4. A Comparison of Cache Aware and Cache
Oblivious Static Search Trees Using
Program Instrumentation

Richard E. Ladner, Ray Fortna, and Bao-Hoang Nguyen

Department of Computer Science & Engineering
University of Washington, Box 352350, Seattle, WA 98195, USA
ladner@cs.washington.edu

Summary.

An experimental comparison of cache aware and cache oblivious static
search tree algorithms is presented. Both cache aware and cache oblivi-
ous algorithms outperform classic binary search on large data sets because
of their better utilization of cache memory. Cache aware algorithms with
implicit pointers perform best overall, but cache oblivious algorithms do
almost as well and do not have to be tuned to the memory block size as
cache aware algorithms require. Program instrumentation techniques are
used to compare the cache misses and instruction counts for implementa-
tions of these algorithms.

4.1 Introduction

The performance of an algorithm when implemented is a function of many
factors: its theoretical asymptotic performance, the programming language
chosen, choice of data structures, the configuration of the target machine,
and many other factors. One factor that is becoming more and more impor-
tant is how well the algorithm takes advantage of the memory hierarchy, its
memory performance. Data to be processed by the algorithm can stored in
different levels of the memory hierarchy: the registers on the processor chip,
first level cache, second level cache, main memory, and secondary memory
on disk. Each successive level of the memory hierarchy is slower and larger
than the preceding level. When a datum is required by the processor it must
be transferred from its current location in the hierarchy to the processor.
Because of the time delay in moving the datum to the processor, typically
surrounding data is also transferred down the memory hierarchy in a block
that contains the required datum. This block transfer amortizes the transfer
time of all the data in the hope that not just the one datum is required,
but that surrounding data will be required soon. Typical block sizes are 1024
bytes from disk to main memory, 32 bytes from main memory to the level two
and level one caches, and four bytes from the level one cache to the registers.

Most algorithms are not designed with memory performance in mind and
probably shouldn’t be. However, there are cases where an algorithm is in the
“inner loop” where good memory performance is necessary. In these cases

R. Fleischer et al. (Eds.): Experimental Algorithmics, LNCS 2547, pp. 78-92, 2002.
(© Springer-Verlag Berlin Heidelberg 2002

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 79

designing for good memory performance is needed to achieve optimal perfor-
mance. It is not difficult to find examples where a “memory sensitive” main
memory algorithm can achieve a 50% reduction in running time over a sim-
ilar “memory insensitive” algorithm. The reduction in running time can be
attributed to the reduction in level two cache misses, where a cache miss is
an access to a datum that is in main memory but not in the level two cache.

In this paper we concentrate on the memory performance of algorithms
where the data resides in main memory and not in secondary memory. In
particular, we examine the classic technique of binary search, an algorithm
to locate an item among a static set of items. Classic binary search is so
well known that it does not need any introduction. However, a quick analysis
shows that its memory performance is poor. Suppose several items can fit
into a memory block. In classic binary search the items are stored in a sorted
array. The query item is compared with the middle item in the array. If it is
equal, the search is completed. If it is smaller, the subarray to the left of the
middle is searched in the same way. If it is larger, the subarray to the right is
searched in the same way. The important point is that in the two latter cases
the next item accessed is likely to be far from the middle of the array, so it is
not in the same memory block. Thus, memory blocks are poorly utilized in
classic binary search. Can binary search’s memory performance be improved?
The answer is a resounding yes, and there are several strategies to do so.

In this paper we examine two strategies for improving the memory per-
formance of binary search. The first is the cache aware approach where items
that are accessed together are stored together in the same memory block.
Knowledge of the memory block size is needed to accomplish this. In this
approach the items can be stored without the use of explicit pointers, but
the layout of the items in memory does not constitute a sorted array. A dis-
advantage of cache aware search is that, because the items are organized into
memory blocks, the algorithm does not achieve the perfect binary splitting
into equal size subproblems. Cache aware algorithms have been studied in a
number of different contexts [4.7, 4.8, 4.5, 4.10].

The second approach to improving the memory performance of binary
search is the cache oblivious [4.9, 4.4, 4.1, 4.2, 4.3] approach where the items
are organized in a universal fashion so that items that are accessed closely in
time are stored near each other. The method is called cache oblivious because
knowledge of the memory block size is not needed to achieve the organiza-
tion. The advantage of the cache oblivious approach is that the organization
of the data yields good memory performance at all levels of the memory hi-
erarchy. One disadvantage of the cache oblivious approach is that it might
not perform as well as the cache aware approach because it cannot take ad-
vantage of knowledge of the memory block size. Another disadvantage of the
cache oblivious approach is that, although items can be accessed without ex-
plicit pointers, the computation to find the next item may be prohibitively
expensive. This means that explicit pointers must be used, which increases

80 Richard E. Ladner et al.

the memory footprint of the data structure, which may hurt memory perfor-
mance.

We take an experimental approach in comparing cache aware and cache
oblivious search. We first implemented in C classic binary search, cache aware
search, and cache oblivious search. There are two versions of each implemen-
tation, one with implicit pointers and one with explicit pointers. As is nor-
mally done we did execution time studies on a wide range of data set sizes
on several platforms. More interesting is our use of program instrumentation
tools to count the number of machine instructions executed by each program
and to simulate the number of cache misses that occurs for each implemen-
tation. The former metric is called instruction count and the latter metric is
called cache performance. We simulated a direct mapped cache with several
different memory block sizes.

We summarize our main results as:

1. In terms of execution time, both cache aware search with implicit pointers
and cache oblivious search with explicit pointers perform comparably,
and are both significantly faster the classic binary search.

2. Cache aware search with implicit pointers has slightly better cache per-
formance than cache oblivious search with explicit pointers.

3. Cache aware search with implicit pointers has slightly worse instruction
count performance than cache oblivious search with explicit pointers.

In summary, the cache oblivious approach is almost as effective as the cache
aware approach to reducing cache misses for static search and has the advan-
tage that it does not need to be tuned to the memory block size.

4.2 Organization

In Sections 4.3 and 4.4 we present cache aware search and cache oblivi-
ous search, respectively. In Section 4.5 we present the instrumentation tool
ATOM [4.12] and how it is used for measuring cache misses and instruction
counts. In Section 4.6 we present our experimental results. In Section 4.7 we
present our conclusions.

4.3 Cache Aware Search

In this section, we present the cache aware approach for improving memory
performance of binary search. The basic idea is to store in the same memory
block those items that are most likely accessed together in time. In this way
when an item moves from main memory to the cache, other items that are
likely to be accessed soon are moved to the cache in the same block. Hence,
cache misses are avoided. A simple way to achieve this is to use a k-ary tree

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 81

A

Fig. 4.1. Node of a cache aware 4-ary search tree stored in a 32 byte memory block

where a node contains k — 1 items and k pointers to subtrees. To achieve the
effect we want we choose k so that all the items and pointers fit in a memory
block.

There are several ways to implement k-ary trees, one which employs ex-
plicit pointers and one that uses implicit pointers. In the former memory
must be allocated to the pointers, while in the latter the address of the child
of a node is calculated and no storage is wasted on pointers. Suppose that we
know the cache line size is 32 bytes, and assume that an item and a pointer
each occupies four bytes, we can store at most four pointers and three items.
This means that our tree would be a 4-ary tree. Figure 4.1 depicts this ex-
ample.

However, there are still four bytes in the memory block left unused. In
order to make the node cache-align, these four bytes need to be padded
in our structure. Hence, we lose some more memory for padding besides the
memory used for pointers. A big disadvantage of the explicit pointer structure
is the size of its memory footprint is increased by the inclusion of pointers
and padding. An advantage of the explicit pointer structure is the speed in
following pointers rather than calculating them.

Using implicit pointers helps to alleviate memory footprint problem. By
not storing the explicit pointers, we can use the whole memory block to store
keys, so the parameter k is larger. For example, for 32 byte memory block we
now can store eight items instead of three in a memory block and have no
padding. Interestingly, the utilization of the memory blocks for explicit and
implicit pointers is about the same. If binary search is done within a node,
then in the explicit pointer case two items and one pointer are touched most
commonly. In the implicit pointer case three or four items are touched most
commonly. The big win of implicit pointers is that the height of the tree,
which bounds the number of cache misses, is much less.

For a k-ary tree, we layout the nodes in a contiguous piece of memory,
starting from the root node going down, and from left to right for nodes at
the same height. If the nodes are stored in an array, the root is stored at index
0 and the j-th child (1 < j < k) of the node stored at index 7 is stored at
index ik + (k—1)(j + 1). This simple calculation replaces the explicit storage
of pointers. The layout of the nodes of a 3-way cache aware search tree with
implicit pointer is described in Figure 4.2.

82 Richard E. Ladner et al.

|

root

Fig. 4.2. Memory layout of a 3-way cache aware search tree with implicit pointers

4.4 Cache Oblivious Search

Cache oblivious algorithms operate under the same principles as cache aware
algorithms. Both types of algorithms try to “cluster” data together in mem-
ory so that the locality of memory references is increased. The cache aware
algorithm described above accomplishes this by “clustering” nodes of a binary
search tree into nodes that fit into a memory block. The cache oblivious al-
gorithm described by Prokop [4.9] approximates the same behavior, but does
so without any knowledge of the cache parameters. Figure 4.3 shows how the
cache oblivious algorithm lays out the data in memory to accomplish this.
Given a binary search tree of h (assuming h is a power of 2) levels, the
memory layout algorithm works as follows. Cut the tree in half vertically,
leaving one subtree above the cut and 2"/2 subtrees below the cut, giving a
total of 27/2 41 subtrees all of the same size. The top subtree is then placed

Decomposition

h/2
T

1

Layout in memory

. T T L e T

Fig. 4.3. Cache oblivious search tree decomposition and layout in memory

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 83

Memory block Memory block

[DN

Subtree

Fig. 4.4. A subtree of memory block size spans at most two memory blocks

in a contiguous block of memory followed by the 2"/2 subtrees from the left
most to the right. The algorithm is then recursively applied to the to the top
subtree followed by the bottom subtrees in left to right order. The algorithm
terminates when it is applied to a subtree of one level, at which point it will
add the single node into the array. As the algorithm recurses through each
of the subtrees, it will eventually reach a tree which will occupy contiguous
memory of size about the same as a memory block. This is similar to the
behavior of the cache aware algorithm, the only difference in the two lay-
outs is that the cache aware algorithm ensures that each “cluster” starts at
the beginning, and spans only one memory block. The cache oblivious algo-
rithm on the other hand cannot ensure that the cluster starts on a memory
block boundary. Instead it guarantees that each cluster will span at most two
memory blocks. This is illustrated below in Figure 4.4.

The cache aware algorithm knows the cache parameters and can therefore
align the array in memory as to ensure that all the clusters are cache aligned.
By virtue of the fact that the cache oblivious algorithm knows nothing of the
cache parameters there is no way for it to ensure that a “cluster” does not
begin somewhere in the middle of a memory block and thus ending in another
memory block. Because of this fact, the cache aware algorithm will inherently
have better cache performance than the cache oblivious algorithm. However,
the cache oblivious algorithm does have the advantage that it does not have to
be “hand tuned” for each cache size. Its properties ensure that each “cluster”
will only span at most two memory blocks no matter the memory block size,
where as the cache aware algorithm must be adjusted for each memory block
size to ensure that its properties hold. As was the case with the cache aware
implementation, the cache oblivious algorithm can be implemented with both
explicit and implicit pointers. Implicit pointers have the benefit of reducing
the memory footprint of a single node, and thus increase the overall cache
performance. However the computation of the implicit pointers at run time
impacts the instruction count of the algorithm and can have a negative effect
on performance.

In recent work Bender et al. [4.2] and Brodal et al. [4.3] have used the
cache oblivious static search tree as the basis of a cache oblivious dynamic
search structures that allow for insertions and deletions. In particular, Bro-
dal et al. have discovered a very elegant and efficient way to calculate the
pointers in the cache oblivious static search tree with implicit pointers. For
our cache oblivious search tree with implicit pointers we use a more compu-

84 Richard E. Ladner et al.

tation intensive algorithm for computing pointers which is described in the
next paragraph. Hence, our cache oblivious search tree with implicit pointers
have high instruction counts and execution times. This could be remedied by
using the Brodal et al. calculation of pointers.

As described in Figure 4.3, the layout of the cache oblivious search tree
in memory is determined by recursively “cutting” the tree in half height-wise
and placing the nodes in contiguous memory starting with the top half of
the tree. It is not surprising that traversing the tree also involves recursively
cutting the tree. The algorithm works as follows. Initially the algorithm begins
it search at the root of the tree, the first level of the tree, and the initial “cut”
is located at h, where h is the height of the tree. If the number of levels that
separate the current node from the next cut is greater than or equal to two,
a new cut is placed halfway between the current level of the search and the
level of the next cut. If the current node is at the same level as the next
cut an inter-cut traversal is done. Otherwise an intra-cut traversal is done.
This process is repeated at the new node until the search succeeds or fails.
An intra-cut traversal is defined as follows. Let i be the index of the current
node in the search. If the difference between the level of the current node and
the level of the next cut is ¢, where ¢ < 2 the left child of the current node is
located at i+ 1 while the right child is located at i +2¢. An inter-cut traversal
is done in the case that by moving to the next node in the traversal, we cross
over an existing cut. In this case, the next node is located in memory after
all the nodes above the cut and after all the nodes between the cut and the
next cut in the subtrees to the left of the next node. If the number of levels
in the tree above it is d and the number of trees to the left of it is s then j
child (1 < j < 2) of the node indexed at i is located at

(25 4+ — 1)(2¢ = 1) + 29+ — 1.

The quantity 291 — 1 is the number of nodes above the cut and the quantity
2¢ — 1 is the number of nodes in each of the subtrees to the left of the
next node. There are either 2s or 2s 4 1 subtrees to the left of the next node
depending on whether the traversal goes left or right respectively. A stack can
be used to maintain the current cut by simulating the recursive construction
described in Figure 4.3. The values of d and s can be maintained easily and
the value of ¢ can be calculated from the cut value and d.

4.5 Program Instrumentation

Program instrumentation is a general way to understand what an executing
program is doing. Program instrumentation can be achieved automatically or
manually. For example, when a compiler is called with the debugger on, then
the executable code is augmented automatically to allow the user to view val-
ues of variables or other quantities. The semantics of the program should be
the same whether or not the debugger is turned on. Manual instrumentation

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 85

is where the programmer inserts instructions into the source code to measure
some quantity or print out some intermediate values. For this study we em-
ployed the system ATOM [4.12] which enables the user to build customized
tools to automatically instrument and analyze programs that run on DEC
alphas. Other program instrumentation tools that are useful for measuring
memory performance are Cacheprof [4.11] and Etch [4.6].

The programmer provides three pieces of code to ATOM: (i) the unlinked
object code of the program to be instrumented, (ii) instrumentation code
that tells atom what “sensors” to insert into the object code and where to
place them, and (iii) analysis code that processes the sensor data from the
executing program to provide information about the execution. ATOM takes
the three pieces and produces an instrumented program executable. When
the executable is then run, it has the same semantics as the uninstrumented
program, but during the execution the sensors gather data that is processed
by the analysis code. Figure 4.5 gives a picture of the ATOM system. A simple
example of the use of ATOM is an instruction counter. The instrumentation
code inserts an increment-counter instruction after every instruction in the
object code. The analysis code sets the counter to zero initially and outputs
the final count on termination. We employ such an instruction counter in our
study.

A second, more sophisticated example, is a trace driven cache simulator.
In this case the instrumentation code inserts instructions after each load
and store to sense the memory address of the operand. The analysis code is a
cache simulator that takes the address as input and simulates what a memory
system would do with the address. In addition, the analysis code keeps track
of the number of loads and stores to memory and how many accesses are
misses. Figure 4.6 shows the instrumentation code for a cache simulator and
Figure 4.7 shows the analysis code for a very simple one level, direct mapped

Instrumentation Input
code data
Object Instrumented Analysis
code code data
Analysis Output
code data

Fig. 4.5. Schematic of the ATOM system

86 Richard E. Ladner et al.

Instrument () {
Proc *p; Block *b; Inst *i;
AddCallProto("LoadReference (VALUE)");
AddCallProto("StoreReference (VALUE)");
AddCallProto("PrintResults()");
for (p = GetFirstProc(); p != NULL; p = GetNextProc(p)) {
for (b = GetFirstBlock(p); b != NULL; b = GetNextBlock(b)) {
for (i = GetFirstInst(b); i !'= NULL; i = GetNextInst(i)) {
if (GetInstClass(i) == ClassLoad ||
GetInstClass(i) == ClassFload) {
AddCallInst(i,InstBefore,"LoadReference" ,EffAddrValue);
xs}
if (GetInstClass(i)== ClassStore ||
GetInstClass(i)== ClassFstore) {
AddCallInst(i,InstBefore,"StoreReference" ,EffAddrValue);
¥
¥
}
}
}
AddCallProgram(ProgramAfter, "PrintResults");
}

Fig. 4.6. Instrumentation code for a trace driven cache simulator

cache simulator. We used a trace driven cache simulator similar to this one
for our study.

In the instrumentation code, Figure 4.6, the nested for loops identify
each procedure in the object code, then each basic block within the proce-
dure, then each instruction within the basic block. If the instruction is a
load, then code is inserted before the instruction which calls LoadReference
in the analysis code passing EffAddrValue, the operand, as a parameter.
If the instruction is a store, then code is inserted before the instruction
which calls StoreReference in the analysis code passing EffAddrValue, the
operand, as a parameter. At the end of the program code is inserted which
calls PrintResults.

The analysis code implements a direct mapped cache with size CACHE_SIZE
in bytes and block size BLOCK_SHIFT in bits. The analysis code maintains the
array tags which stores the memory addresses that currently reside in the
cache. In addition it maintains counters for the number of load and store
references and load and store misses. For our study we use a similar cache
simulator, but we add the load and store values into one value for both
references and misses. We chose to simulate a one level cache because the
cache miss penalty for the level two cache is typically much greater than
that for the level one cache. Having just one number representing the cache
performance is reasonable compromise considering that level one cache misses
tend to have a low order effect on performance on large data sets.

ATOM is a powerful tool but it must be used properly to obtain accurate
results. First, the analysis code is interleaved with the code to be analyzed.
This means that the instrumented code can be considerably slower than the
uninstrumented code. This is not a serious problem with either instruction

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 87

void generalreference(long address, int isLoad) {
int index = (address & (CACHE_SIZE-1)) >> BLOCK_SHIFT;
long tag = address >> (BLOCK_SHIFT + INDEX_SHIFT);
int returnval;

if (tags[index] != tag) {
if (isLoad){
loadmisses++;
tags[index] = tag;

else {
storemisses++

}

if (isLoad) {
loadreferences++;
}
else {
storereferences++;
}
}
void LoadReference(long address) {
generalreference(address, 1);
}
void StoreReference(long address) {
generalreference(address, 0);

}

Fig. 4.7. Analysis code for a trace driven cache simulator for a one level, direct
mapped cache

counting or cache simulation because the analysis code is quite efficient. For
cache simulation it is important not to use dynamic memory in the analysis
code. Use of dynamic memory would cause a difference in the addresses used
by the instrumented and uninstrumented codes, and distort the results. This
is not a problem in our case because we used static memory to allocate the
tags array and counters. Finally, the trace driven cache simulator is just
that. It does not measure cache misses caused by swapping, TLB misses, or
instruction cache misses.

4.6 Experimental Results

In order to better understand the alternative static search algorithms we
implemented in C six algorithms: classic binary search, cache aware search,
and cache oblivious search each with explicit and implicit pointers versions.
All studies were for data sets the range from 128 to 2,097,152 and for larger
data sets when possible. All items and pointers used are four bytes. In order to
compare our static search algorithms we employed program instrumentation
for trace driven cache simulation and instruction counts. These studies were
done using ATOM on a Compaq Alpha 21164. In addition, we performed two
execution studies one on Windows and one on Linux. In Table 4.6 we list the
computer configurations and compilers. All the caches in the two platforms

88 Richard E. Ladner et al.

Table 4.1. Computer configurations and compilers used in the execution time
studies

| || Windows | Linux |

Operating || Windows 2000 “Professional” | Linux Mandrake 7.2
System

Processor || 533 MHz Intel Celeron 350 MHz Intel Pentium II
Memory || 64 MB 128 MB

Memory Block || 32 B 32 B

L2 Cache || 128 KB 512 KB

L1 Cache || 32 KB 32 KB

Compiler || MSVC 6.0 gee 2.95.2
Options || Release Build Highest Option | -O3 (highest setting)

are 4-way set-associative and all block sizes are 32 bytes. In all the studies
each data point represents the median of ten trials where a trial consisted of
n random successful lookups where n is the number of items. The median of
ten is computed as the average of the fifth and sixth ranked trials to avoid
the effect of outliers. For a given n, the ten measured trials were preceded by
n unmeasured successful lookups to warm up the cache.

Figure 4.8 gives the results a cache simulation using ATOM where we
simulated a direct mapped cache of size 8,192 bytes and a memory block size
of 32 bytes. In the z-axis we plot the number of items on a log scale and in
the y-axis we plot the number of cache misses. We see that the cache aware
search with implicit pointers has the fewest cache misses, while classic binary
search has the most. All the algorithms that use implicit pointers have fewer
cache misses than their explicit pointer counterparts showing the effect of
the larger memory footprint for the explicit pointers. Most important is that
both cache oblivious and cache aware search algorithms have much better
memory performance than classic binary search.

Figure 4.9 gives the results of instruction counting using ATOM for the
algorithms. In the x-axis we plot the number of items on a log scale and in
the y-axis we plot the number of Compaq Alpha 21164 instructions executed
per lookup. We see immediately the high price in instruction count that is
paid for our version of cache oblivious search with implicit pointers. The
instruction count penalties for implicit pointers for classic binary search and
cache aware search are small. The explicit pointer versions of classic binary
search and cache oblivious search execute the fewest instructions per lookup.
Cache aware search with explicit pointers has slightly more instructions per
lookup because it does not achieve perfect binary splitting into equal size
subproblems.

In our execution time studies shown in Figures 4.10 and 4.11 in the z-axis
we plot the number of items on a log scale and in the y-axis we plot the time
per lookup measured in microseconds. Each trial was measured using time.h
from the Standard C library.

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees

Fig. 4.8.

Average number of cache misses per lookup

20

0 I
100 100000

Cache Misses for Static Search Trees

T
Classic Binary Search Explicit
Classic Binary Search Implicit
Cache Oblivious Explicit -
Cache Oblivious Implicit
Cache Aware Explicit

Cache Aware Implicit

Number of items

Cache misses per lookup for static search algorithms

Average number of instructions per lookup

1200 | Classic Binary Search Implicit

1000

Instruction Count for Static Search Trees

Classic éinaw Search Explicit

Cache Oblivious Explicit
Cache Oblivious Implicit
Cache Aware Explicit
Cache Aware Implicit

800 - ‘ b

600 | = |

0 | |
100 1000 10000 100000 1e+06
Number of items

Fig. 4.9. Instruction count per lookup for static search algorithms

89

Figure 4.10 gives the results of an execution time study using Windows.
Cache aware search with implicit pointers is the fastest, but cache oblivious
search with explicit pointers is not far behind. Cache oblivious search with
implicit pointers is the slowest of all because of the high cost of computing

pointers.

Figure 4.11 gives the results of an execution time study using Linux.
Again, cache aware search with implicit pointers is the fastest, but cache
oblivious search with explicit pointers is not far behind. Again, cache oblivi-
ous search with implicit pointers is the slowest of all because of the high cost

90 Richard E. Ladner et al.

Execution Time on Windows for Static Search Trees

T T
Classic Binary Search Explicit —+—
Classic Binary Search Implicit ---x---
Cache Oblivious Explicit ---*---
Cache Oblivious Implicit &
Cache Aware Explicit ——-m~
8 I Cache Aware Implicit ---e---

Time in microseconds per lookup

T m—=
A T
o k= e ‘
10000 100000 1e+06

Number of items

Fig. 4.10. Execution time on Windows for static search algorithms

of computing pointers. Inexplicably, cache aware search with explicit pointers
showed consistently poor performance under Linux. We looked at a number
of possible causes for the poor performance but were not able to pin down a
reason for it. We believe that the Linux behavior perhaps demonstrates the
perils of cache aware programming. The cache oblivious algorithms performed
consistently on both platforms.

4.7 Conclusion

Both cache aware and cache oblivious search perform better than classic
binary search on large data sets. Cache aware search algorithms have the
disadvantage that they require knowledge of the memory block size. Cache
oblivious search algorithms have only slightly worse memory performance
than cache aware search, but in our study only the explicit pointer version
of oblivious search has comparable overall performance. As mentioned earlier
Brodal et al. [4.3] have found a way to compute the implicit pointers efficiently
in the cache oblivious algorithm. The cache oblivious search algorithms do
not require knowledge of the memory block size to achieve good memory
performance. Finally, program instrumentation tools like ATOM let us obtain
a deeper understanding of the performance of these algorithms.

Acknowledgments

The research was supported by NSF Grant No. CCR-~9732828 and by Mi-
crosoft. Ray Fortna and Bao-Hoang Nguyen were undergraduate students at

4. Comparison of Cache Aware and Cache Oblivious Static Search Trees 91

Fig.

Execution Time on Linux for Static Search Trees

Classic Binary Search Explicit o
Classic Binary Search Implicit ---x---

Cache Oblivious Explicit ---:--- a

Cache Oblivious Implicit & B

Cache Aware Explicit —-m— &
8 I Cache Aware Implicit ---o-- =} 4
5} - _a
o
8 -
B
-

6 & ’ |

Time in microseconds per lookup

I
10000 100000 1e+06
Number of items

4.11. Execution time on Linux for static search algorithms

the University of Washington at the time this paper was written. Ray Fortna
was supported by a NSF REU.

Thanks to the anonymous referees for suggesting several improvements to
the paper.

References

4.1

4.2

4.3

4.4

4.5

4.6

4.7

M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees.
In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS’00), pages 399409, 2000.

M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-
oblivious dynamic dictionary. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’02), pages 29-38, 2002.

G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via
binary trees of small height. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’02), pages 39-48, 2002.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proceedings of the 40th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’99), pages 285-297, 1999.

J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main
memory. In Proceedings of 25th International Conference on Very Large Data
Bases (VLDB’99), pages 78-89, 1999.

T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, and B. Ber-
shad. Instrumentation and optimization of Win32/Intel executables using
Etch. The USENIX Windows NT Workshop, 1997. See www.usenix.org/
publications/library/proceedings/usenix-nt97/romer.html.

A. LaMarca and R. E. Ladner. The influence of caches on the performance of
heaps. Journal of Experimental Algorithmics, vol. 1, 1996.

92

4.8

4.9

4.10

4.11
4.12

Richard E. Ladner et al.

A. LaMarca and R. E. Ladner. The influence of caches on the performance of
sorting. Journal of Algorithms 31:66—104, 1999.

H. Prokop. Cache-Oblivious Algorithms. Master’s Thesis, MIT Department
of Electrical Engineering and Computer Science, June 1999.

S. Sen and S. Chatterjee. Towards a theory of cache-efficient algorithms.
In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’00), pages 829-838, 2000.

J. Seward. Cacheprof. See www.cacheprof.org.

A. Srivastava and A. Eustace. ATOM: a system for building customized pro-
gram analysis tools. In Proceedings of the 1994 ACM Symposium on Pro-
gramming Languages Design and Implementation (PLDI’94), pages 196-205,
1994.

	A Comparison of Cache Aware and Cache Oblivious Static Search Trees Using Program Instrumentation
	Introduction
	Organization
	Cache Aware Search
	Cache Oblivious Search
	Program Instrumentation
	Experimental Results
	Conclusion
	Acknowledgments
	References

