S range containment

For example, Coll(E) says that EI is supposed to consist of pairs of the form ha; ai, Total(E)
indicates that EI is (left-) total, hence that for each a 2 U there is some b 2 U with ha; bi 2 EI .
The reader is invited to formulate these expressions in terms of set-theoretic relations.
Some identities and inequalities will be particularly helpful in the sequel; we collect them here
for convenience, and refer the reader to [14] and to [13].

Lemma 1 Let P;Q and R be map expressions, then

1. LUniq(R), R � (P \Q) = R � P \R �Q,
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2. (P [Q)�1 = P�1 [Q�1,

3. (P �Q) n (R �Q) � (P n R) �Q

4. P;Q � �, then

(a) P�1 �Q = �, provided P \Q = �,

(b) (P nQ) � 1l = ( P� 1l) n (Q � 1l);

5. Q � R � S , Q�1 � S � R, S � R�1 � Q (Schr�oder's Cycle Rules),

6. P�1 =
�
P
��1

: �

Map Letters We assume that we have a countably in�nite provision of map letters r1; r2; : : :
at our disposal of which we reserve the �rst T for system purposes.

4 Preparations

Now let an ERmodelM be given. All information concerningM can be found in a declaration
which represents the static information about the model, and which permits stating the
validity of an instantiation forM. For the time being we concentrate on entities and relations,
attributes will be added later on.

4.1 The Basic Model

If E is the domain of relation R with F as its co-domain, then we will assume that E and F
are tight, i.e., that for each entity e there exists f such that he; fi is in R, similarly for F .
This is indicated by E �|R|�F . In what follows, entities and relations will be considered
an element of a �xed (but anonymous) map algebra. An entity E is then represented through
Coll(E), hence consists of pairs the �rst and the second component of which agree, and

E �|R|�F

translates to

DotDot(E;R; F ) �
Def

Coll(E) & Coll(F ) & DomSub(E;R) & ImgSub(F;R):

Either relation �| or |� may be tightened to �
1
| and

1
|�, resp., indicating uniqueness. Thus

E �
1
|R means in additional to E �|R that

hx; yi 2 R ^ h x0; yi 2 R) x = x0

holds, which may be translated conveniently into LUniq(R): Similarly, R
1
|�F; which means

hx; yi 2 R ^ h x; y0i 2 R) y = y0

is translated into RUniq(R):
Note that either of these conditions depends only on the relation, not on the domain or the
codomain.
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The di�erent way a relation relates to its domain and its codomain may be captured through
the suitable combination of macros which are comprehensively listed in the table below

Situation Characterization

E �
1
|R

1
|�F DotDot(E;R; F ) & LUniq(R) & RUniq(R)

E �
1
|R|�F DotDot(E;R; F ) & LUniq(R)

E �|R
1
|�F DotDot(E;R; F ) & RUniq(R)

4.2 Adding Place Holders

It may sometimes happen that information is incomplete: an element x is inserted into entity
E, and E �|R|�F holds, but there is no y in F so that hx; yi is to be inserted into R.
This then would violate the condition E � 1l � R � 1l. There may even occur some unpleasant
situations when place holders are not admitted. Consider Fig. 1, where E and F are assumed
to be di�erent entities. Insert one into E, then hone; twoi into R; then two must be new to
F . Insert it into F , then it will be inserted into F 0 which requires the insertion of a pair
hthree; twoi into S; three must be new to E. In this way a loop is created which will not
terminate

FE R
1

F‘E S
1 1

IsA=

Figure 1: Possible Circularity

For enabling insertions also under somewhat problematic conditions, we postulate the exis-
tence of place holders which are collected in a relation P , so that in the situation considered
hx; �i with � 2 P would be inserted into R. We assume that Coll(P ) holds, and that the
entities are free of place holders, thus E \ P = ; is true for each entity E (note that this
implies both 1l �E \ 1l � P = ; and E � 1l \ P � 1l = ; by Lemma 1). Let

Entity(P;E) �
Def

Coll(E) &E \ P = �

denote that E is an entity.

Inheritance Immediate inheritance between entities is given through the IsA- relation.
Hence E IsA F translates into

Inherits(P;E; F ) �
Def

Entity(P;E) & Entity(P; F ) &E � F:

There are some restrictions to be observed concerning the IsA-relation, mainly acyclicity and
single inheritance, and the reader is referred to the companion paper [11] for details.
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Constraints on place holders In [11] some constraints on the use of place holders were
formulated:

1. No placeholder occurs twice as the �rst or the second component of a pair in a relation
R. Put

NoTwice(P;R) �
Def

P \ (R \R � �) � 1l = �;

then
NoTwice(P;R) & NoTwice

�
P;R�1

�
should hold,

2. No placeholder occurs in two di�erent relations R;S as the �rst components of a pair,
which is formulated as

NoBoth(P;R; S) �
Def

P \R � 1l \ S � 1l = �:

3. No placeholder occurs both as the �rst component in relation R and as the second
component in relation S, hence

NoFirstSecond(P;R; S) �
Def

NoBoth
�
P;R; S�1

�
:

4. No pair in a relation has place holders on both sides, thus

NoSamePair(P;R) �
Def

R \ P � 1l \ 1l � P = �:

5. The situation h�; yi and hx; yi with x 6= � (and, for symmetry, in the second component)
does not occur; this is captured through

NoDoubleFirst(P;R) �
Def

R �R�1 \ P � 1l \ 1l � P = �

and
NoDoubleSecond(P;R) �

Def
R�1 � R \ 1l � P \ P � 1l = �

Summing up: If fR1; : : : ; Rkg are the identi�ers for all the relations in play, the conjunction
PlaceHolder(P; fR1; : : : ; Rkg) should hold, where

PlaceHolder(P; fR1; : : : ; Rkg) �
Def

&
k
i=1NoTwice(P;Ri) & NoTwice

�
P;R�1

i

�
& &

k
i=1&

k
j=i+1NoBoth(P;Ri; Rj)

& &
k
i=1&

k
j=iNoFirstSecond(P;Ri; Rj)

& &
k
i=1NoSamePair(P;Ri)

& &
k
i=1NoDoubleFirst(P;Ri)

& &
k
i=1NoDoubleSecond(P;Ri)

We reserve the map letter � for place holders.
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5 Insertions: Validity

This section formulates the validity of an ER model. For this, we �rst have a look at the
available map letters and at their arrangement. Then we discuss the validity of the model at
�rst without taking attributes into account. This leads to the notion of weak validity. Condi-
tions are formulated under which the weak validity of an ER model is preserved. Then we add
attributes to our discussion, and the notion of validity is formulated. Again, conditions are
given under which the attributes of the model arising from insertions satisfy the constraints,
this time leading to the instance of a valid ER model.

5.1 Map Letters

We assume that we have countably many map letters r1; r2; : : : at our disposal, of which we
reserve the �rst T initially for system purposes. We have reserved already � for place holders.
Some additional reservations will have to be done.
The map letters with indices beyond T will be used for the ER model under consideration
in the following way. rT+1; : : : ; rT+S will be reserved for entities, the next block of B map
letters rT+S+1; : : : ; rT+S+B will be reserved for relations, and �nally we will reserve the next
block of A map letters for attributes. In case of an insertion or a deletion, we reserve the next
block of S map letters for the �+ resp. ��-values for entities, the next block of size B for those
values for relations, and �nally the next block A map letters for attributes. We continue the
sequence with the results, according to the following scheme (with � := S+B+A): if entity
E corresponds to map letter rT+i with �+E corresponding to rT+�+i, then E [ �+E will be
deposited at rT+2��+i. In the same linear way | proceeding in a block wise fashion | we
deposit the changed values for relations and attributes. The arrangement of map letters is
indicated in Fig. 2.

System Entities Relations Attributes

δEntities δRelations δAttributes

Entitiesnew Relationsnew Attributesnew

T+1 T+S T+S+B T+S+B+A

T+Σ+1

T+2Σ+1

T+Σ+ S

T+2Σ+ S ...

...

...

...

Figure 2: Arrangement of Map Letters
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5.2 Keeping track

We keep record the respective relations between entities and relations through a set-valued
map

Track : fT + S + 1 ; : : : ; T+ S +Bg ! 2fT+1;:::;T+Sg�fT+1;:::;T+Sg

upon setting
hi; ji 2 Track(t), ri �| rt|� rj:

De�ne for the relational index t 2 f T+ S + 1 ; : : : ; T+ S +Bg

t 2 LeftOne , 9 i; j: ri �
1
| rt|� rj

t 2 RightOne , 9 i; j: ri �| rt
1
|� rj

Through these sets we get access to left- and right-unique relations. Note that ri �
1
| rt|� rj

implies rk �
1
| rt|� r` for all rk that form the domain of rt.

Again, Track; LeftOne and RightOne can be shifted linearly along each �-block of indices.
The re
exive and transitive closure IsA� of the inheritance relation is recorded through a
re
exive and transitive relation Up on the set fT +1 ; : : : ; T+Sg; note that this relation may
be shifted linearly to the sets fT + k � �+ 1 ; : : : ; T+ k � �+ Sg. The necessary properties of
IsA� are described in [11].

Attributes If entity E is represented by map letter ri with i 2 f T+ 1 ; : : : ; T+ Sg, then

Attributes(i) � f T+ S +B + 1 ; : : : ; T+ S +B +Ag

is the set of map letters that are associated with E's attributes. Clearly,

fAttributes(i)j T + 1 � i � T + Sg

forms a partition of the set fT + S +B + 1 ; : : : ; T+ S +B +Ag: The set

Mandatory(i) � Attributes(i)

contains the indices of all mandatory attributes (those attributes which are de�ned on all of
E), and the set

Key(i) � Mandatory(i)

contains all indices of the key attributes. We assume having only one set of key attributes
per entity. It would be easy to work with a varying number of sets of keys for each entity,
but this would only complicate the notation, without adding any new ideas.
When we execute an insertion or a deletion, we change the contents of the map letters by
manipulating the extension of the corresponding data containers. Our block oriented scheme
ensures that this process can be repeated without much ado by simply changing the base
address where it all begins from T to T + 2 � �.
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5.3 Weak Validity

An instance M of the ER model under consideration is weakly valid i� it satis�es all the
constraints imposed on the entities and the relations laid down in the model's declaration.
This can be described now formally:

De�nition 3 The instance M is called weakly valid i�

&T+S+1�t�T+S+&hi;ji2Track(t)DotDot(ri; rt; rj) & &t2LeftOneLUniq(rt)

& &t2RightOneRUniq(rt)

& &T+1�i�T+S Entity(�; ri)

& PlaceHolder(�; frT+1; : : : ; rT+Sg)

& &hi;ji2Up ri � rj

Note that weak validity is formulated using a �xed base address T , which, however, has not
been incorporated into the notation that is already cluttered enough.

5.4 Maintaining Weak Validity

The insertions to be performed start from a weakly valid ER model and should of course
maintain weak validity as an invariant; this issue is discussed in 1.1 at greater length. We will
need some preconditions. Before formulating them, however, we elaborate on the insertions
proper. If E is an entity, and �+E contains the insertions into E, then E [ �+E will be
formed, and this will be the new version of this entity. It is a bit more complicated with
a relation R, since we cannot simply form R [ �+R without running the risk of violating
NoDoubleFirst(P;R [ �+R) or NoDoubleSecond(P;R [ �+R): Hence we have to clean up R by
removing candidates for violations; they are easily seen to belong to

(1l � � \ �+R � 1l) [ (� � 1l \ 1l � �+R):

Thus we work with�
R; �+R

�
�

Def
R n

�
(1l � � \ �+R � 1l) [ (� � 1l \ 1l � �+R)

�
instead of R and form [R; �+R] [ �+R as the new version of relation R. Occasionally we
will replace the map letter � by the free variable P ; the expression then will be denoted by
[R; �+R]P .
For describing under which conditions weak validity is maintained, we need preparations.

Lemma 2 Let R be a relation, and assume Entity(P;E). Then these implications hold:

1.
DomSub(E;R) Entity(P;E)

DomSub(�+E; �+R) Entity(P; �+E)
(R \ 1l � P \ �+R � 1l) � 1l \ (E [ �+E) � 1l = �

DomSub(E [ �+E; [R; �+R]P [ �+R)
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2.
ImgSub(F;R) Entity(P; F )

ImgSub(�+F; �+R) Entity(P; �+F )
1l � (R \ P � 1l \ 1l � �+R) \ 1l � (F [ �+F ) = �

ImgSub(F [ �+F; [R; �+R]P [ �+R)

Proof: Apparently,
(E [ �+E) � 1l � (R [ �+R) � 1l;

and
(R [ �+R) � 1l =

��
R; �+R

�
P
[ �+R

�
� 1l [A;

where
A :=

�
R \ 1l � � \ �+R � 1l

�
� 1l [

�
R \ � � 1l \ 1l � �+R

�
� 1l:

Now

(E [ �+E) � 1l \A = ( E[ �+E) � 1l \
�
R \ 1l � P \ �+R � 1l

�
� 1l

� (E [ �+E) � 1l \ P � 1l

= �:

This establishes 1. In order to prove 2.,

1l � (R [ �+R)

is decomposed similarly into
1l � (

�
R; �+R

�
P
[ �+R)

and a part that is shown to be disjoint from F [ �+F . �

In a similar way, we can make sure that the new relation maintains its properties as a map,
or as the inverse of a map:

Lemma 3 Let R be a relation, then the following implications hold:

1.
LUniq(R) LUniq(�+R)

[R; �+R] � � � �+R

�+R � � � [R; �+R]

LUniq([R; �+R] [ �+R)

2.
RUniq(R) RUniq(�+R)

[R; �+R] � �+R � �

�+R � [R; �+R] � �

RUniq([R; �+R] [ �+R)

Proof: From [-distributivity it is inferred that��
R; �+R

�
[ �+R

�
�
��
R; �+R

�
[ �+R

��1
� �;
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since Schr�oder's Rule implies �
R; �+R

�
� (�+R)�1 � �

�+R � (
�
R; �+R

�
)�1 � �:

This establishes property 1. The other property is proved similarly. �

It may be noted that both implications above can be reversed.
Use in what follows as abbreviations

�(A;B;C) �
Def

A \ (B \ (C � �)) � 1l = �;

�(A;B;C) �
Def

A \ (B � 1l \C � 1l) = �

	(A;B;C) �
Def

A �B�1 [B � A�1 [B �B�1 � C

Lemma 4 The following implications hold for relation R:

1.
NoTwice(P;R) NoTwice(P; �+R; �+R)

�(P; [R; �+R]P ; �
+R) �( P; �+R; [R; �+R]P )

NoTwice(P; [R; �+R]P [ �+R)

2.
NoBoth(P;R; S) NoBoth(P; �+R; �+S)

�(P; �+R; [S; �+S]P ) �( P;[R; �
+R]P ; �

+S)

NoBoth(P; [R; �+R]P [ �+R; [S; �+S]P [ �+S)

3.
NoSamePair(P;R) NoSamePair(P; �+R)

NoSamePair(P; [R; �+R]P [ �+R)

4.
NoDoubleFirst(P;R) NoDoubleFirst(P; �+R)

�+R � [R; �+R]
�1
P � P � 1l \ 1l � P

NoDoubleFirst(P; [R; �+R]P [ �+R)

5.
NoDoubleSecond(P;R) NoDoubleSecond(P; �+R)

[R; �+R]
�1
P � �+R � 1l � P \ P � 1l

NoDoubleSecond(P; [R; �+R]P [ �+R)

6.
Inherits(P;E; F ) Entity(P; �+E) Entity(P; �+F ) �+E � F [ �+F

Inherits(P;E [ �+E;F [ �+F )

Proof: The proofs depend on the algebraic laws imposed for a relational algebra. We give
prototypical examples for proving these implications.
Regarding 1., [-distributivity implies

P \ (((X [ Y ) \ (X [ Y ) � �) � 1l)) = ( P \ ((X \X � �) � 1l)))

[ (P \ ((X \ Y � �) � 1l)))

[ (P \ ((Y \X � �) � 1l)))

[ (P \ ((Y \ Y � �) � 1l)))
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Matching this against the de�nition, and against � yields the result. In a similar way 2. is
established. The distributive law for [ implies 3. directly.
For establishing 4., put �` := P � 1l \ 1l � P as an abbreviation, then the condition together
with Schr�oder's Rule yields

�+R �
�
R; �+R

��1
P
\ �` = �:

Consequently, by [-distributivity,�
R; �+R

�
P
� �+R�1 \ �` = �

needs to be established. Schr�oder's Rule again shows this to be equivalent to

�` � �
+R � [R; �+R]P ;

which in turn may be seen from

�` � �
+R � P � 1l � �+R \ 1l � P � �+R

� P � 1l � 1l \ 1l � 1l � �+R

= P � 1l \ 1l � �+R:

The inference 5. is established in a very similar way. Finally, 6. is obvious. �

De�ne the set Related(t) as the smallest subset K of fT + 1 ; : : : ; T+ S + Bg with these
properties:

� t 2 K;

� if u 2 K and hu; vi 2 Up, then v 2 K;

� if ri �| rj or rj |� ri, then i 2 K i� j 2 K.

Thus if we want to insert something into, say, entity E, and E corresponds to map letter ri,
then Related(i) contains the indices of exactly those entities and relations which are a�ected
by this insertion.
Now let an entity or a relation correspond to map letter rt. An insertion or a deletion is called
local at t i� rs = � whenever s 2 f T+� ; : : : ; T+2 ��+1gnRelated(t). Introducing this guard
prevents the insertion or the deletion from violating the invariants for the model by letting
properties creeping in that are not really controlled through our safety measures.
From the instance M a new instance M0 is generated by performing the insertions. Put for
each j 2 f 1; : : : Sg

rT+2��+j := rT+j [ rT+�+j:

This accounts for insertions into entities. As far as relations are concerned, we set for each
j 2 f S+ 1 ; : : : ; Bg

rT+2��+j := [rT+j; rT+�+j ] [ rT+�+j;

accounting for the peculiar way we insert into a relation.
Upon shifting the base address from T to T+2��, the weak validity ofM0 can be investigated:

Proposition 1 Let M be a weakly valid ER model, assume that an insertion is local at some
index t, then the ER model arising from the insertions is weakly valid, provided the following
conditions are all satis�ed:
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1. &s2f1;:::;Sg Entity(�; rT+�+s);

2. &s2Related(t)\fT+1;:::;T+Bg

&hi;ji2Track(s) DomSub(r�+i; r�+s)

& Entity(r�+i) & ImgSub(r�+j ; r�+s) & Entity(r�+j)
& ( rs \ 1l � � \ r�+s � 1l) � 1l \ r2��+i � 1l = �

& 1l � (rs \ � � 1l \ 1l � r�+s) \ 1l � r2��+i = �

3. &s2LeftOne\Related(t) r�+s � r
�1
�+s � �& [ rs; r�+s] � � � r�+s & r�+s � � � [rs; r�+s]

4. &s2RightOne\Related(t) r
�1
�+s � r�+s � �& [rs; r�+s] � r�+s � �& r�+s � [rs; r�+s] � �

5. &s2Related(t)\fT+S+1;:::;T+S+Bg

� \ (r�+s \ r�+s � � � 1l) = �& � \
�
r�1�+s \ (r�1�+s � �) � 1l

�
= �

& �( �;[rs; r�+s] ; r�+s) & �( �;
�
r�1s ; r�1�+s

�
; r�1�+s)

& �( �;r�+s; [rs; r�+s]) & �( �;r�1�+s;
�
r�1s ; r�1�+s

�
)

6. &s2Related(t)\fT+S+1;:::;T+S+Bg

&v2Related(t)\fs;:::;T+S+Bg

& � \ (r�+s � 1l) \ (r�+v � 1l) = �

�(�; r�+s; [rv; r�+v]) & �(�; [rs; r�+s] ; rv)

7. &s2Related(t)\fT+S+1;:::;T+S+Bg r�+s \ � � 1l \ 1l � � = �

8. &s2Related(t)\fT+S+1;:::;T+S+Bg

r�+s � r
�1
�+s \ � � 1l \ 1l � � = �

& r�+s � [rs; r�+s]
�1 � � � 1l \ 1l � �

9. &s2Related(t)\fT+S+1;:::;T+S+Bg

r�1�+s � r�+s \ 1l � � \ � � 1l = �

& [ rs; r�+s]
�1 � r�+s � 1l � � \ � � 1l

10. &hi;ji2Up\Related(T )�Related(T ) Entity(�; r�+i) & Entity(�; r�+j) & r�+i � rj [ r�+j

Proof: 0. This looks at �rst like a confusing bag of details. So let us sort them out by
providing a brief table which permits some correspondence between the properties stated in
the Proposition, and the properties of an ER model.

Item# Property addressed

1 Entities are preserved

2 Domain properties are preserved

3 Left uniqueness

4 Right uniqueness

5 NoTwice

6 NoBoth

7 NoSamePair

8 NoDoubleFirst

9 NoDoubleSecond

10 Inheritance is preserved
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1. Property 1. establishes together with the assumption

&T+1�j�T+S Entity(rj)

that
&T+2��+1�j�T+2��+S Entity(rj)

is true.
2. Take s 2 Related(t), and assume that hi; ji 2 Track(s). Because M is weakly valid, we
know that DotDot(ri; rs; rj) holds. In particular,

DomSub(ri; rs) & Entity(ri)

are true. This implies together with

DomSub(r�+i; r�+s) & Entity(r�+i) & ( rs \ 1l � � \ r�+s � 1l) � 1l \ r2��+i � 1l = �

through Lemma 2 (Property 1.) that DomSub(r2��+i; r2��+s) holds. In a similar way (by
appealing to Lemma 2, 2.), ImgSub(r�+j; rs) is established. Collecting things, we have estab-
lished that

DotDot(r2��+i; r2��+s; r2��+j)

is true.
3. Let s 2 LeftOne \ Related(t), then we know from M0s validity that rs � rs � � holds. From
Lemma 3, Property 1. we now see that

LUniq(r2��+s)

is true, provided 3. holds. In a very similar manner,

RUniq(r2��+s)

is deduced from 4. for s 2 RightOne \ Related(t).
4. From 5. we infer that

&T+2��+S+1�j�T+2��+S+B NoTwice(�; rj) & NoTwice
�
�; r�1j

�

holds (where we use Lemma 1 to establish that the identity [rT+j ; rT+�+j]
�1 =

h
r�1T+j; r

�1
T+�+j

i
holds.
5. In similar ways one establishes the desired properties, resorting to Lemma 4 for establishing
the necessary conditions. �

The conditions formulated above look certainly very technical, so let us interpret the second
and the last of them. The former one states conditions under which

E [ �+E �|R [ �+R|�F [ �+F

holds, i.e., under which conditions E [ �+E and F [ �+F remain the tight domain and the
tight codomain, resp., of [R; �+R] [ �+R, provided E was the tight domain, and F was the
tight codomain of R before the insertion, i.e., provided

E �|R|�F
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holds. The conditions state that �+E needs to be an entity such that

dom
�
�+E

�
� dom

�
�+R

�
is true, hence each element to be inserted into E should be the �rst component of a pair to
be inserted into R. In the same way �+F is required to be an entity such that

img
�
�+F

�
� img

�
�+R

�
holds. In addition we make sure that the required conditions on place holders are not violated,
so that �

R \ 1l � P \ �+R � 1l
�
� 1l \ (E [ �+E) � 1l = �:

1l �
�
R \ P � 1l \ 1l � �+R

�
\ 1l � (F [ �+F ) = �

holds, as we have discussed above.
The last condition simply states that for E [ �+E to inherit from R[ �+R it is su�cient that
E inherits from F , and that �+E is a subset of F [ �+F , and that the new sets are entities
indeed. Similar interpretations are given for the other conditions; this is left to the reader.

5.5 Looking at Attributes

Attributes are de�ned on entities (this is one of our restrictions, cp. Sect. 2.1), they come
in di�erent 
avors, as we will discuss now. An attribute � on entity E is a partial map, so
LUniq(�) should be satis�ed, and its domain should be contained in (the domain of) E, thus

dom(�) � dom(E)

should hold. Moreover we assume attributes to have atomic values.
This requirement will be modelled as follows: We assume our universe U to be structured as

U = A[A�;

where A 6 =; are the atomic values, and A� denotes the set of all words over the alphabet A,
hence

A\A� = ;

with � as the empty word; as usual, we put

A+ := A� n f �g:

We reserve a map letter " 2 f r1; : : : ; rT g for representing � (hence Snglt(") & Coll(")) and
permit only interpretations I that satisfy "I = fh�; �ig. The atomic entities in A are modelled
through the map letter � with

Coll(�) &NonVoid(�) & � \ " = �:

In addition we postulate that � � � holds.
Interpretations are restricted further by postulating that

�I = fha; bi 2 A2j a = bg:
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Moreover we assume the existence of canonic projections CAR and CDR separating the head
from the tail of a non-empty word, hence

CAR : A+ 3 t1 : : : tk 7! t1 2 A ;

CDR : A+ 3 t1 : : : tk 7! t2 : : : tk 2 A
�:

These projections are represented through the map letters � and �, corresponding to CAR and
CDR, resp; their properties will not be discussed here, the reader is referred to [11, 3.1]. We
abbreviate for later use the ith projection (hence the operation of extracting the ith component
of a tuple) by

Z(i) �
Def

(i = 1 ? CAR : Z(i�1) � CDR)

� (i) �
Def

(i = 1 ? � : � (i�1) � �);

the latter abbreviation preparing for the use of map letters later on.
Returning to attributes: a mandatory attribute � on entity E is characterized through

dom(�) = dom(E) & 1l � � \ img(�) = �:

If f�0; : : : �wg is a collection of key attributes on E, then [11] shows that this property means

LUniq

 
w\
i=0

Z(i+1) � ��1i

!

to hold.

Lemma 5 The following properties hold:

1.
LUniq(�)	(�; �+�; �)

LUniq(� [ �+�)

2.
dom(�) = dom(E)

(�+� n �) � 1l = ( �+E � 1l) n (E � 1l)

dom(� [ �+�) = dom(E [ �+E)

Proof: Both parts follows directly from [-distributivity. Note that the implication in the
�rst part can be reversed. �

The conditions laid down in Lemma 5 permit stating conditions under which some attribute
conditions persist under insertion. The exception is a condition which permits being a member
of a family of key attributes stable under insertions. The criterion is formulated in Lemma 6.
It requires some preparations.
Remember that in a map algebra the equality

\
i2I

(A1;i [A2;i) =
[
J�I

0
@\

j2J

A1;j \
\
j =2J

A2;j

1
A



Page 19 Algebraic semantics of ER-models, II: Dynamic View

holds, whenever I is �nite, since a map algebra is a Boolean algebra, thus in particular
a distributive lattice. Abbreviate for the map expressions A0; : : : ; Ak; B0; : : : ; Bk and for
J;K � f 0; : : : ; kg

�(J; hA0; : : : ; Aki; hB0; : : : ; Bki) �
Def

\
j2J

Aj �
�
Z(j+1)

��1
\
\
j =2J

(Bj n Aj) �
�
Z(j+1)

��1
;

�(J;K; hA0; : : : ; Aki; hB0; : : : ; Bki) �
Def

�(J; hA0; : : : ; Aki; hB0; : : : ; Bki)

� �(K; hA0; : : : ; Aki; hB0; : : : ; Bki)
�1

With these notations we may formulate:

Lemma 6 Invariance of a key under insertion is maintained by the following condition:

&
k
i=0LUniq(�i)

&
k
i=0LUniq(�

+�i)

&J�f0;:::;kg&K�f0;:::;kg �(J;K; h�0; : : : ; �ki; h�
+�0; : : : ; �

+�ki) � �

LUniq
�Tk

i=0 Z
(i+1) � (�i [ �+�i)

�1
�

It should be noted that the formulation above requires

h�0; : : : ; �ki

as well as
h�+�0 n �0; : : : ; �

+�k n �ki

to have the properties of key attributes.
Proof: The distributive law (in the lattice), [-distributivity (with respect to composition),
and Lemma 1 together show that

 
k\
i=0

Z(i+1) �
�
�i [ �+�i

��1!�1

�

 
k\
i=0

Z(i+1) �
�
�i [ �+�i

��1!

equals [
J�f0;:::;kg

[
K�f0;:::;kg

�(J;K; h�0; : : : ; �ki; h�
+�0; : : : ; �

+�ki):

This implies the desired result. �

The condition just formulated is exponential in the size of the key, consequently, it is not
very convenient for practical purposes. On the other hand, it is exact, because a key can be
extended if and only if the condition above is satis�ed. It would be desirable to develop a
more practical, if only su�cient condition for the invariance under insertions of the property
being a key.
Now call an ER model M valid i� it is weakly valid, and if the conditions on attributes that
have been laid down in the model's declaration are satis�ed. Formally:

De�nition 4 The ER model M is called valid i�

1. M is weakly valid,
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2. the attributes satisfy

&T+1�i�T+S&j2Attributes(i) LUniq(rj) & dom(rj) � dom(ri) & img(rj) � �

&

&T+1�i�T+S&j2Mandatory(i) dom(rj) = dom(ri) & 1l � � \ img(rj) = �

&

&T+1�i�T+S let fi1; : : : ; ijg=Key(i) in LUniq
�Tj

`=1 Z
(`+1) � r�1i`

�
We will state now conditions under which the attributes of the changes ER model M0 will
cater for the model's validity after the construction process is extended to attributes in the
obvious way. Investigating validity requires us to exploit properties of the change sets �+� for
attributes in the context of their relations to the change sets for entities (note that we do for
the time being without attributes on the relations on M).

Proposition 2 Suppose that the ER model M is valid, and that in addition to the prop-
erties 1 { 10 from Proposition 1 the following properties are satis�ed, when performing an
insertion that is local at some index t:

1. &i2Related(t)\fT+1;:::;T+Bg&j2Attributes(i) r
�1
�+j � r�+j � �&	( rj ; r�+j ; �) & 1l � r�+j � �

2. &i2Related(t)\fT+1;:::;T+Bg&j2Mandatory(i) (r�+j n rj) � 1l = ( r�+i � 1l) n (ri � 1l)

3. &i2Related(t)\fT+1;:::;T+Bg&j2Mandatory(i) 1l � � \ 1l � r�+j = �

4. &i2Related(t)\fT+1;:::;T+Bg

let Key(i) = fi0; : : : ; ikg in

&J�f0;:::;kg&K�f0;:::;kg �(J;K; hri0 ; : : : ; riki; hr�+i0 ; : : : ; r�+iki) � �

Then M0 is a valid ER model.

Proof: Lemma 5 makes sure that condition 1. implies that we indeed obtain attributes,
and that by condition 2. mandatory attributes remain mandatory. Condition 3. caters for
banning place holders from the image of mandatory attributes. The last condition helps
together with Lemma 6 in ascertaining the properties of keys in the new model. �

6 Deletions: Validity

Deletions are treated in a similar fashion: we formulate conditions under which deletions
maintain the validity of the ER model. We will deal initially with entities and relations only,
and in a second step extend our considerations to attributes. This separation of concerns will
again �rst formulate conditions under which weak validity is preserved, and then upgrade
these conditions with the goal of �nding criteria for unconstrained validity.
We will use the same initial setup of map letters as in sect. 5.1, but now interpret the map
letters between T+�+1 and T+2�� as the place where we store the values to be deleted; they
are now pre�xed with ��. If entity E corresponds to map letter rT+i with ��E corresponding
to rT+�+i, then E n ��E will be deposited at rT+2��+i. In the same linear way, proceeding in
a block wise fashion, we deposit the changed values for relations and attributes. The reader
may wish to consult Fig. 2 again.
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6.1 Weak validity

The following observation shows that for maintaining weak validity we need not consider
place holders separately, that left or right uniqueness of relations is of no concern, and that
the de�ning property of key attributes remains intact, when deleting elements from the maps
constituting the key:

Lemma 7 The following implications hold:

1.
R1 � R2 LUniq(R2)

LUniq(R1)

2.
R1 � R2 RUniq(R2)

RUniq(R1)

3.
&

k
i=1R1;i � R2;i

PlaceHolder(P; fR2;1; : : : ; R2;kg)

PlaceHolder(P; fR1;1; : : : ; R1;kg)

4.

&
k
i=1R1;i � R2;i

LUniq
�Tn

i=1 T
(i+1) � R�1

2;i

�
LUniq

�Tn
i=1 T

(i+1) � R�1
1;i

�
Proof: Because the composition operator � is monotone in both arguments, the �rst two
assertions are immediate. The monotonicity of the converse operator (which sends R to R�1)
is used on top of that in establishing the third assertion. This is done by inspecting the
auxiliary macros that constitute the conjunction de�ning the PlaceHolder-macro, and that
are formulated in sect. 4.2. Monotonicity of both operations is �nally used to establish the
last implication. �

Thanks to Lemma 7, the technical base for maintaining weak validity in the following state-
ment (which corresponds to Lemma 4 for insertions), is rather easier to formulate:

Lemma 8 The following implications hold:

1.
DomSub(E;R)

Entity(E) Entity(��E)
DomSub(R; ��E [R n ��R)

DomSub(E n ��E;R n ��R)

2.
ImgSub(F;R)

Entity(F ) Entity(��F )
DomSub

�
R�1; ��F�1 [ (R n ��R)�1

�
ImgSub(F n ��F;R n ��R)
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Proof: Only the �rst implication needs to be established, since the second follows by inver-
sion. Since

R � 1l �
�
��E [ (R n ��R)

�
� 1l;

an elementary calculation establishes

(R � 1l) n (��E � 1l) � (R n ��R) � 1l:

Consequently,

(E n ��E) � 1l = ( E� 1l) n (��E � 1l)

� (R � 1l) n (��E � 1l) (since E � 1l � R � 1l)

� (R n ��R) � 1l:

This establishes the claim. �

From the instance M a new instance M0 is generated by performing the deletions. This is
very similar to the insertion discussed above: Put for each j 2 f 1; : : : ; S+Bg

rT+2��+j := rT+j n rT+�+j:

Upon shifting the base address from T to T+2��, the weak validity ofM0 can be investigated:

Proposition 3 Let M be a weakly valid ER model, assume that a deletion is local at some
index t, then the ER model arising from the deletions is weakly valid, provided the following
conditions are all satis�ed:

1. &s2Related(t)\fT+1;:::;T+Bg

&hi;ji2Track(s) Entity(r�+i) & Entity(r�+j)

& DomSub(rs; r�+i [ (rs n r�+s)) & DomSub
�
r�1s ; r�1�+j [ (rs n r�+s)

�1
�

2. &hi;ji2Up\Related(t)�Related(t) r�+j � r�+i

Proof: Because condition 2. takes care of inheritance, and because of Lemma 7 we have to
establish only DotDot(r2��+i; r2��+s; r2��+j) for all indices s 2 Related(t), and for all hi; ji 2
Track(s): But this follows through a straightforward calculation from the assumption together
with Lemma 8. �

6.2 Adding Attributes

Turning to attributes, we see that the functional character of attributes together with that
of their domains is maintained when changing to a subset of each:

Lemma 9 Let � be an attribute on entity E, then the following implications show how to
maintain attribute conditions under deletion:

1.
LUniq(�) LUniq(���)

Entity(E) dom(�) � dom(E)
(� n ���)�1 � ��E = �

dom(� n ���) � dom(E n ��E)
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2.
LUniq(�) LUniq(���)

Entity(E) dom(�) � dom(E)
(� n ���)�1 � ��E = �

dom(��E) � dom(���)

dom(� n ���) = dom(E n ��E)

Proof: 1. Schr�oder's Cycle Rule implies that (� n ���)�1 � ��E = � is equivalent to
dom(� n ���) \ dom(��E) = �; thus

dom
�
� n ���

�
� dom(E) n dom

�
��E

�
= dom

�
E n ��E

�
:

This proves 1.
2. It remains to show that the domain of � n ��� contains E n ��E under the conditions
from 2: Using Lemma 1, we see

dom
�
E n ��E

�
= dom(E) n dom

�
��E

�
� dom(�) n dom

�
���

�
� dom

�
� n ���

�

�

Now we are able to state conditions under which deletions from an ER model maintain its
validity:

Proposition 4 Suppose that the ER modelM is valid, and that in addition to the properties 1
and 2 from Proposition 3 the following properties are satis�ed, when performing an insertion
that is local at some index t:

1. &i2Related(t)\fT+1;:::;T+Bg&j2Attributes(i) r
�1
�+j � r�+j � �& ( rj n r�+j)

�1 � r�+i = �

2. &i2Related(t)\fT+1;:::;T+Bg&j2Mandatory(i) r�+i � 1l � r�+j � 1l

Proof: Since the weak validity ofM0 is already being taken care of by Proposition 3, we have
to cater for the integrity of the attributes. Condition 1. maintains together with Lemma 9 the
condition under which the property of being an attribute is preserved, the second condition
states when a mandatory attribute remains one; this also makes use of the same lemma. It
was noted already in Lemma 7 that key attributes are not sensitive to deletions. �

It comes as a surprise that deletions are so much easier to handle, than insertions. Some data
structures (like binary search trees or heaps) are rather sensitive to deletions in the sense
that a deletion from them requires much more attention in maintaining the invariant, than
an insertion does (and consequently makes the analysis a much harder and more unpleasant
undertaking). In the case of the data structures just mentioned, however, intrinsic properties
of the keys do not play a role, while in the case considered here the monotonicity together
with a downward closeness of some properties played a simplifying role.
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7 Further Work

One line of attack for further work is removing some restrictions we imposed for technical
reasons. We want to point to some, as we feel, interesting application of our formal set up.
Model checking may be done in ER models, as we have formulated them. We will sketch the
approach and propose further investigations along these lines.

7.1 Removing restrictions

This work was performed under some simplifying assumptions: we did assume that we work
only with attributes on entities, and that we have a rather scant selection of cardinality
restrictions. Both assumptions are not essential for our approach, and we feel that they
should be removed. Another technical issue addresses the fact that we work with binary
relations only. The discussions concerning projections shows, however, that it should not be
too di�cult to extend our set up for incorporating n-ary relations (although the notation then
becomes slightly unbearable). From a modelling point of view, we work here in a somewhat
untyped environment: we do not have sorts for di�erent entities, but rather assume that one
sort �ts all. This is fairly problematic in applications, and not entirely practical. Introducing
sorts is another step we feel should be undertaken (and a more detailed comparison of both
approaches).

7.2 Model checking

We indicate brie
y how the basic mechanisms of model checking can be applied by casting an
ER model into the mold of model checking, following [3]. For this, the following ingredients
are needed:

1. Properties to establish. These properties will be formed from a set AP of atomic
propositions,

2. A Kripke structure for modelling di�erent paths of the computations under considera-
tion,

3. A temporal logic for formulating the properties. Here usually one of the subsets CTL
or LTL of the Computational Tree Logic CTL� is used. We assume that the reader is
familiar with these logics and their semantics (a good starting point is [3, Ch. 3]).

7.2.1 A Simple Example

A student is examined orally by a professor, the exam results in a grade which is taken from
the set f1; : : : ; 5g, 5 indicating fail. Figure 3 displays the ER model.
Each student's knowledge of a subject is modelled through a �nite set of knowledge items
taken from a set K, each professor's questions requires the student presenting some of these
items. Associate with each student s a set �(s) � K, and with each professor p a set �(p) �
K. Apparently, the knowledge exchanged during one exam modelled through hs; pi is then
�(s) \ �(p). We are interested in exams that may be compared all over the state, say, hence
we introduce an objectivity function ! : 2K ! f 1; : : : ;5g; so that the objective weight of exam
hs; pi is just �(hs; pi) := !(�(s) \ �(p)): Now an exam may be measured against !. Call the
exam t
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Student ProfessorExam

Grade

Figure 3: Oral examinations (simpli�ed)

� fair i� grade(t) = �(t),

� nice i� grade(t) < �(t),

� nasty i� grade(t) > �(t):

Temporal statements for an instance of this ER model then include

1. Professor A gives only fair exams.

2. Sometimes Professor B gives a nasty exam.

3. Professor C gives fair exams until he examines a red haired cryptologist to whom he
gives a nice exam.

7.2.2 Kripke structure

We recall the de�nitions of a Kripke structure:

De�nition 5 K = ( AP;S;R; S0; L ) is called a Kripke structure with atomic propositions AP
i� S is a �nite set of states, R � S � S is a left-total relation on S, S0 � S is a set of initial
states, and L : S ! 2AP is a function that labels states with atomic propositions.

A path � in the Kripke structure K is an in�nite sequence � = s0; s1; : : : of states such that
(si; si+1) 2 R holds for each index i, hence represents an in�nite branch in the computation
tree that corresponds to the Kripke structure.
The Computational Tree Logic CTL� describes properties of computation trees. Such a tree
is given by (the states of) a Kripke structure: an initial state of K is taken as the root, and
the structure expands into an in�nite tree according to the relation R. For arguing about
this tree, CTL� o�ers path quanti�ers (describing all, or only some, computation paths) and
temporal operators (like next time, eventually, always or until). The semantics describes
under which conditions a temporal formula is valid in a state, e.g. K; s j= A[f1Uf2] is true i�
on all paths (\A") starting from state s the formula f1 holds until formula f2 is true (\U").

Model Checking Given a Kripke structure K and a temporal formula f , the problem
consists of determining the set of all states that satisfy f , hence of the computation of

fs 2 Sj K; s j= fg:
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7.2.3 Translating

Fix a universe U and an interpretation for the ER model (technically, an interpretation for
the map algebra is required). We may and do assume that we need only a �nite subset of
U , and that we deal only with a �nite number of instances to M. These instances may arise
through a �nite sequence of insertions and deletions from the empty instance �0, in which all
entities and all relations are empty. They form the state space �.
To be more speci�c: The state space is formed by all blocks

�k := hrT+2�k��+1; : : : ; rT+(2�k+1)��i

(k � 0) of map letters forming a valid ER model. Transitions are provided through the map
letters in the block

�k := hrT+(2�k+1)��+1; : : : ; rT+(2�k+2)��i

which carry the changes, as described in Sections 5 and 6. There are apparently only �nitely
many possible choices for these transition vectors, when one identi�es values coming from an
in�nite domain like the reals by suitable representatives.
The relation � is de�ned through: ���0 i� there exists a transition vector �k for � = �k
which, when executed on �k, will result in �0 = �k+1. Apparently, � is a left-total relation.
We assume that each element u in the universe U comes with a �nite set eu � AP0 of elemen-
tary properties. Let H� be the �nite set of elements in U that take part in the construction
of � 2 �, and put

HM :=
[
�2�

H�

Call a partial map q : HM ! AP0 admissible i� q(u) 2 eu holds for all u 2 dom(q). This will
de�ne the atomic propositions: de�ne for an admissible map q the proposition

q# :=
^

u2dom(q)

q(u)

and let
AP := fq#jq is an admissible mapg:

Finally, de�ne � : �! 2AP through

�(�) := fq#jdom(q) � H�g

Apparently this denotes the set of all atomic propositions which are valid in instance �.
This Kripke structure can then be used for checking properties along insertion- or deletion
paths in the ER model.
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