1]
A

VAN ANIVANIWAN
X X X XX
X XXX

4&»,

)
A

Takustraf3e 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

SVEN O. KRUMKE DIANA POENSGEN

Online Call Admission in Optical Networks
with Larger Wavelength Demands

ZID DAanrmard MDD D9 ANy DNONDN



ONLINE CALL ADMISSION IN OPTICAL NETWORKS WITH LARGER
WAVELENGTH DEMANDS

SVEN O. KRUMKE AND DIANA POENSGEN!

ABSTRACT. In the problem ofOnline Call Admission in Optical Networkbriefly
calledOcA, we are given a grapty = (V, E) together with a set of wavelengthig

and a finite sequenee = r1, 72, ... of calls which arrive in an online fashion. Each
call r; specifies a pair of nodes to be connected and an integral demand indicating
the number of required lightpaths. A lightpath is a patl@inogether with a wave-
length\ € W.

Upon arrival of a call, an online algorithm must decide immediately and irrevo-
cably whether to accept or to reject the call without any knowledge of calls which
appear later in the sequence. If the call is accepted, the algorithm must provide the
requested number of lightpaths to connect the specified nodes. The essential restric-
tion is the wavelength conflict constraint: each wavelength is available only once per
edge, which implies that two lightpaths sharing an edge must have different wave-
lengths. Each accepted call contributes a benefit equal to its demand to the overall
profit. The objective iDCA is to maximize the overall profit.

Competitive algorithms foOca have been known for the special case where ev-
ery call requests just a single lightpath. In this paper we present the first competitive
online algorithms for the general case of larger demands.

1. INTRODUCTION

In current telecommunication networks, data is sent as optical signals of a chosen
wavelength over glass fiber cables, usingwlaeelength division multiplexinggVDM)
technique. At intermediate nodes the signals are converted back into electronic form,
switched and then transformed back into optical form to send it over the ongoing fiber.
This o0-e-o-conversion limits the speed of the connections. In next generation’s fully
optical networks, optical signals are no longer converted back into electronic form at
intermediate nodes but switched optically. This increases the speed of connections. It
also changes the mathematical properties of the communication networks, because the
wavelength on which the signal is sent stays the same on the whole path between start
and end node.

A connection in a fully optical network can be modeled dghtpath that is, a
path together with a wavelength. Since each wavelength is available only once per
fiber, lightpaths used to establish connections must have different wavelengths if they
use the same fiber at the same time. This crucial condition is callegatelength
conflict constraint
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2 SVEN O. KRUMKE AND DIANA POENSGEN

1.1. Problem definition. An instance of thédnline Call Admission Problem in Op-
tical Networks(OcA) consists of an undirected gragh = (V, E) together with
a set ofy eligible wavelengthdV = {\q,...,\,} and a finite request sequence
o =ry,7e,...,T, Of calls. Each of the wavelengths Wi is available once per edge.
We will use the terms wavelength and color interchangeably in the seqlightpath
is a pair(P, \), whereP is a path inG and\ € W is a wavelength.
A call r; = (sj,t;,b;) specifies the nodes € V andt; € V to be connected as
well as the required numbér < N of lightpaths, that is, itslemand Upon arrival of
a new request;, an algorithm forOcA must decide whether to route or to rejegt If
the call is accepted, it must be routed through the network without violating the wave-
length conflict constraint. Once accepted, a call can not be preempted: the lightpaths
used for the call can not be changed or removed anymore. Each acceptgdcoa
tributes the corresponding demado the total profit obtained by an algorithm. The
overall goal ofOcA is to maximize the total profit, that is, the total accepted demand.
An online algorithmfor OCA must base its decision for cai} without knowledge
of callsr; with ¢ > j. A standard tool to measure the quality of an online algorithm
ALG is competitive analysjavhere one compares for each input sequenttee profit
ALG(c) obtained byaL G to the optimal profit achievable on that sequence, denoted by
OPT(0).

Definition 1.1 (Competitive Deterministic Algorithm)A deterministic online algo-
rithm ALG for OcA is c-competitiveif for any request sequence the inequality
ALG(c) > 1. oPT(0) holds.

A randomized online algorithm is a probability distribution over a set of determin-
istic online algorithms. The objective value produced by a randomized algorithm is
therefore a random variable. In this paper we analyze the performance of randomized
online algorithms against avblivious adversary An oblivious adversary knows the
online algorithm and the distributions it uses, but does not see the realizations of the
random choices made by the online algorithm and therefore has to generate a request
sequence in advance. We refer to [BEY98] for details on the various adversary models.

Definition 1.2 (Competitive Randomized AlgorithmA randomized online algorithm
RALG for OcA is defined to be-competitive against an oblivious adversdrior any
request sequencethe inequalityE [RALG ()] > 1 - oPT(c) holds.

The competitive ratioof an algorithm is defined to be the infimum over @auch
that the algorithm ig-competitive.

1.2. Previous work. If the set of eligible wavelengthid” contains only a single wave-
length, the problem of providing lightpaths reduces to the problem of finding edge dis-
joint paths in the given graph, which we will refer toladge Disjoint Path Allocation
(EbppA). Competitive algorithms foEDPA are known for special graphs like lines,
trees, and meshes. The currently best competitive ratios of randomized algorithms
against an oblivious adversary for these topologieglaken | for the line withn nodes
[AYFR94, AAFT96], 2log n for a tree withn nodes [AYFR94, AAF 96, LMSPR98]
andO(logn) for then x n-mesh [KT95, LMSPR98].

So far, Oca with y > 1 wavelengths has been investigated only for the special
case in which each call requires one lightpath, ke 1 for all j. Awerbuch et al.
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([AAF196]) developed the competitive algorithmrc (First-Fit-Coloring), which is
based on a “virtual” online algorithm fa&DPA.

Theorem 1.3([AAFT96]). Let SLAVE be ac-competitive algorithm foEDPA. Then
there is a(c + 1)-competitive algorithn¥rc for the special case oDcA where each
call requires one lightpath.

Note that the competitive ratio ¢f~c does not depend on the number of eligible
wavelengths in the network and differs from that of the subroutine usdebfes only
by an additive constant df

1.3. Our contribution. We present the first competitive algorithms for the general
case ofOcA in which the demand of a call may be greater thaWe assume, however,
that no call asks for more thap lightpaths. This assumption is reasonable since
accepting a call of demand higher thaiif at all possible) would plug up the network
immediately. In particular, on trees our assumption means no restriction.

The first of our algorithmsCopy-Coloring(cc), is deterministic and works for
Oca in general graphs. Our second algorithm, cabedt-fit-coloring-scaled FFcCs),
is randomized, and for trees and the line achieves a competitive ratio which is expo-
nentially better tharcc'’s ratio. Table 1 gives an overview of our results together with
the known lower bounds fdEDPA from the literature.

algorithm forEDPA

algorithm forEbpPA

Topology competitive ratio competitive ratio known
using generic using best known lower bounds
c-competitive competitive for EDPA

(OcA with y = 1))

arbitrary network
with n nodes,
x wavelengths

c-x-dg
(Theorem 2.1)

O(xlogn)
onn x n meshes

deterministicn — 1
randomizedn! 10843
[BFL96]

tree withn nodes,
x wavelengths

12(c+1)([log x1+1)
(Theorem 3.2)

(24logn +2) -
(Mlog x| +1)

deterministicn — 1
randomized{log % |
[AAF T96]

line with n nodes,
x wavelengths

8(c+1)([log x| +1)
(Theorem 3.7)

(8[logn] +8) -
(Mogx]+1)

deterministicn — 1
randomized{log % |
[AAF+96]

TABLE 1. Results in Online Call Admission in Optical Networks.

2. A DETERMINISTIC ALGORITHM FOR GENERAL GRAPHS

Let the graphG = (V, E) together with the set of eligible wavelengthis =
{A1,..., A} be given in an arbitrary instance @ica. Remember that th&ppra
problem can be considered to be a special caseax in which there is only one
eligible wavelength (and calls have demand The deterministic online algorithm
Copy Coloringcc uses an algorithm foEDPA as a subroutine. This algorithm, called
SLAVE in the sequel, works on the instancelmPA given by the graplds and a single
wavelength.
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Algorithm Copy Coloring ( cC)
LetSLAVE be an online algorithm fdEDPA. Upon arrival of a call; =
(sj,t5,b;) with demand;, hand the “sized down” call; = (s;,;,1)
to SLAVE.

If SLAVE rejectsr;, rejectr;. If SLAVE accepts®; and routes it
on pathP, then accept; and route its demand using the lightpaths
(P, A1), (P Mg, )-

It is easy to see thatc yields a valid solution. Recall that each call has demand
at mosty. If we view the graphG together with its set ofy eligible colors asy
copiesty, . .., Gy of G, eachin a different color, thesLAVE creates a feasible routing
for the accepted calls from the modified sequencé:in In each remainindg~;, a
subset of the paths routed @, is established. Therefore, we have a feasible routing
in each color, i.e., the wavelength conflict constraint is satisfied.

Theorem 2.1. Let G be a graph withy eligible wavelengths and maximum vertex
degreedg. If SLAVE is a c-competitive algorithm foEDPA, thencc is (x - dg - ¢)-
competitive orG.

Proof. By ALG; we denote the algorithmLc which has only the first colors ofiV” at
its disposal (and can therefore only handle sequences of calls with demand &) most
In particular,opPT; is the optimal offline algorithm foEDPA on the given graplts
andoPT, is the optimal offline algorithm foOcCA with x eligible wavelengths. Let
o9 be the sequence obtained frenby changing the demand of each calljtoNote
that the maximum number of edge disjoint paths connecting any two nodg&ssn
bounded byi.

Given a sequence of calls, consider the maximum number of callsdift) that
can be routed simultaneously in one color (i.e., by edge disjoint paths). By definition
this number equalopPT(c(1)). SinceSLAVE is c-competitive forEDPA, we have
sLAvE(c(D) > LopTy (o).

Letr; be a call which is routed by the optimal offline algoritmT, on lightpaths
(P, Aiy), .-, (P, )\ibj). Each of the lightpaths will be referred to asragmentof r;.
Let oPT, (4, 0) denote the share of profit thaPT = OPT,, gains by call fragments
routed in colori. Obviously this number is bounded from abovedgy- oPT (o).
As a consequence, we have that

X
OPTy(0) = > OPT(i,0) < x - dg - OPT1(c!")) < x - dg - ¢- SLAVE(cV),
=1
where the last inequality follows from the aforementioned competitiveness/fe
for EDPA. Clearly,cc makes as least as much profit @ras thesLAVE algorithm it
uses orvM). Therefore,

OPTy(0) < x -dg - c-ccC(o),
which shows the claim of the theorem. O

At first glance, the competitive ratio afc does not seem to be very good. However,
the following theorem shows that without restrictions the bound achievedchis
essentially the best which we can expect for deterministic algorithms.
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Theorem 2.2. On a line withn nodes, no deterministic algorithm f@ca can be
c-competitive withe < x(n — 1).

Proof. The worst case sequence is a straightforward generalization of the known lower
bound construction from [BFL96] fOEDPA on the line withn nodes. Let the nodes

be numbered by, v, ..., v, from left to right. The adversary first issues a re-
questr; = (v1,v,,1). It is straightforward to see that any deterministic algorithm
which achieves a finite competitive ratio must acegptThe adversary then presents
then — 1 requestgv, va, x), (v2, 3, X), - - -, (Vn—1,Un, X), NONEe of which the deter-
ministic online algorithm can accept. O

3. AN IMPROVED RANDOMIZED ALGORITHM FOR TREES

In this section we present the randomized algoriEirst-Fit-Coloring-Scaled §FCs)
and analyze its performance on trees and the line. For these graph dlasses
achieves an exponential improvement in the competitive ratio compared to the de-
terministic algorithmcc from the previous section.

We deriverFcs as a probability distribution over a set [dbg x| + 1 deterministic
algorithms which we denote bgFcs?, i = 0,..., [logx]. Recall thato(? is the
sequence obtained from sequendey changing the demand of each calit@nd that
ALGy is the algorithmaLG working on a graph having wavelengths at its disposal. If
the subscript is omitted, we always refer to the original problem in which we are given
the graphs together withy eligible wavelengths.

Algorithm First Fit Scaled (FFCS)
Partition the set of possible calls inftog x| + 1 classes as follows:

ClassK contains all calls with demantl Fori = 1,..., [log x|,
classK; contains those calls whose demand ig2fr!, 2¢].
Choosei € {0,...,[logx]} uniformly at random and from this

point on, use the deterministic algoritt¥Rcs®.

Frcs’: If call r; = (sj,t;,b;) does not belong to class;, reject
rj. Otherwise size the demand of down to1 and hand the
modified call7; = (s;,t;,1) over toFFC|, |, that is the ver-
sion of FFC which works onG but has only| y/2*| wavelengths
{w1, ..., w9 } atits disposal.

If FFC|,/2:| rejects modified calij, then rejectr;. If FFC|, o
accepts the modified call; and routes in on patl® in wave-
lengthwy,, accept the original call; and route it on the lightpaths

(P7 A(kfl)QUrl)a (P7 )‘(kfl)2i+2)7 R (P7 )‘(kfl)2i+bj)'

Proposition 3.1. FFcs produces a valid routing for the calls.
Proof. Let i be the value of the random choice bycs. If a callr; = (s;,t;,b;) is
accepted byrcs, it must belong the class clag§;, implying thatb; < 2¢, and the
sized-down calf; = (s;, t;, 1) must be accepted IFC |, /o:).

The algorithmrFc, ,»:| produces a valid routing in the gragh for the set of
accepted calls fromd!). Since each wavelength;, of FFC|y/2i) Corresponds to a
St A(k—1).2i41s - - s Apooi Of 2t wavelengths in the original graph, it follows that all

accepted calls (which, as mentioned, have all demand at2fjasin in fact be routed
as specified without violating the wavelength conflict constraint. O
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Theorem 3.2. Suppose that the following two conditions are satisfied:
() Each algorithmrFc , i uses ac-competitive algorithm for th&bpA prob-
lem as a subroutine.
(i) For any input sequence with the property thatg < b; < b for all re-
quests-; = (s;,t;,b;) € mthe estimate

OPTy () < ¢ b~ OPT|y ) (1)

holds. Then, the randomized algorithrAcs (with y wavelengths at its disposal)
achieves a competitive ratio of

2¢(c + 1)([log(x)] + 1))

Proof. Let o be an arbitrary call sequence. We have to show that the expected profit
of FFCs satisfies
1

E [FFCS > - OPT(0). 1
Frestol = et esoi + 1) O .
SinceFFcs, chooses € {0,...,[logx]|} uniformly at random and then uses the
deterministic algorithnFFcs? we can rewrite the left hand side of (1) as
1 [log x] .
E[FFcS(o)] = ———F— - FFCS'(0). (2)
eSO = fiognT =1 2 oS

Recall that the deterministic algorithrrcs’ rejects all calls which do not belong to
classK;. Thus, it only gains profit on calls frort;, and we have thatFcsi(o) =
FFcs(o|k, ), whereo |k, is the subsequence afwhich consists of calls belonging to
K;. Using this equality gives us

[log x]
E[chs(a)]zw. Z; FrCS (o)1), @3)

Let P(o) denote that share of the total optimal profit which is gained with calls in

K;, thatis,
Pio)= > b
7’€G'|Ki
r is accepted bppPT
when given input
ThereforeppT, () = Z£E§ X p(5). We now comparercst (o|, ) with P ().
How big can the share adpT’s profit gained fromk; be? P*(o) gets largest if
OoPT uses all its resources for calls fraify, which would be the optimal profit gained
if only the sequence|x, was given. Therefore?*(c) < oPT(o|k;,), and this yields

[log x] [log x]
OPT(0) = Y Pf(o)< > 0PT(o|x,). (4)
1=0 1=0

Hence, it suffices to upper bound the praf®T(c|g,) in terms of FFCS (0|, ).
To this end we estimate the profit gained by the deterministic algomthms’ on the
sequencer|k,. By constructionfFrcs® accepts those calls whose modified version
is accepted byFC|, /2. As FFC|, i) gets profitl for each accepted call (it was
given calls whose demand was sized down)tahe number of accepted calls equals



ONLINE CALL ADMISSION IN OPTICAL NETWORKS WITH LARGER WAVELENGTH DEMANDS 7

FFC|, /21| ((o]k,)M). Sincerrcs’ gets profith; > 2~! for each accepted call, we
obtain that 4 4
FrCs'(o|g,) > 2071 FFCHJ ((o]x,) D).
2'L

We now apply Theorem 1.3 about the competitiveness ofto FFC{

X
21

J. This results
in

FFCS’ DI/

(i) 2 271+ = - 0PT

Observe that all the demandsat, are within a factor of two. Hence, we can use
assumption (ii) witht = 0|k, andb = 2° to obtain:

'OPTFJ((UlKi)(l))- (5)

i OPTy(0|K;)- (6)

Plugging (6) into (5) and using this result in (3) gives

OPT {LJ ((U|K1)(1)) >

217

[log x1
1
E [FFCS > —— .0 ). 7
[FF (U)] - ﬂOg(Xﬂ _|_1 Zz; 2CI(C+1) PTX(O-‘Kz) ( )
The claim of the theorem now follows from (4). O

Theorem 3.2 bounds the competitive ratiorefcs in terms of (i) the competitive
ratio c of a virtual online algorithm foEDPA, and (ii) the ratio’ between the optimal
offline profitoPT, () andb times the optimal offline profit on a scaled sequente
with fewer wavelength$x/b|.

In the sequel we address the existence of the secondddtio the case of trees
and, as a special case, for the line.

3.1. Call Coloring on Trees. Note that on trees, the problem of finding a feasible
routing for a given set of calls reduces to the problem of path coloring, since each call
uniguely determines the path to be used. Therefore, we will also speak obloring

or path coloring

Lemma 3.3. LetG be a tree. Letr be a call sequence such that the demanaf each
call in 7 satisfies; < b; < b. Then

OPTy(m) < 6-b-OPT | (r D).

Proof. We prove the claim in three steps. We first consider the following special case:
(@) b; =bforall 7,
(b) bdividesy.
For this special case we show that
OPT, () < ; b OPT | (wW). (8)
We then show that we can drop the two assumptions one by one, losingXattach
of the two steps.

Assume that conditions (a) and (b) hold. L%be the set of calls from sequence
by which the optimal profit on the left hand side in (8) is achieved. Then, (7) =
|S| - b, since by assumption (a), the demand of each call egudfsve were able to
show that the calls ir5("), i.e., the paths corresponding to the callsSit), can be
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colored withX colors, this would imply that the se&tY) ¢ 7)) could be accepted
and routed feasibly by any algorithm which hHasolors at its disposal, yielding profit
|S| = |S™M)]. Since the optimal offline algorithm can do only better, we would obtain
oPTx (7)) > |S] = § - OPT, ().

Unfortunately, it is in generaiot possible to color all the calls i by ¥ colors.
This is illustrated by Figure 1. It shows a tréeof depth one and a set @B calls
(i.e.paths) oril. It is possible to assigh = 2 different colors to each of the given
paths such that two intersecting paths have disjoint color sets andyosl colors
are used overall. It is however impossible to asdigmolor to each of the paths using
only 3 = x/b colors such that intersecting paths have different colors.

%
IA\\

FIGURE 1. An example in whichy/b colors do not suffice to color
all given paths{ = 6,6 = 2).

However, we will show that at least two third of the callsSf") can be colored
usingx/b colors. Define thenaximum (unweighted) loaaf a set of paths in a graph
to be the maximum number of paths which have an edge in common.

Theorem 3.4([RU94]). There is a feasible routing of requests of maximum |baubr
link of undirected trees using no more théﬁ wavelengths. O

We seek to apply Theorem 3.4. We know that there is a feasible routing for the
calls inS, that is, each call ity is assignea lightpaths (the uniquely determined path
together withb different colors), using at mosg different colors in total. On each
edge, the maximum load of the whole set of lightpaths established to$datkence
bounded from above by. Therefore, the maximum load of paths (calls)dft) is
bounded from above by, as each call irs(1) corresponds to one path whereas a call
in .S corresponds té lightpaths.

Applying Theorem 3.4 yields that there is a coloring of the call§{H using% - X
colors. If we consider thosg among the% - % colors from the coloring which accom-
modate the most calls, a simple averaging argument gives us that they accommodate
asetM @ c SW of calls of cardinality at least - [S(V)|. The optimal algorithm on
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x/b colors might even accept a larger set of calls fromso sincd S| = |S(V| andb
dividesy, we can conclude that

2 2
opT x| (1)) = oPTx (V) > |MD] > 3 I81= 55 0PTy(m),
which is exactly what we claimed in (8).

Now assume that only condition (b) holds, thattislividesy, but the demand;
of a call may take any integral value betwegrandb, i.e.,g < b; < b. Consider
the routing defined byPT, (7). Sinceb — b; < b;, we can accommodate— b,
additional lightpaths for each of the accepted calls if we proyigeditional colors.
We thus get a valid solution for the sequend® in the graph with2y wavelengths.
We can conclude thapT, (7) < oPTa, (7). Asb dividesy, it also dividey, and

since the demand of each call7ifi equalsh, we can apply inequality (8). We obtain
(8)
OPT, () < OPTy (n°) < ;-b-OPTLX(ﬂ'(l)) < ;b-Z'OPT%(ﬂ'(l)) = 3-b-0pTx (x)),
b
where the last inequality holds @»T, /, can accept at least those calls fror)

which were accepted byPT,, /, and routed in the “fuller” half of th@bl colors used.
We finally show that we can drop condition (b) using the part we just proved for the
second inequality in the following chain:

OPTy () < OPTy |y |4(m) <3-b-OPT, x| () <2-.3-b- OPT| | (w().

The first inequality simply holds becauge< 2- L%J -b, the last by the same reasoning
as before: the “fuller” half of the - | ¥ | colors accommodates at least half of the calls.
This completes the proof of the lemma. O

Corollary 3.5. If there is ac-competitive algorithm folEDPA on trees, therrFcs
achieves a competitive ratio ©2(c+1)([log x]+1) for routing in y wavelengths. [

Using one of the log n-competitive algorithms foEDPA on trees withn vertices
from [AYFR94, AAFT96, LMSPR98], this results in @41logn + 2)([log x| + 1)-
competitive algorithm fo©OCA on the same graph class.

3.2. Call Coloring on Paths. In case that the underlying graph is a simple path, a
slightly better result than the one in Lemma 3.3 can be achieved.

Lemma 3.6. Let G be a path. Letr be a call sequence such that the demanof
each call inw satisfiesg < bj <b. Then

OPTy(m) < 4-b: OPT x| (rW).

Proof. As before, we first consider the case that all demands satisfy b for all j
and that dividesy. For this case, we show that

OPT, () =b- OPTL%J(W(D). 9)

As shown in the proof of Lemma 3.3, dropping the two assumptions above costs us a
factor of2 each. This yields the desired result.
It remains to prove (9). Itis straightforward to see thatr, (7) > b-OPT 1] (x(1),
b

We will now show that the inequality also holds the other way around, namely that
OPT, (7)) <b- OPT x| (D).
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Let A C 7 be the set of calls accepted byT, on inputr. Consider the follow-
ing auxiliary graphH with vertex set corresponding to the callsAn we insert one
(interval-) vertex for each of the call fragments of each accepted call. Two vertices
in H are adjacent if the corresponding call fragments share an edge. Cléddyn
interval graph with maximum clique size( H) < .

We consider the subgrapti’ obtained fromH by removing for each calt € A
all but one of theb vertices representing its call fragments and their adjacent edges.
Hence, the vertices ifl’ correspond to a subset of the callsifl). Clearly,w(H') =
w(H)/b < x/b. Since interval graphs are perfect, we can color the verticd$'in
using at mostw(H'’) = /b colors. Thus, the coloring of the calls ihtranslates into
a solution for ther(D-instance in which as many calls (of profit are accepted by
OPTx 0N 7(1) as calls (with profib) are accepted bgpT, on. O

Corollary 3.7. If there is ac-competitive algorithm foEDPA on the line, therrFcs
achieves a competitive ratio 8fc+1)([log x| + 1) for routing in y wavelengths. O
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