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ONLINE CALL ADMISSION IN OPTICAL NETWORKS WITH LARGER
WAVELENGTH DEMANDS

SVEN O. KRUMKE AND DIANA POENSGEN1

ABSTRACT. In the problem ofOnline Call Admission in Optical Networks, briefly
calledOCA, we are given a graphG = (V, E) together with a set of wavelengthsW
and a finite sequenceσ = r1, r2, . . . of calls which arrive in an online fashion. Each
call rj specifies a pair of nodes to be connected and an integral demand indicating
the number of required lightpaths. A lightpath is a path inG together with a wave-
lengthλ ∈ W .

Upon arrival of a call, an online algorithm must decide immediately and irrevo-
cably whether to accept or to reject the call without any knowledge of calls which
appear later in the sequence. If the call is accepted, the algorithm must provide the
requested number of lightpaths to connect the specified nodes. The essential restric-
tion is the wavelength conflict constraint: each wavelength is available only once per
edge, which implies that two lightpaths sharing an edge must have different wave-
lengths. Each accepted call contributes a benefit equal to its demand to the overall
profit. The objective inOCA is to maximize the overall profit.

Competitive algorithms forOCA have been known for the special case where ev-
ery call requests just a single lightpath. In this paper we present the first competitive
online algorithms for the general case of larger demands.

1. INTRODUCTION

In current telecommunication networks, data is sent as optical signals of a chosen
wavelength over glass fiber cables, using thewavelength division multiplexing(WDM)
technique. At intermediate nodes the signals are converted back into electronic form,
switched and then transformed back into optical form to send it over the ongoing fiber.
This o-e-o-conversion limits the speed of the connections. In next generation’s fully
optical networks, optical signals are no longer converted back into electronic form at
intermediate nodes but switched optically. This increases the speed of connections. It
also changes the mathematical properties of the communication networks, because the
wavelength on which the signal is sent stays the same on the whole path between start
and end node.

A connection in a fully optical network can be modeled as alightpath, that is, a
path together with a wavelength. Since each wavelength is available only once per
fiber, lightpaths used to establish connections must have different wavelengths if they
use the same fiber at the same time. This crucial condition is called thewavelength
conflict constraint.
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1.1. Problem definition. An instance of theOnline Call Admission Problem in Op-
tical Networks(OCA) consists of an undirected graphG = (V,E) together with
a set ofχ eligible wavelengthsW = {λ1, . . . , λχ} and a finite request sequence
σ = r1, r2, . . . , rn of calls. Each of the wavelengths inW is available once per edge.
We will use the terms wavelength and color interchangeably in the sequel. Alightpath
is a pair(P, λ), whereP is a path inG andλ ∈ W is a wavelength.

A call rj = (sj , tj , bj) specifies the nodessj ∈ V andtj ∈ V to be connected as
well as the required numberbj ∈ N of lightpaths, that is, itsdemand. Upon arrival of
a new requestrj , an algorithm forOCA must decide whether to route or to rejectrj . If
the call is accepted, it must be routed through the network without violating the wave-
length conflict constraint. Once accepted, a call can not be preempted: the lightpaths
used for the call can not be changed or removed anymore. Each accepted callrj con-
tributes the corresponding demandbj to the total profit obtained by an algorithm. The
overall goal ofOCA is to maximize the total profit, that is, the total accepted demand.

An online algorithmfor OCA must base its decision for callrj without knowledge
of callsri with i > j. A standard tool to measure the quality of an online algorithm
ALG is competitive analysis, where one compares for each input sequenceσ the profit
ALG(σ) obtained byALG to the optimal profit achievable on that sequence, denoted by
OPT(σ).

Definition 1.1 (Competitive Deterministic Algorithm). A deterministic online algo-
rithm ALG for OCA is c-competitiveif for any request sequenceσ the inequality
ALG(σ) ≥ 1

c · OPT(σ) holds.

A randomized online algorithm is a probability distribution over a set of determin-
istic online algorithms. The objective value produced by a randomized algorithm is
therefore a random variable. In this paper we analyze the performance of randomized
online algorithms against anoblivious adversary. An oblivious adversary knows the
online algorithm and the distributions it uses, but does not see the realizations of the
random choices made by the online algorithm and therefore has to generate a request
sequence in advance. We refer to [BEY98] for details on the various adversary models.

Definition 1.2 (Competitive Randomized Algorithm). A randomized online algorithm
RALG for OCA is defined to bec-competitive against an oblivious adversaryif for any
request sequenceσ the inequalityE [RALG(σ)] ≥ 1

c · OPT(σ) holds.

Thecompetitive ratioof an algorithm is defined to be the infimum over allc such
that the algorithm isc-competitive.

1.2. Previous work. If the set of eligible wavelengthsW contains only a single wave-
length, the problem of providing lightpaths reduces to the problem of finding edge dis-
joint paths in the given graph, which we will refer to asEdge Disjoint Path Allocation
(EDPA). Competitive algorithms forEDPA are known for special graphs like lines,
trees, and meshes. The currently best competitive ratios of randomized algorithms
against an oblivious adversary for these topologies aredlog ne for the line withn nodes
[AYFR94, AAF+96], 2 log n for a tree withn nodes [AYFR94, AAF+96, LMSPR98]
andO(log n) for then× n-mesh [KT95, LMSPR98].

So far, OCA with χ > 1 wavelengths has been investigated only for the special
case in which each call requires one lightpath, i.e.,bj = 1 for all j. Awerbuch et al.
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([AAF+96]) developed the competitive algorithmFFC (First-Fit-Coloring), which is
based on a “virtual” online algorithm forEDPA.

Theorem 1.3([AAF+96]). Let SLAVE be ac-competitive algorithm forEDPA. Then
there is a(c + 1)-competitive algorithmFFC for the special case ofOCA where each
call requires one lightpath.

Note that the competitive ratio ofFFC does not depend on the number of eligible
wavelengths in the network and differs from that of the subroutine used forEDPA only
by an additive constant of1.

1.3. Our contribution. We present the first competitive algorithms for the general
case ofOCA in which the demand of a call may be greater than1. We assume, however,
that no call asks for more thanχ lightpaths. This assumption is reasonable since
accepting a call of demand higher thanχ (if at all possible) would plug up the network
immediately. In particular, on trees our assumption means no restriction.

The first of our algorithms,Copy-Coloring(CC), is deterministic and works for
OCA in general graphs. Our second algorithm, calledFirst-fit-coloring-scaled(FFCS),
is randomized, and for trees and the line achieves a competitive ratio which is expo-
nentially better thanCC’s ratio. Table 1 gives an overview of our results together with
the known lower bounds forEDPA from the literature.

Topology competitive ratio competitive ratio known
using generic
c-competitive

using best known
competitive

lower bounds
for EDPA

algorithm forEDPA algorithm forEDPA (OCA with χ = 1))

arbitrary network
with n nodes,
χ wavelengths

c · χ · dG

(Theorem 2.1)
O(χ log n)
onn× n meshes

deterministic:n− 1
randomized:n1−log4 3

[BFL96]
tree withn nodes,
χ wavelengths

12(c+1)(dlog χe+1)
(Theorem 3.2)

(24 log n + 2) ·
(dlog χe+ 1)

deterministic:n− 1
randomized:blog n

2 c
[AAF+96]

line with n nodes,
χ wavelengths

8(c + 1)(dlog χe+ 1)
(Theorem 3.7)

(8dlog ne+ 8) ·
(dlog χe+ 1)

deterministic:n− 1
randomized:blog n

2 c
[AAF+96]

TABLE 1. Results in Online Call Admission in Optical Networks.

2. A DETERMINISTIC ALGORITHM FOR GENERAL GRAPHS

Let the graphG = (V,E) together with the set of eligible wavelengthsW =
{λ1, . . . , λχ} be given in an arbitrary instance ofOCA. Remember that theEDPA

problem can be considered to be a special case ofOCA in which there is only one
eligible wavelength (and calls have demand1). The deterministic online algorithm
Copy ColoringCC uses an algorithm forEDPA as a subroutine. This algorithm, called
SLAVE in the sequel, works on the instance ofEDPA given by the graphG and a single
wavelength.
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Algorithm Copy Coloring ( CC)
Let SLAVE be an online algorithm forEDPA. Upon arrival of a callrj =
(sj , tj , bj) with demandbj , hand the “sized down” call̃rj = (sj , tj , 1)
to SLAVE.

If SLAVE rejectsr̃j , rejectrj . If SLAVE accepts̃rj and routes it
on pathP , then acceptrj and route its demand using the lightpaths
(P, λ1), . . . , (P, λbj ).

It is easy to see thatCC yields a valid solution. Recall that each call has demand
at mostχ. If we view the graphG together with its set ofχ eligible colors asχ
copiesG1, . . . , Gχ of G, each in a different color, thenSLAVE creates a feasible routing
for the accepted calls from the modified sequence inG1. In each remainingGi, a
subset of the paths routed inG1 is established. Therefore, we have a feasible routing
in each color, i.e., the wavelength conflict constraint is satisfied.

Theorem 2.1. Let G be a graph withχ eligible wavelengths and maximum vertex
degreedG. If SLAVE is a c-competitive algorithm forEDPA, thenCC is (χ · dG · c)-
competitive onG.

Proof. By ALGk we denote the algorithmALG which has only the firstk colors ofW at
its disposal (and can therefore only handle sequences of calls with demand at mostk).
In particular,OPT1 is the optimal offline algorithm forEDPA on the given graphG
andOPTχ is the optimal offline algorithm forOCA with χ eligible wavelengths. Let
σ(q) be the sequence obtained fromσ by changing the demand of each call toq. Note
that the maximum number of edge disjoint paths connecting any two nodes inG is
bounded bydG.

Given a sequenceσ of calls, consider the maximum number of calls inσ(1) that
can be routed simultaneously in one color (i.e., by edge disjoint paths). By definition
this number equalsOPT1(σ(1)). SinceSLAVE is c-competitive forEDPA, we have
SLAVE(σ(1)) ≥ 1

c OPT1(σ(1)).
Let rj be a call which is routed by the optimal offline algorithmOPTχ on lightpaths

(P, λi1), . . . , (P, λibj
). Each of the lightpaths will be referred to as afragmentof rj .

Let OPTχ(i, σ) denote the share of profit thatOPT = OPTχ gains by call fragments
routed in colori. Obviously this number is bounded from above bydG · OPT1(σ(1)).
As a consequence, we have that

OPTχ(σ) =
χ∑

i=1

OPT(i, σ) ≤ χ · dG · OPT1(σ(1)) ≤ χ · dG · c· SLAVE(σ(1)),

where the last inequality follows from the aforementioned competitiveness ofSLAVE

for EDPA. Clearly,CC makes as least as much profit onσ as theSLAVE algorithm it
uses onσ(1). Therefore,

OPTχ(σ) ≤ χ · dG · c · CC(σ),

which shows the claim of the theorem. ¤

At first glance, the competitive ratio ofCC does not seem to be very good. However,
the following theorem shows that without restrictions the bound achieved byCC is
essentially the best which we can expect for deterministic algorithms.
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Theorem 2.2. On a line withn nodes, no deterministic algorithm forOCA can be
c-competitive withc < χ(n− 1).

Proof. The worst case sequence is a straightforward generalization of the known lower
bound construction from [BFL96] forEDPA on the line withn nodes. Let the nodes
be numbered byv1, v2, . . . , vn from left to right. The adversary first issues a re-
questr1 = (v1, vn, 1). It is straightforward to see that any deterministic algorithm
which achieves a finite competitive ratio must acceptr1. The adversary then presents
then − 1 requests(v1, v2, χ), (v2, v3, χ), . . . , (vn−1, vn, χ), none of which the deter-
ministic online algorithm can accept. ¤

3. AN IMPROVED RANDOMIZED ALGORITHM FOR TREES

In this section we present the randomized algorithmFirst-Fit-Coloring-Scaled (FFCS)
and analyze its performance on trees and the line. For these graph classesFFCS

achieves an exponential improvement in the competitive ratio compared to the de-
terministic algorithmCC from the previous section.

We deriveFFCS as a probability distribution over a set ofdlog χe+ 1 deterministic
algorithms which we denote byFFCSi, i = 0, . . . , dlog χe. Recall thatσ(q) is the
sequence obtained from sequenceσ by changing the demand of each call toq, and that
ALGk is the algorithmALG working on a graph havingk wavelengths at its disposal. If
the subscript is omitted, we always refer to the original problem in which we are given
the graphG together withχ eligible wavelengths.

Algorithm First Fit Scaled ( FFCS)
Partition the set of possible calls intodlog χe + 1 classes as follows:
ClassK0 contains all calls with demand1. For i = 1, . . . , dlog χe,
classKi contains those calls whose demand is in(2i−1, 2i].

Choosei ∈ {0, . . . , dlog χe} uniformly at random and from this
point on, use the deterministic algorithmFFCSi.

FFCSi: If call rj = (sj , tj , bj) does not belong to classKi, reject
rj . Otherwise size the demand ofrj down to 1 and hand the
modified callr̃j = (sj , tj , 1) over to FFCbχ/2ic, that is the ver-
sion ofFFC which works onG but has only

⌊
χ/2i

⌋
wavelengths

{w1, . . . , wbχ/2ic} at its disposal.
If FFCbχ/2ic rejects modified call̃rj , then rejectrj . If FFCbχ/2ic
accepts the modified call̃rj and routes in on pathP in wave-
lengthwk, accept the original callrj and route it on the lightpaths
(P, λ(k−1)2i+1), (P, λ(k−1)2i+2), . . . , (P, λ(k−1)2i+bj

).

Proposition 3.1. FFCS produces a valid routing for the calls.

Proof. Let i be the value of the random choice byFFCS. If a call rj = (sj , tj , bj) is
accepted byFFCS, it must belong the class classKi, implying thatbj ≤ 2i, and the
sized-down call̃rj = (sj , tj , 1) must be accepted byFFCbχ/2ic.

The algorithmFFCbχ/2ic produces a valid routing in the graphG for the set of

accepted calls fromσ(1). Since each wavelengthwk of FFCbχ/2ic corresponds to a
setλ(k−1)·2i+1, . . . , λk·2i of 2i wavelengths in the original graph, it follows that all
accepted calls (which, as mentioned, have all demand at most2i) can in fact be routed
as specified without violating the wavelength conflict constraint. ¤
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Theorem 3.2. Suppose that the following two conditions are satisfied:

(i) Each algorithmFFCbχ/2ic uses ac-competitive algorithm for theEDPA prob-
lem as a subroutine.

(ii) For any input sequenceπ with the property thatb2 < bj ≤ b for all re-
questsrj = (sj , tj , bj) ∈ π the estimate

OPTχ(π) ≤ c′ · b · OPTbχ/bc(π(1))

holds. Then, the randomized algorithmFFCS (with χ wavelengths at its disposal)
achieves a competitive ratio of

2c′(c + 1)(dlog(χ)e+ 1)).

Proof. Let σ be an arbitrary call sequence. We have to show that the expected profit
of FFCS satisfies

E [FFCS(σ)] ≥ 1
2c′(c + 1)(dlog(χ)e+ 1)

· OPT(σ). (1)

SinceFFCSχ choosesi ∈ {0, . . . , dlog χe} uniformly at random and then uses the
deterministic algorithmFFCSi we can rewrite the left hand side of (1) as

E [FFCS(σ)] =
1

dlog(χ)e+ 1
·
dlog χe∑

i=0

FFCSi(σ). (2)

Recall that the deterministic algorithmFFCSi rejects all calls which do not belong to
classKi. Thus, it only gains profit on calls fromKi, and we have thatFFCSi(σ) =
FFCSi(σ|Ki), whereσ|Ki is the subsequence ofσ which consists of calls belonging to
Ki. Using this equality gives us

E [FFCS(σ)] =
1

dlog(χ)e+ 1
·
dlog χe∑

i=0

FFCSi(σ|Ki). (3)

Let P ∗
i (σ) denote that share of the total optimal profit which is gained with calls in

Ki, that is,
P ∗

i (σ) =
∑

r∈σ|Ki
r is accepted byOPT
when given inputσ

bj .

Therefore,OPTχ(σ) =
∑dlog χe

i=0 P ∗
i (σ). We now compareFFCSi(σ|Ki) with P ∗

i (σ).
How big can the share ofOPT’s profit gained fromKi be? P ∗

i (σ) gets largest if
OPT uses all its resources for calls fromKi, which would be the optimal profit gained
if only the sequenceσ|Ki was given. Therefore,P ∗

i (σ) ≤ OPT(σ|Ki), and this yields

OPT(σ) =
dlog χe∑

i=0

P ∗
i (σ) ≤

dlog χe∑

i=0

OPT(σ|Ki). (4)

Hence, it suffices to upper bound the profitOPT(σ|Ki) in terms ofFFCSi(σ|Ki).
To this end we estimate the profit gained by the deterministic algorithmFFCSi on the
sequenceσ|Ki . By construction,FFCSi accepts those calls whose modified version
is accepted byFFCbχ/2ic. As FFCbχ/2ic gets profit1 for each accepted call (it was
given calls whose demand was sized down to1), the number of accepted calls equals
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FFCbχ/2ic((σ|Ki)
(1)). SinceFFCSi gets profitbj ≥ 2i−1 for each accepted call, we

obtain that
FFCSi(σ|Ki) ≥ 2i−1 · FFCj χ

2i

k((σ|Ki)
(1)).

We now apply Theorem 1.3 about the competitiveness ofFFC to FFCj χ

2i

k. This results

in

FFCSi(σ|Ki) ≥ 2i−1 · 1
c + 1

· OPTj χ

2i

k((σ|Ki)
(1)). (5)

Observe that all the demands inσ|Ki are within a factor of two. Hence, we can use
assumption (ii) withπ = σ|Ki andb = 2i to obtain:

OPTj χ

2i

k((σ|Ki)
(1)) ≥ 1

c′2i
· OPTχ(σ|Ki). (6)

Plugging (6) into (5) and using this result in (3) gives

E [FFCS(σ)] ≥ 1
dlog(χ)e+ 1

dlog χe∑

i=0

1
2c′(c + 1)

· OPTχ(σ|Ki). (7)

The claim of the theorem now follows from (4). ¤
Theorem 3.2 bounds the competitive ratio ofFFCS in terms of (i) the competitive

ratio c of a virtual online algorithm forEDPA, and (ii) the ratioc′ between the optimal
offline profit OPTχ(π) andb times the optimal offline profit on a scaled sequenceπ(1)

with fewer wavelengthsbχ/bc.
In the sequel we address the existence of the second ratioc′ for the case of trees

and, as a special case, for the line.

3.1. Call Coloring on Trees. Note that on trees, the problem of finding a feasible
routing for a given set of calls reduces to the problem of path coloring, since each call
uniquely determines the path to be used. Therefore, we will also speak ofcall coloring
or path coloring.

Lemma 3.3. LetG be a tree. Letπ be a call sequence such that the demandbj of each
call in π satisfiesb

2 < bj ≤ b. Then

OPTχ(π) ≤ 6 · b · OPTbχ
b c(π

(1)).

Proof. We prove the claim in three steps. We first consider the following special case:

(a) bj = b for all j,
(b) b dividesχ.

For this special case we show that

OPTχ(π) ≤ 3
2
· b · OPTbχ

b c(π
(1)). (8)

We then show that we can drop the two assumptions one by one, losing factor2 in each
of the two steps.

Assume that conditions (a) and (b) hold. LetS be the set of calls from sequenceπ
by which the optimal profit on the left hand side in (8) is achieved. ThenOPTχ(π) =
|S| · b, since by assumption (a), the demand of each call equalsb. If we were able to
show that the calls inS(1), i.e., the paths corresponding to the calls inS(1), can be
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colored with χ
b colors, this would imply that the setS(1) ⊂ π(1) could be accepted

and routed feasibly by any algorithm which hasχ
b colors at its disposal, yielding profit

|S| = |S(1)|. Since the optimal offline algorithm can do only better, we would obtain
OPT χ

b
(π(1)) ≥ |S| = 1

b · OPTχ(π).
Unfortunately, it is in generalnot possible to color all the calls inS(1) by χ

b colors.
This is illustrated by Figure 1. It shows a treeT of depth one and a set of13 calls
(i.e.paths) onT . It is possible to assignb = 2 different colors to each of the given
paths such that two intersecting paths have disjoint color sets and onlyχ = 6 colors
are used overall. It is however impossible to assign1 color to each of the paths using
only 3 = χ/b colors such that intersecting paths have different colors.

FIGURE 1. An example in whichχ/b colors do not suffice to color
all given paths (χ = 6, b = 2).

However, we will show that at least two third of the calls inS(1) can be colored
usingχ/b colors. Define themaximum (unweighted) loadof a set of paths in a graph
to be the maximum number of paths which have an edge in common.

Theorem 3.4([RU94]). There is a feasible routing of requests of maximum loadL per
link of undirected trees using no more than3

2L wavelengths. ¤
We seek to apply Theorem 3.4. We know that there is a feasible routing for the

calls inS, that is, each call inS is assignedb lightpaths (the uniquely determined path
together withb different colors), using at mostχ different colors in total. On each
edge, the maximum load of the whole set of lightpaths established to routeS is hence
bounded from above byχ. Therefore, the maximum load of paths (calls) inS(1) is
bounded from above byχb , as each call inS(1) corresponds to one path whereas a call
in S corresponds tob lightpaths.

Applying Theorem 3.4 yields that there is a coloring of the calls inS(1) using 3
2 · χ

b

colors. If we consider thoseχb among the3
2 · χ

b colors from the coloring which accom-
modate the most calls, a simple averaging argument gives us that they accommodate
a setM (1) ⊂ S(1) of calls of cardinality at least23 · |S(1)|. The optimal algorithm on
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χ/b colors might even accept a larger set of calls fromπ1, so since|S| = |S(1)| andb
dividesχ, we can conclude that

OPTbχ
b
c(π

(1)) = OPT χ
b
(π(1)) ≥ |M (1)| ≥ 2

3
· |S| = 2

3b
· OPTχ(π),

which is exactly what we claimed in (8).
Now assume that only condition (b) holds, that is,b dividesχ, but the demandbj

of a call may take any integral value betweenb
2 andb, i.e., b

2 < bj ≤ b. Consider
the routing defined byOPTχ(π). Sinceb − bj < bj , we can accommodateb − bj

additional lightpaths for each of the accepted calls if we provideχ additional colors.
We thus get a valid solution for the sequenceπ(b) in the graph with2χ wavelengths.
We can conclude thatOPTχ(π) ≤ OPT2χ(π(b)). As b dividesχ, it also divides2χ, and
since the demand of each call inπb equalsb, we can apply inequality (8). We obtain

OPTχ(π) ≤ OPT2χ(πb)
(8)

≤ 3
2
·b·OPT 2χ

b
(π(1)) ≤ 3

2
·b·2·OPT χ

b
(π(1)) = 3·b·OPT χ

b
(π(1)),

where the last inequality holds asOPTχ/b can accept at least those calls fromπ(1)

which were accepted byOPT2χ/b and routed in the “fuller” half of the2χ
b colors used.

We finally show that we can drop condition (b) using the part we just proved for the
second inequality in the following chain:

OPTχ(π) ≤ OPT2·bχ
b c·b(π) ≤ 3 · b · OPT2·bχ

b c(π
(1)) ≤ 2 · 3 · b · OPTbχ

b c(π
(1)).

The first inequality simply holds becauseχ ≤ 2·⌊χ
b

⌋·b , the last by the same reasoning
as before: the “fuller” half of the2 ·⌊χ

b

⌋
colors accommodates at least half of the calls.

This completes the proof of the lemma. ¤
Corollary 3.5. If there is ac-competitive algorithm forEDPA on trees, thenFFCS

achieves a competitive ratio of12(c+1)(dlog χe+1) for routing inχ wavelengths. ¤
Using one of the2 log n-competitive algorithms forEDPA on trees withn vertices

from [AYFR94, AAF+96, LMSPR98], this results in a(24 log n + 2)(dlog χe + 1)-
competitive algorithm forOCA on the same graph class.

3.2. Call Coloring on Paths. In case that the underlying graph is a simple path, a
slightly better result than the one in Lemma 3.3 can be achieved.

Lemma 3.6. Let G be a path. Letπ be a call sequence such that the demandbj of
each call inπ satisfiesb

2 < bj ≤ b. Then

OPTχ(π) ≤ 4 · b · OPTbχ
b c(π

(1)).

Proof. As before, we first consider the case that all demands satisfybj = b for all j
and thatb dividesχ. For this case, we show that

OPTχ(π) = b · OPTbχ
b c(π

(1)). (9)

As shown in the proof of Lemma 3.3, dropping the two assumptions above costs us a
factor of2 each. This yields the desired result.

It remains to prove (9). It is straightforward to see thatOPTχ(π) ≥ b·OPTbχ
b c(π

(1)).
We will now show that the inequality also holds the other way around, namely that
OPTχ(π) ≤ b · OPTbχ

b c(π
(1)).
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Let A ⊆ π be the set of calls accepted byOPTχ on inputπ. Consider the follow-
ing auxiliary graphH with vertex set corresponding to the calls inA: we insert one
(interval-) vertex for each of theb call fragments of each accepted call. Two vertices
in H are adjacent if the corresponding call fragments share an edge. Clearly,H is an
interval graph with maximum clique sizeω(H) ≤ χ.

We consider the subgraphH ′ obtained fromH by removing for each callr ∈ A
all but one of theb vertices representing its call fragments and their adjacent edges.
Hence, the vertices inH ′ correspond to a subset of the calls inπ(1). Clearly,ω(H ′) =
ω(H)/b ≤ χ/b. Since interval graphs are perfect, we can color the vertices inH ′
using at mostω(H ′) = χ/b colors. Thus, the coloring of the calls inA translates into
a solution for theπ(1)-instance in which as many calls (of profit1) are accepted by
OPT χ

b
onπ(1) as calls (with profitb) are accepted byOPTχ onπ. ¤

Corollary 3.7. If there is ac-competitive algorithm forEDPA on the line, thenFFCS

achieves a competitive ratio of8(c+1)(dlog χe+1) for routing inχ wavelengths. ¤
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