
Int J Softw Tools Technol Transfer (2004) 6: 77–97 / Digital Object Identifier (DOI) 10.1007/s10009-003-0135-4

Efficient verification of timed automata
withBDD-like data structures

Farn Wang

Department of Electrical Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan 106, R.O.C.
e-mail: farn@cc.ee.ntu.edu.tw

Published online: 16 April 2004 –  Springer-Verlag 2004

Abstract.We investigate the effect on efficiency of vari-
ous design issues for BDD-like data structures of TA state
space representation and manipulation. We find that the
efficiency is highly sensitive to decision atom design and
canonical form definition. We explore the two issues in
detail and propose to use CRD (Clock-Restriction Di-
agram) for TA state space representation and present
algorithms for manipulating CRD in the verification of
TAs. We compare three canonical forms for zones, de-
velop a procedure for quick zone-containment detection,
and present algorithms for verification with backward
reachability analysis. Three possible evaluation orderings
are also considered and discussed. We implement our idea
in our tool Red 4.2 and carry out experiments to com-
pare with other tools and various strategies of Red in
both forward and backward analysis. Finally, we discuss
the possibility of future improvement.

Keywords: Data structures – BDD – Timed automata –
Verification – Model checking

1 Introduction

Data structures are the groundwork for efficient algo-
rithms, especially for high-complexity tasks like real-time
system model checking [2]. Most modern model checkers

This work is partially supported by NSC, Taiwan, ROC under
Grants NSC 90-2213-E-002-131 and NSC 90-2213-E-002-132 and
by a grant from the Institute of Applied Science and Engineering
Research, Academia Sinica, Taiwan, ROC.
A preliminary report on this work was published in the

Proceedings of FORTE’2001 (Kluwer), RT-TOOLS 2001, and
APLAS 2000 and is to appear in the Proceedings of VMCAI 2003
(Lecture Notes in Computer Science, Springer).

for real-time systems are built around symbolic manip-
ulation procedures [11] of zones, which means a behav-
iorally equivalent convex state space of a timed automa-
ton (TA). DBM (difference-bounded matrix) [9] has been
generally considered the most efficient data structure in
representing sets of zones. But a DBM can represent only
a convex state space and can incur inefficiency when do-
ing so.
In recent years, researchers have been trying to du-

plicate the success of BDD techniques in hardware veri-
fication for the verification of TAs [1, 7, 13, 14, 16, 17, 22].
Fully symbolic verification technologies using BDD-like
structures [4, 8] can be efficient in both space and time
complexities with intensive data sharing in the manip-
ulation of state space representations. But so far, all
BDD-like structures [1, 7, 13, 14, 16, 17, 22] have not per-
formed as well as the popular DBM [9], which is a two-
dimensional matrix and nothing BDD-like.
Let us first clarify an issue for convenience and preci-

sion of discussion. In BDD, the variables used in system
descriptions (system variables) are directly used as deci-
sion variables. But in BDD-like data structures for dense-
time state space [1, 7, 13, 14, 16, 17, 22], system variables
may be different from those decision variables in the cor-
responding BDD-like data structures. For example, in
CDD [7], system variables are clocks while decision vari-
ables are clock differences like x−x′. In this paper, we
shall call the decision variables used in BDD-like data
structures the decision atoms.
Having examined earlier BDD-like data structures, we

believe that the efficiencies for the representation andma-
nipulation of state spaces with such data structures are
very sensitive to the following two basic issues.

• The design of the decision atoms, that is, the domains
and the semantics of the decision atoms. Previous re-
searchers did not investigate the relation between data

78 F. Wang: Efficient verification of timed automata with BDD-like data structures

structure definitions and their representation/manipu-
lation complexities [1, 7, 13, 14, 16, 17, 22]. We have
identified the representation fragmentation phenom-
enon, which is caused by the semantics of decision
atoms [7], in Sect. 5 and shown that the phenomenon
can indeed affect the verification performance against
several independently developed benchmarks in
experiments.
• The definition of canonical forms. A convex space can
be represented by more than one zone. To avoid the
space explosion caused by recording many zones repre-
senting the same state space, traditionally people use
the canonical form approach, which records only a cho-
sen canonical form (a unique normal form) zone to
represent all zones representing a given convex state
space. According to our observation, for BDD-like data
structures, the more constraints are used in represent-
ing a chosen zone, the more space complexity is in-
curred and the less data sharing is possible. But on the
other hand, too many constraints omitted in a zone
may make it difficult to efficiently decide the contain-
ment relation between zones. Thus one of our goals
is to research the possibility that through the design
of new canonical forms, the appropriate balance be-
tween the width (number of paths) and depth (length
of the longest path) of BDD-like data structures can be
obtained.

Without a proper treatment of these issues, it is not pos-
sible to take full advantage of the data sharing capabil-
ity of BDD-like data structures. Straightforward adapta-
tion from solutions for DBM, e.g., all-pair shortest-path
canonical form, may result in low efficiency.
After going over the basic definitions of real-time sys-

tem verifications and zones in Sects. 2 and 3, we shall first
introduce our new BDD-like data structure,CRD (Clock-
RestrictionDiagram), and its operations in Sect. 4, for the
convenience of discussion of the two issues. CRD shares
the same shape as CDD [7], with the major difference that
decision atom values in CDD are disjoint intervals while
decision atom values in CRD are upperbounds, which are
overlapping. For example, the CRD for the union of two
zones {0−x1 ≤ −3, x2−x1 < −4, x1−x3 < 6} and {0−

Fig. 1. Differences between CRD and CDD

x2 <−1, x1−x3 < 6} (constraints of the form x−x′ <∞
are omitted) is shown in Fig. 1a. If we change the upper-
bounds to interval representations, we get the structure
in Fig. 1b, which is very like CDD but still different in
that the interval labels from the root are not disjoint. The
equivalent CDD for the same state space, in Fig. 1c, has
both greater depth and greater width than Figs. 1a and b.
Note the CDD in Fig. 1c adheres to the CDD restriction
that only decision atoms xi−xj with i < j are used. This
means that each CDD decision atom value serves both as
lowerbound and upperbound.
In Sect. 5, we shall discuss the issue of decision atom

design and use CRD to compare it with another data
structure. In particular, we shall illustrate with examples
to show why subtle differences may incur significant per-
formance differences in the manipulation and represen-
tation of state spaces. The section also serves as a short
survey to compare with previous data structures.
In Sect. 6, we introduce a condition for the efficient

detection of zone containment in a CRD, present an al-
gorithm to eliminate contained zones, and discuss how to
use the algorithm flexibly for better performance.
In Sect. 7, we discuss the issue of canonical form choice

in depth. We have carried out numerous experiments
with other tools (e.g., UPPAAL2k [6, 15] and Kronos [5,
10, 25]) and various canonical forms with some possible
canonical form computation algorithms in order to gain
better understanding of the issues. In the end, we propose
a new canonical form [difference-reduced closure (DRC)
form] that helps us strike a balance between the depth
and width of CRDs and performs better than closure
forms and reduced forms against many benchmarks. Al-
gorithms to compute closure form and DRC form CRDs
are also presented.
We also present algorithms for calculating the weakest

precondition of discrete transitions and timed progress
with CRDs. In particular, in the case of timed progress
our algorithm does not rely on the δ variables (used
in [11]) and is muchmore simplified. Such simplification is
crucial for BDD-like data structures since with variable δ
numerous new decision atoms have to be introduced in
the intermediate representation and are likely to blow up
the memory usage.

F. Wang: Efficient verification of timed automata with BDD-like data structures 79

In Sect. 10, we report our implementation and ex-
periments to observe CRD’s performance with respect to
various strategies, including three canonical forms, three
evaluation orderings, backward/forward analysis, etc.,
and other tools. Recent achievements of our implementa-
tion,Red, include numerical coverage estimation in sym-
bolic simulation of dense-time systems [24], speedup tech-
niques for greatest fixpoint evaluation [23], and BDD-like
data structures for linear hybrid automata [20]. Finally,
in Sect. 11 we summarize this work and discuss possibil-
ities for more performance enhancement.

2 Timed automata verification

Our system model is timed automaton (TA) [2], which
is a finite-state automaton equipped with a finite set of
clocks that can hold nonnegative real values. At any mo-
ment, the TA can stay in only one mode (or control lo-
cation). In its operation, one of the transitions can be
triggered when the corresponding triggering condition is
satisfied. Upon being triggered, the automaton instan-
taneously transits from one mode to another and resets
some clocks to zero. Between transitions, all clocks in-
crease their readings at a uniform rate.
For convenience, given a set Q of modes and a set X

of clocks, we use P (Q,X) as the set of all Boolean com-
binations of atoms of the forms q and x∼ c, where q ∈Q,
x∈X, “∼” is one of≤, <,=, >,≥, and c is an integer con-
stant.

Definition 1. Timed automata (TA) A TAA is a tu-
ple 〈X,Q, I, µ, T, τ, π〉 with the following restrictions. X
is the set of clocks, Q is the set of modes, I ∈ P (Q,X)
is the initial condition, µ : Q �→ P (∅, X) defines the in-
variance condition of each mode, T ⊆Q×Q is the set of
transitions, and τ : T �→ P (∅, X) and π : T �→ 2X define,
respectively, the triggering condition and the clock set to
reset each transition. �
A valuation of a set is a mapping from that set to an-

other set. Given an η ∈ P (Q,X) and a valuation ν of X,
we say ν satisfies η, in symbols ν |= η, iff it is the case that,
when the system variables in η are interpreted according to
ν, η will be evaluated as true.

Definition 2. states A state ν of TAA= 〈X,Q, I, µ, T,
τ, π〉 is a valuation ofX ∪Q such that

• There is a unique q ∈Q such that ν(q) = true and for all
q′
= q, ν(q′) = false;
• For each x ∈X, ν(x) ∈ R+ (the set of nonnegative re-
als) and ∀q ∈Q, ν(q)⇒ ν |= µ(q).

Given state ν and q ∈Q such that ν(q) = true, we call q the
mode of ν, in symbols νQ. �
For any t ∈ R+, ν+ t is a state identical to ν except

that for every clock x ∈X, ν(x)+ t = (ν+ t)(x). Given
X̄ ⊆X, νX̄ is a new state identical to ν except that for
every x ∈ X̄, νX̄(x) = 0.

Definition 3. runsGiven a TAA= 〈X,Q, I, µ, T, τ, π〉,
a run is an infinite sequence of state-time pairs (ν0, t0)
(ν1, t1) . . . (νk, tk) such that ν0 |= I and t0t1 . . . tk
. is a monotonically increasing real-number (time)
divergent sequence, and for all k ≥ 0,

• Invariance conditions are preserved in each interval,
that is, for all t ∈ [0, tk+1− tk], νk+ t |= µ(ν

Q
k); and

• Either no transition happens at time tk, that is, ν
Q
k =

νQk+1 and νk+(tk+1− tk) = νk+1, or a transition hap-
pens at tk, that is,

– There is a transition (νQk , ν
Q
k+1) ∈ T ; and

– The corresponding transition is enabled, that is,
νk+(tk+1− tk) |= τ(ν

Q
k , ν

Q
k+1); and

– The clocks are reset to zeros accordingly, that is,
(νk+(tk+1− tk))π(ν

Q
k , ν

Q
k+1) = νk+1. �

We can define the TCTL model checking problem [2] of
TAs as our verification framework. Since the focus of this
work is on data structures, for simplicity and conciseness
we here adopt the safety analysis problem as our veri-
fication framework. A safety analysis problem instance,
SA(A, η) in symbols, consists of a TA A and a safety state
predicate η ∈ P (Q,X). A is safe with respect to η, in sym-
bols A |= η, iff for all runs (ν0, t0)(ν1, t1) . . . (νk, tk)
such that ν0 |= I, for all k ≥ 0, and for all t ∈ [0, tk+1− tk],
νk+ t |= η, i.e., the safety requirement is guaranteed.

3 Reviews on zones
and their normal forms

Most modern model checkers are built around some sym-
bolic manipulation procedures [11] of zones implemented
in various data structures [1, 7, 9, 13, 14, 16, 17]. A zone is
symbolically represented by a set of difference constraints
between clock pairs.

3.1 Basic notations

For convenience, let Z be the set of integers. Given c≥ 0
and c ∈ Z, let Ic be {∞}∪{d | d ∈ Z;−c≤ d ≤ c}. Also,
for all d ∈ Z, let d+∞=∞+d=∞.
Given an SA(A, η) with the largest timing constant

CA:η used in A and η, a zone is a set of constraints such
as x−x′ ∼ d, with x, x′ ∈X ∪{0}, ∼∈ {“≤”, “<”}, and
d ∈ ICA:η , such that when d =∞, ∼ must be “<”. For
convenience, let Bc = {(∼, d) |∼∈ {“≤”, “<”}; d ∈ Ic; d=
∞⇒∼= “<”}. With respect to givenX andCA:η, the set
of all zones is finite. Alternatively, a zone can be defined
as a mapping (X ∪{0})2 �→ BCA:η . We shall use the two
equivalent notations flexibly.
The following notations help us explain the strict-

ness of timing constraints. Given (∼1, d1), (∼2, d2), we
say (∼1, d1) is stricter than (∼2, d2), in symbols (∼1,
d1) � (∼2, d2), iff d1 < d2 ∨ (d1 = d2 ∧ (∼2= “<”⇒∼1=
“<”)). The following shorthand notations are also
adopted: (∼1,d1) � (∼2, d2) ≡ (∼1, d1) � (∼2, d2)∧ (∼2,

80 F. Wang: Efficient verification of timed automata with BDD-like data structures

d2)
� (∼1, d1), (∼1, d1) � (∼2, d2) ≡ (∼2, d2) � (∼1, d1),
and (∼1, d1)� (∼2, d2)≡ (∼2, d2)� (∼1, d1).
We also need the following notations to discuss

the effects of transitivity of constraints. Given two
(∼1, c1), (∼2, c2) ∈ BCA:η , we define (∼, c) = (∼1, c1)+
(∼2, c2):

• If c1+ c2 >CA, then (∼, c) = (<,∞);
• else if c1+ c2 < −CA or c1+ c2 = −CA ∧ (∼1= ‘<’
∨ ∼2= ‘<’), then (∼, c) = (<,−∞);
• else c= c1+c2,∼= ‘≤’ when∼1=∼2= ‘≤’, and∼= ‘<’
when ∼1= ‘<’∨∼2= ‘<’.

3.2 Canonical forms

Many zones may represent the same convex subspace.
Without proper management we can record many zones
representing the same convex subspace and easily blow
up the memory space. A straightforward canonical repre-
sentation of a zone-characterizable convex subspace is its
zone in closure form (called tight form in [9] and shortest-
path closure in [12]). A zone ζ is in closure form if and
only if all its constraint bounds are tight, i.e., for all
sequences of elements x1, . . . , xk ∈X ∪{0}, ζ(x1, xk) �∑
1≤i<k ζ(xi, xi+1), that is, ζ(x1, xk) is no less strict than∑
1≤i<k ζ(xi, xi+1). For convenience, given a zone ζ, we

let ζC be its closure form.
Another candidate for the canonical representation of

zones is the reduced form (called shortest-path reduction
in [12]), which records only the minimum number of con-
straints for each zone according to some policy. A zone ζ is
in its reduced form if each constraint ζ(x, x′)
= (<,∞) is
not derivable from other constraints in ζ. In other words,
ζ is in reduced form if the corresponding state space can
no longer be represented if any nontrivial constraint is
omitted. The reduced form of zones stands at the other
opposite extreme from the closure form, which always
has the largest number of nontrivial constraints. We in-
troduced the reduced form in this paper for performance
comparison. We refer the interested reader to [12, 18] for
an explanation of how to convert a given zone ζ to its zone
in reduced form, in symbols ζR. It is shown in [12] that
ζC = (ζR)C and zones in reduced form can significantly
save space in verification. However, reduced forms are not
unique and can be defined with various policies in choos-
ing the representative for clocks with the same readings
and in traversing a simple cycle.

4 Clock-Restriction Diagram

CRD [18, 19] is not a decision diagram for state space
membership. Instead, it is like a decision diagram for zone
set membership. Each decision atom in a CRD is of the
form x−x′, where x, x′ are zeros or clocks, and the values
of such decision atoms range over BCA:η . Thus a value,

say, (≤ 5), of decision atom x−x′ describes the constraint
of half-space x−x′ ≤ 5. A path from the root to the only
leaf node true in CRD represents a zone. A CRD repre-
sents the set of all states in the zones corresponding to
each of its paths. In CRD, a missing constraint on the
difference of a clock pair, say, x, x′, is interpreted as x−
x′ <∞. From the root node in Fig. 1a, even if no con-
straint is on 0−x1 in the zone of the right path, we still
construct an arc with 0−x1 <∞.

4.1 Definitions

By fixing an evaluation ordering, we can construct a CRD
such as BDD, CDD, or RED. Given a set V of decision
atoms with true ∈ V , an evaluation index Ω over V is
a 1-to-1 onto mapping from V to {0, 1, . . . , |V |−1} such
that Ω(true) = |V |−1. For convenience, for all v, v′ ∈ V ,
we shall write v ≺Ω v′ iff Ω(v) < Ω(v′).

Definition 4. Clock-Restriction Diagram (CRD) Sup-
pose we are given a set of decision atoms V = {x−
x′ | x, x′ ∈X ∪{0}}, an evaluation index Ω over V , and
a timing constant CA:η. true is conveniently represented
as 0− 0. Then, a CRD over V , Ω, and CA:η is a tuple
D = (v, (β1, D1), . . . , (βn, Dn)) with n ≥ 0. The restric-
tions are that v ∈ V such that

• v = true iff n= 0;
• If v
= true, then for all 1≤ i≤ n, βi ∈ BCA:η and Di is
a CRD like (vi, . . .) with v ≺Ω vi;
• If v
= true, then for all 1≤ i < j ≤ n, βi � βj; and
• If v
= true and n= 1, then β1
= (<,∞).

We use “()” to represent the CRD for false. �
In our algorithms, false does not participate in compar-

ison of evaluation orderings among decision atoms.

4.2 Basic set-oriented manipulations on CRD

For convenience of discussion, we may represent a CRD
as the set of zones recorded in it. Definitions of set union
(∪), set intersection (∩), and set exclusion (−) of two zone
sets respectively represented by two CRDs are straight-
forward. For example, given CRDs D1 : {ζ1, ζ2} and D2 :
{ζ2, ζ3}, D1 ∩D2 is the CRD for {ζ2}; D1 ∪D2 is for
{ζ1, ζ2, ζ3}; andD1−D2 is for {ζ1}.
The algorithm for operator ∪ is as follows. The main

procedure calls recursive procedure rec∪(). For conve-
nience of presentation, we may represent a CRD structure
like (x−x′, (β1, B1), . . . , (βn, Bn)) symbolically as (x−
x′, (βi, Bi)1≤i≤n).

set Ψ; /* database of already-processed cases */
∪(B,D) {
if B = false, returnD; else if D = false , return B;
Ψ := ∅; return rec∪(B,D);

}
rec∪(B,D) where B = (xB −x′B, (βi, Bi)1≤i≤n), D =

F. Wang: Efficient verification of timed automata with BDD-like data structures 81

(xD−x′D, (αj , Dj)1≤j≤m) {
if B is true orD is true, return true;
else if ∃H, (B,D,H) ∈Ψ, returnH; (1)
else if xB−x′B ≺Ω xD−x

′
D, construct CRD

H := (xB−x′B, (βi, rec∪(Bi, D))1≤i≤n);
else if xB−x′B �Ω xD−x

′
D, construct CRD

H := (xD−x′D, (αj , rec∪(B,Dj))1≤j≤m);
else {
i := n; j :=m;H := false ;
while i≥ 1 and j ≥ 1, do {
if βi = αj , {
H :=H ∪ (xB−x′B, (βi, rec∪(Bi, Dj)));
i−−; j−−;

}
else if βi � αj ,
{ H :=H ∪ (xB −x′B, (αj , Dj)); j−−; }
else if αj � βi,
{ H :=H ∪ (xB −x′B, (βi, Bi)); i−−; }}

if i≥ 1,H :=H ∪ (xB−x′B, (βh, Bh)1≤h≤i);
if j ≥ 1, H :=H ∪ (xB−x′B, (αk, Dk)1≤k≤j);}
Ψ := Ψ∪{(B,D,H)}; returnH; (2)

}

The procedures for ∩ and − are all similar. In the algo-
rithm, we use set Ψ to record the pairs of substructures
that have been processed in order to take advantage of
the data-sharing capability of BDD-like data structures.
At line (1), if the pair has been processed, we then di-
rectly return the stored result. At line (2), when a new
pair is fully processed with result H, we save H in set Ψ
for future usage. This technique is used throughout all
our procedures. The complexities of these three manipu-
lations can all be done in time O(|B| · |D|).
Given two zones ζ1 and ζ2, ζ1 ∧ ζ2, the space inter-

section of ζ1, ζ2, is a new zone such that for every x, x
′,

ζ1∧ζ2(x, x′) = ζ1(x, x′) if ζ1(x, x′)� ζ2(x, x′); or ζ2(x, x′)
otherwise. Space intersection of two CRDs B and D,
in symbols B ∧D, is a new CRD for {ζ1 ∧ ζ2 | ζ1 ∈ B;
ζ2 ∈D}.

set Ψ;
∧(B,D) {
if B = false orD = false, return false ;
Ψ := ∅; return rec∧(B,D);

}
rec∧(B,D) where B = (xB −x′B , (βi, Bi)1≤i≤n), D =
(xD−x′D, (αj , Dj)1≤j≤m) {
if B is true, returnD; else ifD is true, return B;
else if ∃H, (B,D,H) ∈Ψ, returnH;
else if xB−x′B ≺Ω xD−x

′
D, construct CRD

H := (xB−x′B, (βi, rec∧(Bi, D))1≤i≤n);
else if xB−x′B �Ω xD−x

′
D, construct CRD

H := (xD−x′D, (αj , rec∧(B,Dj))1≤j≤m);
else {

i := n; j :=m;H := false ; Ḃ := false ; Ḋ := false ; . . . (3)
while i≥ 1 and j ≥ 1, do {
if βi = αj , {
Ḃ := Ḃ∪Bi; Ḋ := Ḋ∪Dj ; . (4)
H :=H ∪ (xB −x′B, (βi, rec∧(Bi, Ḋ))∪ (βi, rec∧(Ḃ, Dj)));

i−−; j−−;
}
else if βi � αj , {
while j ≥ 1∧βi � αj , do { Ḋ := Ḋ∪Dj ; j−−;} (5)
H :=H ∪ (xB−x′B, (βi, rec∧(Bi, Ḋ)));}
else if αj � βi, {
while i≥ 1∧αj � βi, do { Ḃ := Ḃ∪Bi; i−−;} (6)
H :=H ∪ (xB−x′B, (αj , rec∧(Ḃ,Dj)));} }

if i≥ 1,H :=H ∪ (xB−x′B, (βh, rec∧(Bh, Ḋ))1≤h≤i);
if j ≥ 1,H :=H ∪ (xB −x′B, (αk, rec∧(Ḃ,Dk))1≤k≤j);}
Ψ := Ψ∪{(B,D,H)}; returnH;

}

In particular, in lines (4), (5), and (6), we use auxiliary
variable Ḃ, Ḋ to record the accumulative spaces that have
to intersect withDj andBi, respectively. Our algorithm is
in time O(|B|2 · |D|2).

4.3 CRD+BDD

It is possible to combine CRD and BDD into one data
structure for fully symbolic manipulation. Since CRD
only has one sink node, true, it is more compatible with
BDD without a FALSE terminal node that is more space
efficient than ordinary BDD. There are two things we
need to take care of in this combination. The first con-
cerns the interpretation of default values of decision
atoms. In BDD, when we find a decision atom is missing
while evaluating decision atoms along a path, the deci-
sion atom’s value can be interpreted as either true or
false. But in CRD, when we find a decision atom x−x′ is
missing along a path, the decision atom is interpreted as
x−x′ <∞.
The second concerns the interpretation ofCRDmanip-

ulations to BDD decision atoms. Straightforwardly, “∪”
and “∩” on BDD decision atoms are respectively inter-
preted as “∨” and “∧” on BDD decision atoms. B−D on
BDD decision atoms is interpreted as B ∧¬D when the
root decision atom of eitherB orD is Boolean. ForB∧D,
the manipulation is just like the Boolean conjunction “∧”.
From now on, we shall call CRD+BDD a combination

structure of CRD and BDD.

5 Comparison of designs of data structures
with previous research

In the design of BDD-like data structures, two aspects
need to be considered, i.e., the domain of decision atoms

82 F. Wang: Efficient verification of timed automata with BDD-like data structures

and the semantics of decision atomvalues. Since BDD-like
data structures exhibit exponential blowupwith respect to
the size of the decision atom domain, in general it is good
to keep the decision atom domain small. The semantics of
decision atomvalues is about how to interpret the values of
decision atoms and has a very subtle effect on space com-
plexity. We believe that it will help the reader to under-
stand this issue if we compareCRDwith earlier data struc-
tures. DBM technology [9] generally handles the complex-
ity of timing constant magnitude very well. Since a DBM
can only represent conjunctive relations and there is no
data sharing among DBMs, when the number of clocks in-
creases, its performancemay degrade rapidly.
As far as we know, the first paper that discusses how

to use BDD to encode zones (actually for asynchronous
systems with clock jitters) was byWang et al. in 1993 [22].
They discussed how to use BDD with decision atoms like
xi+ c ≤ xj + d to model check timed automata. Here c
and d are timing constants with magnitude ≤ CA. Each
decision atom can assume a Boolean truth value. The ap-
proach may suffer from bad performance since the size
of the decision atom domain is already proportional to
the timing constants and thus exponential to the input
size. However, the researchers did not report implementa-
tion and experiments. In 1996, Balarin implemented the
same scheme and reported experiments with approxima-
tion techniques [3]. In 1999, Moller et al. used the same
idea to devise a data structure called DDD and discussed
many manipulation techniques [13, 14].
In 1997, NDD [1] used binary encoding for clock read-

ings and its performance was very sensitive to timing-
constant magnitude.

Fig. 2. Comparison between decision atom semantics of CDD and CRD

Table 1. Performance comparison between CDD and CRD with respect to a benchmark family

Clock counts 2 3 4 5 6 7 9 11 13 15

CDD Node counts 4 12 31 73 162 346 1479 6064 24469 98166
Arc counts 6 23 78 238 663 1721 10056 52427 256674 1210285

CRD Node counts 7 16 29 46 67 92 154 232 326 436
Arc counts 8 18 32 50 72 98 162 242 338 450

RED [16, 17] encodes the ordering of fractional parts
of clock readings in the evaluation ordering and has
achieved very high space efficiency for symmetric systems
with large numbers of clocks and small timing constants.
RED is indeed a canonical representation of TA state
subspaces. But for large timing constants, RED’s per-
formance degrades rapidly.
Finally, we want to compare our CRD with CDD [7],

which is a decision diagram for state space membership
and has a structure very similar to that of CRD. The ma-
jor difference between CRD and CDD is that the arcs
from a node in CDD are labeled with “DISJOINT” in-
tervals, while those from a node in CRD are labeled with
upperbounds, which are structurally overlapping. Due to
this slight difference, for some state spaces, CDD may de-
mand an exponential memory size. For example, we have
the following state space for n clocks:∨
1≤i≤n

∧
1≤j≤n

((i+ j)%n)≤ xj ≤ 2n+((i+ j)%n) . (1)

Here “%” represents the modulo operator. When clock
count n is 2, the compositions of the state spaces in CDD
and in CRD are as in Fig. 2a and b, respectively. As shown
in the figure, the CDD union operation produces a CDD
of three paths out of two zones, while the CRD union
operation basically maintains the structure of the com-
ponent zones. In fact, our experiment shows that the state
space of (1) exhibits an exponential blowup in CDD rep-
resentations with respect to clock counts in Table 1. Such
exponential blowup, we believe, is due to the “disjoint”
requirements of CDD on intervals. Although the require-
ment makes sense in mathematics, it actually contradicts

F. Wang: Efficient verification of timed automata with BDD-like data structures 83

the characteristics of zones, which are noncanonical rep-
resentations of convex state spaces and may intersect
each other. Thus when union operation is performed, in-
tervals will intersect each other into fragments. Such a
fragmentation phenomenon not only blows up the mem-
ory space requirement but also destroys the manipula-
tion results on zones. Such manipulation results can be
generated from closure form computation or from zone-
containment reduction. But since the union operation of
CDD tends to restructure the zones, it may destroy pre-
vious efforts in state space analysis.
To justify our argument, we have also endeavored to

implement some CDDmanipulation procedures and have
carried out an experiment to observe the effect of the rep-
resentation fragmentation phenomenon on representation
complexity. The experiment is reported in Sect. 10.4 and
indeed confirms the effect with respect to independently
developed benchmarks.

6 Efficient detection of contained zones

Another problematic characteristic of zones is that they
can contain one another, and different decision paths in
the BDD extensions may contain one another. Without
the capability to efficiently detect zone-containment rela-
tions, fixpoint algorithms may waste time and space in it-
erating through smaller and smaller state spaces that are
contained by zones already in the BDD-like data struc-
tures. The traditional wisdom of canonical forms calcula-
tion does not address this issue.
To efficiently decide that one zone ζ1 is a subspace of

another zone ζ2, we have to have the following straightfor-
ward containment requirement (SCR) on ζ1 and ζ2:

SCR(ζ1, ζ2) : ∀x, x
′(ζ1(x, x

′)� ζ2(x, x
′)) .

If the containment relation between ζ1 and ζ2 cannot be
decided with SCR, then in general we have to do an all-
pair shortest-path computation, which is very expensive
for BDD-like data structures, to derive the tight bounds
of all clock difference constraints.
We have implemented a procedure slim(D) to elim-

inate all zones contained by other zones in D. The pro-
cedure in turn is built upon another diadic procedure
exclude(B,D), which in turn eliminates all zones in B
that are contained by some zones in D.

set Φ;
exclude(B,D) {
if B = false , return false;
Φ := ∅; return rec_exclude(B,D);

}
rec_exclude(B,D) where B = (xB−x′B, (βi, Bi)1≤i≤n),
D = (xD−x′D, (αj , Dj)1≤j≤m) {
if D is true, return false; else ifD is false, return B;
else if ∃H, (B,D,H) ∈ Φ, returnH;

else if xB−x′B ≺Ω xD−x
′
D, construct

H := (xB −x′B, (β1, rec_exclude(Bi, D))1≤i≤n);
else if xB−x′B �Ω xD−x

′
D, return B;

else {
j :=m;H := false ; Ḋ := false ;
for i := n to 1, do {
while j ≥ 1∧βi � αj , do { Ḋ := Ḋ∪Dj ; j−−;}
H :=H ∪ (xB−x′B, (βi, rec_exclude(Bi, Ḋ)));} }

Φ := Φ∪{(B,D,H)}; returnH;
}

Then the algorithm for slim() is as follows:

set Ψ;
slim(D) { Ψ := ∅; return rec_slim(D); }
rec_slim(D) with D = (x−x′, (αi, Di)1≤i≤m) {
ifD is true or false , returnD;
else if ∃H, (D,H) ∈Ψ, returnH;
else {
i :=m;H := false ; Ḋ := false ;
for i :=m to 1, do {
H :=H ∪ (x−x′, (αi, exclude(rec_slim(Di), Ḋ)));
Ḋ := Ḋ∪Di;

} }
Ψ := Ψ∪{(D,H)}; returnH;

}

However, it bears mentioning that the elimination of
contained zones may not result in smaller CRD+BDDs.
It may happen that with the omission of contained
zones, some part of CRD+BDD structures becomes un-
sharable. In our implementation, we use the procedure
for contained-zone elimination in a flexible way. Every
time we apply the procedure, we shall check if the new
slim CRD+BDD is indeed smaller than the original one.
If it is, then we replace the original one with the new slim
one. In this flexible way, we have found performance im-
provement for many benchmarks. See Sect. 10.2 for our
experimental report.

7 Canonical forms for CRD

We have come up with various canonical forms for zones
(e.g., [18, 19]). Each canonical form demonstrates a differ-
ent space complexity and time complexity in its represen-
tation and manipulation. For conciseness of presentation,
in this paper we only discuss three canonical forms: clo-
sure form, reduced form, and difference-reduced closure
(DRC) form. We adopt the tradition that a CRD is in its
closure (or reduced, or DRC) form if all its zones (repre-
sented by root-leaf paths) are in closure (or reduced, or
DRC, respectively) form.
Closure form and reduced forms are interesting to ex-

periment with since they stand, as it were, at the two
extremes of the spectrum. The closure form tends to make

84 F. Wang: Efficient verification of timed automata with BDD-like data structures

the deepest CRDs, while reduced forms usually give rise
to the widest CRDs. The DRC form is then especially
designed to balance between the width and the depth of
CRDs. In general, DRC has shown better performance
than the others.

7.1 Closure form

Closure form [7, 9] is the most popular canonical form for
DBM. It has been a popular choice for many BDD-like
data structures as well. A nice property of closure form
with SCR() is that it supports fast zone-containment
detection.

Lemma 1. Given two zones ζ, ζ′ in their closure forms
with ζ ⊆ ζ′, SCR(ζ, ζ′) is true.

Proof. Suppose that ζ ⊆ ζ′ but SCR(ζ, ζ′) is false. This
means that there are clocks x1, x2 such that ζ

′(x1, x2)�
ζ(x1, x2). Since ζ and ζ

′ are both tight in their closure
form zone representations, we know that ζ cannot be con-
tained by ζ′. This is a contradiction, and the lemma is
proven. �

For DBM, the closure form can be computed with an
O(|X|3) all-pair shortest-path algorithm. The simple im-
plementation looks like this:

closure(ζ) {
for x ∈X, for x1, x2 ∈X,
if ζ(x1, x)+ ζ(x, x2)� ζ(x1, x2),
ζ(x1, x2) := ζ(x1, x)+ ζ(x, x2);

return ζ;
}

A straightforward implementation of the above proced-
ure with CRD is very inefficient since the decision atoms
in DBM are unordered and randomly accessible while the
ones in CRD can be expensive to access if decision atom
access ordering contradicts the evaluation ordering (Ω).
To make it less costly to implement procedure closure()
with CRD, we choose to respect the evaluation ordering
in CRDs and rewrite the procedure as follows:

closure≺(ζ) {
for x ∈X, {
for x1, x2 ∈X such that x1−x≺Ω x−x2,
if ζ(x1, x)+ ζ(x, x2)� ζ(x1, x2),
ζ(x1, x2) := ζ(x1, x)+ ζ(x, x2);

for x1, x2 ∈X such that x1−x�Ω x−x2,
if ζ(x1, x)+ ζ(x, x2)� ζ(x1, x2),
ζ(x1, x2) := ζ(x1, x)+ ζ(x, x2);

}
return ζ;

}

Another observation is that the if statements can be
implemented with the intersection operation, i.e., ζ :=

ζ ∧{x1−x2(ζ(x1, x)+ ζ(x, x2))}, where x1−x2(∼, c) is
shorthand for x1−x2 ∼ c.
For convenience, given α = (∼, c), we use the spe-

cial notation x−x′α to represent the CRD of (x−
x′, ((∼, c), true)) for characterizing subspace x−x′ ∼ c.
The algorithm for the procedure with CRDs follows.

closure≺(D)
{ for x ∈X,D := xtive(D,x); returnD; }
clock LEFT, MID, RIGHT; upperbound β; set Ψ,Φ;
xtive(D,x)
{ Ψ := ∅; MID := x; return rec_xtive(D); }
rec_xtive(D) with D = (x−x′, (αi, Di)1≤i≤m) {
ifD = true orD = false , returnD;
else if ∃H, (D,H) ∈Ψ, returnH;
H := false ;
if x is MID, for i := 1 to n, {
D′ := rec_xtive(Di); RIGHT := x

′; β := αi; Φ := ∅;
H :=H ∪ (x−x′αi∧rec_xtive_right(D′)); (7)

}
else if x′ is MID, for i := 1 to n, {
D′ := rec_xtive(Di); LEFT := x; β := αi; Φ := ∅;
H :=H ∪ (x−x′αi∧rec_xtive_left(D′)); (8)

}
elseH :=

⋃
1≤i≤n(x−x

′αi∧rec_xtive(Di));
Ψ := Ψ∪{(D,H)}; returnH;

}
rec_xtive_left(D) withD = (x−x′, (αi, Di)1≤i≤m) {
ifD is true or false, returnD;
else if ∃H, (D,H) ∈ Φ, returnH;
if x is MID,

H :=
⋃
1≤i≤n

(
x−x′αi∧LEFT−x′(β+αi)
∧rec_xtive_left(Di)

)
; . . . (9)

else
H :=

⋃
1≤i≤n (x−x

′αi∧rec_xtive_left(Di)); . (10)

Φ := Φ∪{(D,H)}; returnH;
}
rec_xtive_right(D) with D = (x−x′, (αi, Di)1≤i≤m) {
ifD is true or false, returnD;
else if ∃H, (D,H) ∈ Φ, returnH;
if x′ is MID,

H :=
⋃
1≤i≤n

(
x−x′αi∧x−RIGHT(β+αi)
∧rec_xtive_right(Di)

)
; . .(11)

else
H :=

⋃
1≤i≤n(x−x

′αi∧rec_xtive_right(Di)); (12)
Φ := Φ∪{(D,H)}; returnH;

}

In the outer recursion with procedure rec_xtive(), we
traverse through the given CRD to pick up instantiations
of decision atom x1−x. Once such a decision atom has
been instantiated, we enter the inner procedure calls with
rec_xtive_left() and rec_xtive_right() to pick up
instantiations of decision atom x−x2.

F. Wang: Efficient verification of timed automata with BDD-like data structures 85

Note that in lines (7)–(12) we use operator “∧” in-
stead of notations like (x−x′, (βi, Bi)1≤i≤n). When we
use the latter, we have to make sure that all decision
atoms in B1, . . . , Bn follow x−x′. But when deducing
new constraints on x−x′′ transitively from constraints on
x−x′ and x′−x′′, respectively, it is not always true that
x−x′′ ≺ x−x′ and x−x′′ ≺ x′−x′′.

7.2 Reduced form

Since a zone in its reduced form always has the least num-
ber of constraints among all representations, a CRD in
reduced form (reduced CRD for short) always has the
shortest depth among all CRDs for the same set of zones.
Note again that reduced CRD is not a canonical rep-

resentation of dense-time state space. Nevertheless, on
average, reduced CRD can increase the possibility for
data sharing to a greater extent than other canonical
forms [1, 7, 16, 17]. Here is an example that shows that
closure CRDmay prevent data sharing.We may have two
zones represented by (x1−x2 < 3∧x3−x1 ≤ 6)∨ (x1−
x4 ≤ 5∧x3−x1 ≤ 6). The two zones share constraint x3−
x1 ≤ 6. The two zones are already represented in their
reduced forms. Their closure forms are (x1−x2 < 3∧
x3−x1 ≤ 6∧x3−x2 < 9) and (x1−x4 ≤ 5∧x3−x1 ≤ 6∧
x3−x4 ≤ 11), respectively. The reduced CRD and closure
CRD of the set of the two zones are depicted in Figs. 3a
and b. As shown in the figure, because of the evaluation
ordering, the closure CRD does not allow more data shar-
ing than the reduced CRD.
However, reduced CRDs can be bad at helping us de-

tect the containment relation between zones (paths in the
CRDs) and may hurt in the width of the CRDs. For ex-
ample, we may have a CRD with the following two zones:

(x1−x3 ≤ 0∧x3−x2 ≤−2∧x2−x4 ≤−3∧x4−x1 ≤ 5)

∨ (x1−x2 ≤−2∧x2−x4 ≤−3∧x4−x1 ≤ 5).

Fig. 3. Comparisons between closure CRD and reduced CRD

Or equivalently, the two zones can be represented as

(x1 = x3∧x1 = x2−2∧x2 = x4−3)

∨(x1 = x2−2∧x2 = x4−3).

As can be seen, the zone in the second line is really a su-
perset of the one in the first line. One reduced form of
the CRD is shown in Fig. 3c, which has two paths while
the closure CRD should have only one path. In general,
it is not possible to decide the zone-containment rela-
tion without carrying out theO(|X|3) shortest-path algo-
rithm in some way.
To implement reduced form with CRDs is a very com-

plex task. We shall not present its normalization algo-
rithm with CRD here. The reader is referred to [18, 19] for
more information.

7.3 Difference-reduced closure (DRC) form

A clock constraint x−x′ ∼ c is a magnitude constraint
if either x or x′ is clock zero, i.e., the constant of zero.
Magnitude constraints are important because in our ex-
perience most of the timing constraints appear in the
model descriptions and the specifications as magnitude
constraints. A clock constraint that is not a magnitude
constraint is called a difference constraint. The difference-
reduced closure (DRC) form is identical to closure form
except that a difference constraint is omitted from a zone
representation if the difference constraint is magnitude
redundant, i.e., it can be derived from two magnitude
constraints in the same zone. Apparently, with the DRC
form, we may have less constraints in the representation
than with closure form. But in the meantime, we still have
preserved many magnitude constraints for the efficient
decision of invariance conditions, triggering conditions,
and specification correctness. But the following lemma
shows that it can be difficult to check zone containment
with the DRC form.

86 F. Wang: Efficient verification of timed automata with BDD-like data structures

Lemma 2. Given two zones ζ, ζ′ in their DRC forms
with ζ ⊆ ζ′, SCR(ζ, ζ′) may not be true.

Proof. Consider ζ = {0−x1 ≤ 0, x1− 0 ≤ 3, 0−x2 ≤ 0}
and ζ′ = {0−x1 ≤ 0, 0−x2 ≤ 0, x1−x2 ≤ 3}. They are
both in the DRC form and ζ ⊆ ζ′, but they do not satisfy
SCR(ζ, ζ′). �

Thus to choose between the closure form and the
DRC form becomes a compromise decision between the
width and depth of CRDs. In Sect. 10.6, we shall see
that in many cases it pays off to use the DRC form.
The algorithm of DRC normalization uses procedure
rm_ineq(D,x−x′, α) to eliminate identified redundant
constraints. For each zone ζ inD, if α� ζ(x, x′), then the
procedure removes constraints for difference x−x′ from ζ
(or its equivalent, replaced by x−x′ <∞). The algorithm
is as follows.

upperbound β; clock LEFT, RIGHT; set Ψ;
rm_ineq(D,x−x′, α){
ifD is false , returnD;
LEFT= x; RIGHT= x′;
β = α; Ψ := ∅; return rec_rm_ineq(D);

}
rec_rm_ineq(D) w. D = (x−x′, (αi, Di)1≤i≤m) {
ifD is true or LEFT−RIGHT≺ x−x′, returnD;
else if ∃H, (D,H) ∈Ψ, returnH;
H := false;
if x is LEFT and x′ is RIGHT, for i := 1 to n, do
if αi � β, H :=H ∪ (x−x′, (αi, rec_rm_ineq(Di)));
elseH :=H ∪rec_rm_ineq(Di);
elseH := (x−x′, (αi, rec_rm_ineq(Di))1≤i≤n);
Ψ := Ψ∪{(D,H)}; returnH;

}

To make an efficient implementation of DRC, we need to
respect the evaluation ordering in the recursive proced-
ure. Thus, in the evaluation orderings discussed in Sect. 8,
we have made sure that for any given clocks x, x′ ∈X,
0−x′ ≺Ω x−x′ and x−0≺Ω x−x′. With this restriction,
the algorithm of DRC normalization is as follows.

clock LEFT, RIGHT; upperbound β; set Ψ,Φ;
DRC(D){
D := rec_DRC(D); Ψ := ∅;
return rec_DRC(closure≺(D));

}
rec_DRC(D) withD = (x−x′, (αi, Di)1≤i≤m) {
ifD is true or false , returnD;
else if ∃H, (D,H) ∈Ψ, returnH;
H := false;
if x is 0, for i := 1 to n, {
D′ := rec_DRC(Di); RIGHT := x

′; β := αi; Φ := ∅;
H :=H ∪ (x−x′, (αi, rec_DRC_right(D′)));

}

else if x′ is 0, for i := 1 to n, {
D′ := rec_DRC(Di); LEFT := x; β := αi; Φ := ∅;
H :=H ∪ (x−x′, (αi, rec_DRC_left(D′)));

}
elseH := (x−x′, (αi, rec_DRC(Di))1≤i≤n);
Ψ := Ψ∪{(D,H)}; returnH;

}
rec_DRC_left(D) withD = (x−x′, (αi, Di)1≤i≤m) {
ifD is true, returnD;
else if ∃H, (D,H) ∈ Φ, returnH;
H := false ;
if x is 0, for i := 1 to n,
H :=H ∪ (x−x′, (αi, rm_ineq(rec_DRC_left(Di),
LEFT−x′, β+αi)));

elseH := (x−x′, (αi, rec_DRC_left(Di))1≤i≤n);
Φ := Φ∪{(D,H)}; returnH;

}
rec_DRC_right(D) withD = (x−x′, (αi, Di)1≤i≤m) {
ifD is true, returnD;
else if ∃H, (D,H) ∈ Φ, returnH;
H := false ;
if x′ is 0, for i := 1 to n,
H :=H ∪ (x−x′, (αi, rm_ineq(rec_DRC_right(Di),
x−RIGHT, β+αi)));

elseH := (x−x′, (αi, rec_DRC_right(Di))1≤i≤n);
Φ := Φ∪{(D,H)}; returnH;

}

8 Evaluation ordering in CRD+BDD

The manipulation efficiency of BDD-like data structures
is strongly related to decision atom evaluation order-
ing. Traditional wisdom says that we should place two
strongly related decision atoms close to each other in
the ordering. We consider the following three possibilities
for evaluation ordering to test how CRD+BDD reacts to
evaluation orderings.

• B, with no interleaving between BDD decision atoms
and CRD decision atoms in the ordering.
• H, only with interleaving between BDD decision atoms
and CRD magnitude decision atoms.
• F, with full interleaving between BDD decisions and
CRD decision atoms.

When interleaving is implemented, we consider the prece-
dence of process identifiers and system variable decla-
ration ordering to define the interleaving ordering. Our
experiments show performance data that are very com-
patible with the traditional wisdom. That is, F is more
efficient than H, which in turn is more efficient than B.
The definition of the three orderings is quite tedious. For
the sake of presentation flow, we have left the details of
the three ordering definitions to the appendix.

F. Wang: Efficient verification of timed automata with BDD-like data structures 87

9 Safety analysis with CRD

We need two basic procedures, one for the computation
of weakest precondition of transitions and the other for
that of backward time progression. These two procedures
are important in the symbolic construction of backward
reachable state space representations. Various presenta-
tions of the two procedures can be found in [11, 16–19,
21]. Given a state space representation η and a transi-
tion e, the first procedure, xtion_bck(η, e), computes the
weakest precondition

• in which every state satisfies the invariance condition
imposed by µ() and
• from which we can (forwardly) transit to states in η
through e.

The second procedure, time_bck(η), computes the space
reprsentation of states

• from which we can go to states in η simply by time pas-
sage and
• every state in the time passage that also satisfies the
invariance condition imposed by µ().

With the two basic procedures, we can construct a sym-
bolic backward reachability procedure as in [11, 16–
19, 21]. Computationally, this backward reachable state
space from the goal state η can be defined as the solu-
tion Y to the following least fixpoint equation:

Y = η∪time_bck

(⋃
e∈T

xtion_bck(Y, e)

)
,

i.e., lfpY.
(
η∪time_bck(

⋃
e∈T xtion_bck(Y, e))

)
. Then

the safety analysis problem SA(A, η) can be answered
with the unsatisfiability of

I ∧lfpY.

(
(¬η)∪time_bck

(⋃
e∈T

xtion_bck(Y, e)

))
.

Recall that I is the initial condition of the TA in Defin-
ition1. Inthe followingdiscussion,weshalldiscuss thealgo-
rithm for implementing these two procedureswithCRDs.

9.1 xtion_bck() for weakest precondition
of discrete transitions

Given a discrete transition e from mode q to mode q′ such
that π(e) can be written as a sequence of clock-reset oper-
ations to clocks x1, . . . , xn, the operation of the transition
can be visualized as the following successive steps:

(1) Invariance condition µ(q) of the source mode and trig-
gering condition τ(e) are checked.

(2)Clocks x1, . . . , xn are reset successively.
(3) Invariance condition µ(q′) of the destination mode is
then checked.

To compute the weakest precondition on a state pred-
icate η through this transition, we have to operate on

these steps in a backward fashion. Steps (1) and (3)
can be performed with η ∧µ(q)∧ τ(e) and η ∧µ(q′),
respectively, and we already know how to perform a
∧-operation on CRD+BDD.
Step (2) can be performed with a sequence of weakest

precondition analysis for the individual reset operations.
For reset operation x := 0, the weakest precondition algo-
rithm follows.

reset_clock(D,x)
{ return rm_clock(xtive(D ∧ x = 0, x), x); }

D∧x = 0 is for the enforcing of the postcondition after
the reset operation. Procedure rm_clock() removes every
inequality related to clock x from its argument state pred-
icate since there is no restriction on the value of clock x
before the reset operation just by looking at this individ-
ual reset operation. However, before the removal of all
inequalities related to clock x, we must make sure that all
other constraints deducible from constraints on x will be
preserved with procedure xtive(D,x).
According to the explanation above, we now need to

design algorithms for procedure rm_clock().
Geometrically, given a state predicate η, rm_clock(η, xi)
is the projection of η on the space of X−{xi}. The algo-
rithm for the procedure with CRDs is as follows.

set Ψ;
rm_clock(D,xi)
{ Ψ := ∅; MID := xi; return rec_rm_clock(D); }
rec_rm_clock(D) withD = (x−x′, (αi, Di)1≤i≤m) {
ifD is true or false , returnD;
else if ∃H, (D,H) ∈Ψ, returnH;
else if either x or x′ is MID,
H :=

⋃
1≤i≤n rec_rm_clock(Di);

elseH := (x−x′, (αi, rec_rm_clock(Di))1≤i≤n);
Ψ := Ψ∪{(D,H)}; returnH;

}

9.2 time_bck() for weakest precondition of time progress

The important technique presented in [11] for the cal-
culation of timed weakest precondtion utilizes an exis-
tentially quantified dense variable δ ≥ 0 to reason with
the effect of time progress. For example, we may have
η = x1 ≤ 3∧x2 > 4∧x3 > 1∧x1−x2 ≤ 6. The weakest
timed precondition from η characterizes the state space
in which a state can progress to a state in η without dis-
crete transitions. Such states can be characterized by the
following formulas:

x1 ≥ 0∧x2 ≥ 0∧x3 ≥ 0

∧∃δ

(
δ ≥ 0∧x1+ δ ≤ 3∧−(x2+ δ)<−4
∧−(x3+ δ)<−1∧ (x1+ δ)− (x2+ δ)≤ 6

)
,

88 F. Wang: Efficient verification of timed automata with BDD-like data structures

which is equivalent to

x1 ≥ 0∧x2 ≥ 0∧x3 ≥ 0

∧∃δ

(
0≤ δ∧ δ ≤ 3−x1∧−x2+4< δ
∧−x3+1< δ∧x1−x2 ≤ 6

)
.

δ is introduced into the formulas by replacing every clock,
say, x1, with x1+ δ.
To get rid of the δ, we pretty much use the same

technique for the weakest precondition of an assignment
statement like xi := 0 in the last subsubsection, except
that now the role of xi is replaced by that of δ. For sim-
plicity, we assume that only≤ appears. In general, we are
given a constraint like

∃δ ≥ 0


η∧ ∧

1≤i≤n

Ei+ ci ≤ δ∧
∧

1≤j≤m

δ ≤E′j + c
′
j


 ,

where η is independent of δ. With the inequality transitiv-
ity of real numbers, the constraint is equivalent to

η∧
∧

1≤i≤n,1≤j≤m

Ei+ ci ≤E
′
j + c

′
j .

The equivalence relies on the dense nature of real num-
bers. Thus the timed weakest precondition for η is

x1 ≥ 0∧x2 ≥ 0∧x3 ≥ 0∧0≤ 3−x1

∧ −x2+4< 3−x1∧−x3+1< 3−x1∧x1−x2 ≤ 6,

which is equivalent to

x1 ≥ 0∧x2 ≥ 0∧x3 ≥ 0∧x1 ≤ 3

∧x1−x2 <−1∧x1−x3 < 2∧x1−x2 ≤ 6 .

The derivation just mentioned is okay with DBM and
has resulted in efficient implementations with DBM. But
for BDD-like data structures, the method is likely to in-
cur extra decision atoms involving δ, e.g., 0− δ, x1+ δ,
−x2− δ, etc. and greatly increase the CPU time and
memory consumption. In the following, we shall present
a simplified derivation of the timed weakest precondition.
The above-mentioned equivalence relation, that is,

∃δ ≥ 0


η∧ ∧

1≤i≤n

Ei+ ci ≤ δ∧
∧

1≤j≤m

δ ≤E′j + c
′
j




iff η∧
∧

1≤i≤n,1≤j≤m

Ei+ ci ≤E
′
j + c

′
j ,

can be rewritten as

∃δ ≥ 0

(
η∧
∧
1≤i≤nEi− δ ≤−ci

∧
∧
1≤j≤m−Ej+ δ ≤ c

′
j

)

iff η∧
∧

1≤i≤n,1≤j≤m

Ei−Ej ≤ c
′
j− ci .

Two advantages of this new formulation are:

1. Only ≤ and < are now used. This makes the repre-
sentation more compatible with our CRDs with only
upperbounds.

2. Now δs are cancelled by adding a positive δ with an-
other negative δ.

But where do those positive δs come from? They only
come from constraints like x ≤ c. Where do those nega-
tive δs come from? They only come from constraints like
−x′ ≤ c and 0− δ ≤ 0. For inequalities like x−x′ ≤ c, the
positive and negative δs cancel each other out and never
really appear. Thus our key observation is that to cancel
the δs, we only have to perform the following two steps:

• Pairwisely match inequalities like x ≤ c and −x′ ≤ c′

and add them together to yield x−x′ ≤ c+ c′.
Reasoning: x ≤ c will give rise to x+ δ ≤ c while
−x′ ≤ c will give rise to−x′− δ ≤ c′. Thus the addition
of the two will give rise to x−x′ ≤ c+ c′ and cancel the
δs.
• Remove any constraints of the form −x′ ≤ c′ from the
zone.
Reasoning: x≤ c will give rise to x+ δ ≤ c and later
be transformed back to x ≤ c with the addition of
−δ ≤ 0. But −x′ ≤ c′, which gives rise to −x′− δ ≤ c′,
will be gone with the quantification.

Thus time_bck(D) can actually be implemented with

rm_lbs(xtive(D, 0)) .

Here we can reuse procedure preserve_xtive() because
the procedure can exactly match every pair of x−0α and
0−x′α′ and deduce x−x′(α+α′).
Procedure rm_lbs() only removes inequalities like

−x′ ≤ c′. It is implemented as follows.

set Ψ;
rm_lbs(D) { Ψ := ∅; return rec_rm_lbs(D); }
rec_rm_lbs(D) withD = (x−x′, (αi, Di)1≤i≤n), {
ifD is true or false, returnD;
else if ∃H, (D,H) ∈Ψ, returnH;
else if x is 0, H :=

⋃
1≤i≤n rec_rm_lbs(Di);

elseH := (x−x′, (αi, rec_rm_lbs(Di))1≤i≤n);
Ψ := Ψ∪{(D,H)}; returnH;

}

10 Implementation and experiments

Our newest implementation of CRD technology is in ver-
sion 4.2 of the Red tool. Red 4.2 now supports TCTL
model checking/simulation of real-time systems with
multiprocesses, counterexample generation, forward/
backward reachability analysis, and deadlock detection.
The recent technical achievement of our implementation,

F. Wang: Efficient verification of timed automata with BDD-like data structures 89

Red, includes numerical coverage estimation in sym-
bolic simulation of dense-time systems [24] and speedup
techniques for greatest fixpoint evaluation [23]. The new
version, together with benchmarks, is available at

http://cc.ee.ntu.edu.tw/∼val/red.

It supports options for forward/backward reachability
analysis, deadlock detection, and counterexample gen-
eration. Reduction by elimination of inactive read-write
system variables [21] is always executed.1

We have carried out six experiments to see in real-
ity how well various strategies for CRD perform. We use
the following shorthand notations when referring to these
strategies: Fw (forward reachability analysis), Bk (back-
ward reachability analysis, by default), NC (without con-
tained zone elimination, see Sect. 6, the default is to run
with contained zone elimination), and evaluation order-
ings B, H, F (as defined in Sect. 8). We use six bench-
marks to compare the performance:

• Fischer’s timed mutual exclusion algorithm [3, 16, 21]:
The algorithm relies on a global lock and a local clock
per process to control access to the critical section.
Two timing constants used are 10 and 19. The property
to be verified is that at any moment, no more than two
processes are in the critical section.
• CSMA/CD benchmark [25]: Basically, this is the
Ethernet bus arbitration protocol with the idea of
collision-and-retry. The timing constants used are 26,
52, and 808. We want to verify that, at any moment, at
most one process is in transmission mode for≥ 52 time
units.
• FDDI token-ring mutual exclusion protocol [5, 10]: We
need one process to model the network and the other
processes to model the stations. For each station pro-
cess, two local clocks are needed. Each station pro-
cess can use the token to transmit messages in the
mandatory synchronous mode and the optional asyn-
chronous mode. The asynchronous mode is optional
because a station process can do it only when, first, it
has finished with synchronous mode transmission and,
second, it detects that in the last cycle of token pass-
ing, all processes together have not used much network
time. The biggest timing constant used is 50*m+20,
where m is the number of stations. We want to verify
that, at any moment, at most one station is holding the
token.
• Real-time operating system (PATHOS) [3]: In the sys-
tem, each process runs with a distinct priority in
a period equal to the number of processes. The larg-
est timing constant used is equal to the number of
processes. We want to verify that no deadlines will be
missed.

1 A system variable is inactive in a state iff it is not read in
any computation from the state before its content is overwritten.
Contents of inactive system variables can be omitted from state
information without affecting the computations.

• Safeness of a leader-election algorithm: Each process
has a local pointer parent and a local clock. Each pro-
cess initially comes with its parent = NULL. Then
a process with its parent = NULL may broadcast its
request to be adopted by a parent. Another process
with its parent = NULL may respond. Then the pro-
cess with the smallest identifier will become the parent
of the other process in the requester-responder pair.
The largest timing constant used is 2. We want to ver-
ify that, at any moment, at least one process has no
parent.
• Bounded liveness of a leader-election algorithm: This
includes the same systems used in the fifth benchmark.
But we assume that a process with parent = NULL
will finish an iteration of the algorithm in two time
units. We want to verify that, after 2�log2m� time
units, where m is the number of processes, the algo-
rithm will finish.

In Sect. 10.1, we report the performance of Red 4.2 with
the three canonical forms in both forward and backward
reachability analyses. In Sect. 10.2, we report the effect of
contained-zone elimination. In Sect. 10.3, we report the
performances of Kronos, UPPAAL2k, and Red 4.2 with
respect to timing constant magnitudes. In Sect. 10.4, we
report our experiment with the effect of representation
fragmentation. In Sect. 10.5, we report the experiment
with different evaluation orderings. In Sect. 10.6, we com-
pareRed 4.2 with Kronos and UPPAAL2k.
Data are collected on a Pentium IV 1.7GHz with

256MB memory running LINUX. Execution times are
collected for Kronos and UPPAAL2k, while times and
memory (for data structures) are collected for Red.
“s” and “m”, respectively, mean seconds and minutes
of CPU time, “k” means kilobytes of memory space,
“O/M” means “out-of-memory”, while “N/A” means
“not available”.

10.1 Comparison of forward/backward analyses
and the three canonical forms

The first experiment compares the performance, with re-
spect to number of clocks, of forward/backward analyses
and the three canonical forms; evaluation ordering F is
used throughout all runs in this experiment. The per-
formance data in Table 2 give rise to two observations.

• Backward analysis performs better than forward an-
alysis. We have examined the CRDs generated in the
iterations of the least fixpoint evaluation in Sect. 9.
We found that, in general, backward analysis results
in less enumeration of the ordering among clock read-
ings than forward analysis. With fewer constraints for
those total ordering among clock readings generated,
more data sharing is now possible with BDD-like data
structures.
• DRC in general performs better than the other two
canonical forms. By examining the CRDs, we found

90 F. Wang: Efficient verification of timed automata with BDD-like data structures

Table 2. Performance data of scalability with respect to various strategies

Benchmarks m #clocks red 4.2

Fw+Reduced Fw+Closure Fw+DRC Bk+Reduced Bk+Closure Bk+DRC

Fischer’s 3 3 0.91s/25k 0.19s/25k 0.18s/21k 0.51s/18k 0.16s/16k 0.15s/15k

mutual 4 4 9.99s/80k 1.02s/111k 0.94s/86k 3.19s/48k 0.83s/41k 0.75s/32k

exclusion 5 5 125.51s/338k 8.42s/581k 6.63s/416k 12.86s/111k 3.23s/87k 2.62s/70k

(m 6 6 2699.89s/1813k 114.51s/3214k 87.70s/2116k 43.45s/246k 10.31s/184k 7.38s/126k

processes 7 7 49133.37s/15003k 1255.91s/21247k 947.16s/13459k 136.36s/572k 30.49s/390k 18.87s/206k

) 8 8 O/M O/M 11736.05s/97037k 460.32s/1363k 86.76s/816k 42.81s/312k

9 9 O/M O/M O/M 1507.53s/3194k 230.94s/1709k 95.51s/445k

10 10 O/M O/M O/M 4950.02s/7415k 577.42s/3755k 194.32s/610k

11 11 O/M O/M O/M 15983.33s/16984k 1435.55s/8780k 372.00s/1171k

12 12 O/M O/M O/M 52912.10s/38514k 3626.67s/20395k 717.62s/2440k

13 13 O/M O/M O/M O/M 9584.88s/40991k 1339.85s/5186k

CSMA/CD 3 4 20.32s/70k 0.31s/77k 0.29s/74k 0.45s/49k 0.08s/49k 0.06s/49k

(1 bus+ 4 5 427.08s/379k 2.47s/371k 2.15s/344k 1.54s/83k 0.18s/82k 0.17s/82k

m senders 5 6 12519.37s/2313k 32.75s/2402k 26.10s/1861k 4.82s/166k 0.42s/166k 0.41s/166k

) 6 7 over 2313m 410.79s/16729k 328.73s/10865k 17.40s/348k 1.00s/310k 0.92s/310k

7 8 N/A 6757.75s/124750k 4962.52s/68209k 62.43s/745k 2.40s/617k 2.05s/617k

8 9 N/A O/M O/M 239.17s/1574k 5.91s/1424k 4.59s/1424k

9 10 N/A O/M O/M 849.55s/3318k 14.71s/3280k 11.06s/3280k

10 11 N/A O/M O/M 2960.76s/6991k 37.66s/7485k 26.46s/7485k

11 12 N/A O/M O/M 9443.45s/14743k 100.95s/16973k 67.76s/16973k

12 13 N/A O/M O/M 28543.34s/31142k 288.92s/38197k 204.11s/38197k

FDDI 11 23 0.36s/136k 0.37s/136k 0.38s/136k 0.17s/84k 0.17s/84k 0.17s/84k

token-ring 12 25 0.53s/139k 0.52s/139k 0.54s/139k 0.31s/139k 0.30s/139k 0.30s/139k

passing 20 41 2.03s/503k 2.00s/503k 2.03s/503k 0.67s/258k 0.67s/258k 0.68s/258k

(1 ring+ 30 61 7.17s/1317k 7.17s/1317k 7.18s/1317k 1.98s/618k 1.96s/618k 1.96s/618k

m 40 81 17.95s/1746k 18.34s/1746k 18.34s/1746k 16.29s/1746k 16.02s/1746k 15.67s/1746k

stations 50 101 36.83s/2934k 36.88s/2934k 36.59s/2934k 38.63s/2934k 38.63s/2934k 38.36s/2934k

) 60 121 65.95s/4539k 65.32s/4539k 67.82s/4539k 81.68s/4539k 80.51s/4539k 81.57s/4539k

70 141 106.29s/6599k 105.95s/6599k 106.41s/6599k 151.49s/6599k 151.80s/6599k 150.71s/6599k

pathos 3 6 5.14s/54k 0.28s/62k 0.28s/60k 0.23s/28k 0.04s/17k 0.04s/17k

(m 4 8 173.32s/434k 5.69s/462k 5.10s/450k 1.87s/55k 0.18s/36k 0.15s/36k

processes 5 10 18333.51s/10069k 180.24s/5287k 163.61s/5150k 13.83s/101k 0.66s/75k 0.53s/70k

) 6 12 over 2436m 6061.00s/83289k 5515.89s/81757k 100.20s/222k 2.94s/224k 1.97s/133k

7 14 N/A O/M O/M 1029.59s/486k 16.86s/712k 9.88s/375k

8 16 N/A O/M O/M 9980.55s/1198k 97.05s/2309k 51.86s/1112k

9 18 N/A O/M O/M 80303.34s/3291k 503.76s/74722k 265.04s/3361k

10 20 N/A O/M O/M O/M 2550.62s/23899k 1291.95s/10238k

11 22 N/A O/M O/M O/M 13425.09s/75897k 6251.12s/31204k

leader 3 3 0.04s/22k 0.04s/22k 0.03s/22k 0.05s/32k 0.05s/32k 0.05s/32k

(m 4 4 0.09s/37k 0.09s/37k 0.09s/37k 0.15s/72k 0.16s/72k 0.16s/72k

processes 5 5 0.21s/55k 0.21s/55k 0.21s/55k 0.51s/139k 0.49s/139k 0.52s/139k

) 6 6 0.41s/73k 0.41s/73k 0.42s/73k 1.68s/243k 1.63s/243k 1.66s/243k

7 7 0.76s/93k 0.74s/93k 0.75s/93k 5.57s/395k 5.39s/395k 5.61s/395k

8 8 1.43s/123k 1.41s/123k 1.43s/123k 19.92s/606k 19.90s/606k 19.26s/606k

9 9 2.60s/163k 2.39s/163k 2.30s/163k 52.02s/891k 52.73s/891k 51.73s/891k

10 10 3.61s/212k 3.65s/212k 3.60s/212k 122.84s/1261k 123.00s/1261k 123.80s/1261k

11 11 5.41s/270k 5.37s/270k 5.47s/270k 265.20s/1758k 267.27s/1758k 260.82s/1758k

12 12 7.92s/340k 7.92s/340k 7.79s/340k 533.19s/2816k 531.53s/2816k 532.21s/2816k

13 13 11.09s/420k 11.20s/420k 11.39s/420k 1017.94s/4732k 1015.71s/4732k 1028.42s/4732k

14 14 15.98s/513k 15.79s/513k 16.03s/513k 1893.71s/7927k 1889.36s/7927k 1893.06s/7927k

lbound 3 4 1.03s/104k 0.18s/104k 0.20s/104k 1.05s/40k 0.18s/45k 0.12s/39k

(m 4 5 14.26s/172k 1.50s/161k 1.43s/157k 16.40s/112k 1.47s/151k 0.98s/102k

processes 5 6 137.67s/547k 13.86s/541k 11.07s/465k 250.41s/371k 16.80s/563k 6.79s/308k

) 6 7 875.61s/1339k 103.44s/1935k 80.43s/1452k 3077.09s/1271k 149.52s/1909k 44.95s/934k

7 8 3928.86s/2930k 634.77s/7142k 477.76s/5305k 26926.49s/4237k 965.46s/5982k 228.41s/2714k

8 9 14734.04s/5877k 4357.20s/28948k 3053.32s/17741k 190045.81s/11840k 5166.10s/17174k 1017.41s/7593k

9 10 48262.21s/10934k 29586.74s/123103k 19793.96s/72137k over3756m 25536.59s/47760k 4271.08s/20493k

that DRC results in better balance between CRD
width and depth than closure and reduced forms.
Between the closure form and the reduced form, the
former performs better than the latter. This is because
our algorithm for reduced form construction is quite
complicated. In general, to compute the reduced form,
closure form has to be constructed in some way before-

hand. This suggests that the reduced form by defin-
ition cannot perform better than the closure form.

We found that backward analysis in combination with
DRC performs better than the rest. So in the follow-
ing discussion, we shall choose this combination to make
more comparisons.

F. Wang: Efficient verification of timed automata with BDD-like data structures 91

10.2 Performance with respect
to zone-containment operations

In the second experiment, we want to check if our effort
in eliminating contained zones really pays off. We choose

Table 3. Performance data of scalability with respect to zone-containment operations

Benchmarks m #clocks red 4.2
Fw+NC Fw Bk+NC Bk

Fischer’s 3 3 0.17s/24k 0.18s/21k 0.15s/14k 0.15s/15k
mutual 4 4 0.93s/114k 0.94s/86k 0.73s/33k 0.75s/32k
exclusion 5 5 10.68s/609k 6.63s/416k 2.61s/70k 2.62s/70k
(m 6 6 196.49s/4810k 87.70s/2116k 7.63s/126k 7.38s/126k
processes 7 7 3240.72s/45584k 947.16s/13459k 17.94s/206k 18.87s/206k
) 8 8 O/M 11736.05s/97037k 42.38s/312k 42.81s/312k

9 9 O/M O/M 92.29s/445k 95.51s/445k
10 10 O/M O/M 185.33s/610k 194.32s/610k
11 11 O/M O/M 375.91s/1171k 372.00s/1171k
12 12 O/M O/M 725.00s/2445k 717.62s/2440k
13 13 O/M O/M 1349.26s/5169k 1339.85s/5186k

CSMA/CD 3 4 0.28s/76k 0.29s/74k 0.09s/49k 0.06s/49k
(1 bus+ 4 5 2.16s/414k 2.15s/344k 0.16s/82k 0.17s/82k
m senders 5 6 28.09s/2391k 26.10s/1861k 0.41s/166k 0.41s/166k
) 6 7 366.70s/14539k 328.73s/10865k 0.89s/310k 0.92s/310k

7 8 6361.45s/93419k 4962.52s/68209k 2.09s/617k 2.05s/617k
8 9 O/M O/M 5.04s/1427k 4.59s/1424k
9 10 O/M O/M 10.65s/3283k 11.06s/3280k
10 11 O/M O/M 26.35s/7495k 26.46s/7485k
11 12 O/M O/M 69.48s/16986k 67.76s/16973k
12 13 O/M O/M 208.30s/38176k 204.11s/38197k

FDDI 11 23 0.37s/136k 0.38s/136k 0.17s/84k 0.17s/84k
token-ring 12 25 0.53s/139k 0.54s/139k 0.31s/139k 0.30s/139k
passing 20 41 1.90s/503k 2.03s/503k 0.67s/258k 0.68s/258k
(1 ring+ 30 61 6.67s/1317k 7.18s/1317k 1.98s/618k 1.96s/618k
m 40 81 18.44s/1746k 18.34s/1746k 16.29s/1746k 15.67s/1746k
stations 50 101 35.91s/2934k 36.59s/2934k 38.63s/2934k 38.36s/2934k
) 60 121 65.69s/4539k 67.82s/4539k 81.68s/4539k 81.57s/4539k

70 141 105.75s/6599k 106.41s/6599k 151.49s/6599k 150.71s/6599k

pathos 3 6 0.29s/68k 0.28s/60k 0.05s/16k 0.04s/17k
(m 4 8 11.40s/1102k 5.10s/450k 0.15s/35k 0.15s/36k
processes 5 10 723.46s/29201k 163.61s/5150k 0.52s/70k 0.53s/70k
) 6 12 O/M 5515.89s/81757k 2.08s/183k 1.97s/133k

7 14 O/M O/M 12.29s/701k 9.88s/375k
8 16 O/M O/M 89.01s/3083k 51.86s/1112k
9 18 O/M O/M 646.28s/15176k 265.04s/3361k
10 20 O/M O/M 5678.75s/83174k 1291.95s/10238k
11 22 O/M O/M O/M 6251.12s/31204k

leader 3 3 0.03s/22k 0.03s/22k 0.04s/32k 0.05s/32k
(m 4 4 0.09s/37k 0.09s/37k 0.14s/72k 0.16s/72k
processes 5 5 0.21s/55k 0.21s/55k 0.47s/139k 0.52s/139k
) 6 6 0.42s/73k 0.42s/73k 1.60s/243k 1.66s/243k

7 7 0.75s/93k 0.75s/93k 5.23s/395k 5.61s/395k
8 8 1.43s/123k 1.43s/123k 18.68s/606k 19.26s/606k
9 9 2.51s/163k 2.30s/163k 52.84s/891k 51.73s/891k
10 10 3.62s/212k 3.60s/212k 123.29s/1261k 123.80s/1261k
11 11 5.37s/270k 5.47s/270k 265.14s/1758k 260.82s/1758k
12 12 8.40s/340k 7.79s/340k 529.94s/2814k 532.21s/2816k
13 13 11.04s/420k 11.39s/420k 1012.28s/4741k 1028.42s/4732k
14 14 16.01s/513k 16.03s/513k 1885.42s/7924k 1893.06s/7927k

lbound 3 4 0.19s/105k 0.20s/104k 0.12s/38k 0.12s/39k
(m 4 5 1.41s/157k 1.43s/157k 0.94s/102k 0.98s/102k
processes 5 6 10.65s/465k 11.07s/465k 6.18s/309k 6.79s/308k
) 6 7 78.51s/1453k 80.43s/1452k 50.06s/1029k 44.95s/934k

7 8 460.35s/5304k 477.76s/5305k 256.45s/3086k 228.41s/2714k
8 9 2864.78s/17743k 3053.32s/17741k 1143.94s/8705k 1017.41s/7593k
9 10 18351.06s/72132k 19793.96s/72137k 4889.95s/23583k 4271.08s/20493k

to run Red 4.2 against the six benchmarks with forward
and backward analysis. In our implementation, we use
the flexible approach described in Sect. 6 such that only
when CRD sizes are made smaller, the contained zones
will be eliminated. The performance data for both with

92 F. Wang: Efficient verification of timed automata with BDD-like data structures

Table 4. Performance data of scalability with respect to timing-constant magnitude

Tools # proc CA = 38 CA = 76 CA = 152 CA = 304 CA = 608 CA = 1216

Kronos 3 0.04s 0.03s 0.03s 0.03s 0.03s 0.04s
4 0.21s 0.20s 0.20s 0.21s 0.21s 0.21s

UPPAAL2k 3 0.01s 0.01s 0.01s 0.01s 0.01s 0.01s
4 0.09s 0.09s 0.09s 0.09s 0.09s 0.09s

red 3 0.16s/14k 0.18s/14k 0.19s/15k 0.17s/14k 0.17s/14k 0.17s/14k
4.2 4 0.76s/33k 0.76s/33k 0.76s/33k 0.76s/33k 0.77s/33k 0.78s/33k

Table 5. Representation complexity of reachable state spaces in CDD and CRD

Benchmarks Concurrency CDD CRD Size Ratio
#nodes #arcs size #nodes #arcs size CDD/CRD

Fischer’s 3 processes 53 103 156 65 110 175 0.891
mutual 4 processes 103 217 320 125 228 353 0.906
exclusion 5 processes 174 382 556 206 389 595 0.934

6 processes 276 620 896 309 595 904 0.991
7 processes 429 977 1406 436 850 1286 1.093
8 processes 673 1545 2218 589 1158 1747 1.269
9 processes 1088 2508 3596 770 1523 2293 1.568
10 processes 1834 4234 6068 981 1949 2930 2.070

CSMA/CD bus+3 senders 38 52 90 46 53 99 0.909
bus+4 senders 48 67 115 54 63 117 0.982
bus+5 senders 58 82 140 62 73 135 1.037
bus+6 senders 68 97 165 70 83 153 1.078
bus+7 senders 78 112 190 78 93 171 1.111
bus+8 senders 88 127 215 86 103 189 1.137
bus+9 senders 98 142 240 94 113 207 1.159
bus+10 senders 108 157 265 102 123 225 1.177

FDDI 3 stations 37 45 82 46 54 100 0.820
token-ring 4 stations 57 68 125 69 80 149 0.838
passing 5 stations 81 105 186 92 106 198 0.939

6 stations 109 141 250 122 139 261 0.957
7 stations 141 182 323 156 176 332 0.972
8 stations 177 228 405 194 217 411 0.985

Pathos 3 processes 25 33 58 27 32 59 0.983
scheduliblity 4 processes 89 135 224 90 113 203 1.103

5 processes 288 484 772 258 328 586 1.317
6 processes 983 1811 2794 733 934 1667 1.676
7 processes 3662 7296 10958 2108 2684 4792 2.286
8 processes 14872 31583 46455 6129 7791 13920 3.337
9 processes 66172 147733 213905 17952 22778 40730 5.251

leader- 3 processes 93 116 209 118 141 259 0.806
election 4 processes 198 253 451 255 310 565 0.798
safeness 5 processes 352 454 806 457 559 1016 0.793

6 processes 564 731 1295 736 903 1639 0.790
7 processes 843 1096 1939 1104 1357 2461 0.787
8 processes 1410 1775 3185 1785 2150 3935 0.809
9 processes 1949 2451 4400 2466 2968 5434 0.809

leader- 3 processes 125 148 273 152 174 326 0.837
election 4 processes 379 493 872 448 542 990 0.880
bounded 5 processes 1464 1986 3450 1444 1780 3224 1.070
liveness 6 processes 3353 4755 8108 3216 4119 7335 1.105

7 processes 6451 9433 15884 5835 7642 13477 1.178
8 processes 10836 16135 26971 9408 12484 21892 1.232
9 processes 27609 42554 70163 16662 21692 38354 1.829

F. Wang: Efficient verification of timed automata with BDD-like data structures 93

Table 6. Performance data with respect to evaluation ordering

Benchmarks Concurrency B H F

Fischer’s 3 processes 0.15s/16k 0.16s/15k 0.15s/15k
mutual 4 processes 0.95s/40k 0.84s/32k 0.75s/32k
exclusion 5 processes 3.62s/111k 2.77s/70k 2.62s/70k

6 processes 15.37s/288k 7.88s/126k 7.38s/126k
7 processes 68.76s/718k 20.51s/243k 18.87s/206k
8 processes 296.48s/1744k 49.84s/522k 42.81s/312k
9 processes 1073.42s/4216k 115.63s/1127k 95.51s/445k
10 processes 3810.61s/10196k 261.54s/2448k 194.32s/610k
11 processes 12843.44s/24958k 556.14s/5318k 372.00s/1171k
12 processes 45568.55s/62739k 1235.56s/11496k 717.62s/2440k

CSMA/CD bus+3 senders 0.09s/53k 0.09s/49k 0.06s/49k
bus+4 senders 0.24s/155k 0.21s/94k 0.17s/82k
bus+5 senders 0.79s/444k 0.55s/267k 0.41s/166k
bus+6 senders 2.86s/1176k 1.50s/767k 0.92s/310k
bus+7 senders 10.22s/3039k 4.60s/2169k 2.05s/617k
bus+8 senders 33.48s/7699k 13.53s/5990k 4.59s/1424k
bus+9 senders 105.26s/19063k 42.63s/16165k 11.06s/3280k
bus+10 senders 312.38s/41437k 156.66s/42685k 26.46s/7485k
bus+11 senders O/M O/M 67.76s/16973k
bus+12 senders O/M O/M 204.11s/38197k

FDDI 11 stations 27.53s/33008k 0.18s/84k 0.17s/84k
token-ring 12 stations 73.37s/52396k 0.30s/139k 0.30s/139k
passing 20 stations O/M 0.67s/258k 0.68s/258k

30 stations O/M 1.89s/618k 1.96s/618k
40 stations O/M 15.53s/1746k 15.67s/1746k
50 stations O/M 37.70s/2934k 38.36s/2934k
60 stations O/M 80.55s/4539k 81.57s/4539k

Pathos 3 processes 0.04s/17k 0.04s/17k 0.04s/17k
4 processes 0.14s/37k 0.16s/36k 0.15s/36k
5 processes 0.52s/96k 0.58s/70k 0.53s/70k
6 processes 2.30s/215k 2.34s/179k 1.97s/133k
7 processes 13.84s/516k 13.32s/575k 9.88s/375k
8 processes 80.83s/1362k 82.84s/2034k 51.86s/1112k
9 processes 418.05s/4355k 480.17s/7428k 265.04s/3361k
10 processes 2016.30s/14168k 2766.90s/26920k 1291.95s/10238k
11 processes 10288.20s/46753k 20373.96s/98237k 6251.12s/31204k

Leader 3 processes 0.05s/34k 0.05s/32k 0.05s/32k
4 processes 0.16s/81k 0.16s/72k 0.16s/72k
5 processes 0.70s/171k 0.49s/139k 0.52s/139k
6 processes 4.07s/376k 1.89s/243k 1.66s/243k
7 processes 21.87s/934k 5.79s/395k 5.61s/395k
8 processes 99.76s/2373k 19.44s/606k 19.26s/606k
9 processes 400.35s/5949k 52.00s/891k 51.73s/891k
10 processes 1521.33s/14871k 123.05s/1261k 123.80s/1261k
11 processes 5755.83s/37751k 264.64s/1758k 260.82s/1758k
12 processes 23301.86s/97280k 530.15s/2816k 532.21s/2816k
13 processes O/M 1025.77s/4732k 1028.42s/4732k
14 processes O/M 1896.40s/7927k 1893.06s/7927k

lbound 3 processes 0.11s/37k 0.15s/42k 0.12s/39k
4 processes 0.91s/116k 1.13s/134k 0.98s/102k
5 processes 8.22s/402k 8.84s/552k 6.79s/308k
6 processes 65.87s/1381k 71.18s/2341k 44.95s/934k
7 processes 378.36s/4523k 411.38s/8944k 228.41s/2714k
8 processes 1862.98s/14099k 2286.83s/31547k 1017.41s/7593k

9 processes 8736.78s/42117k 15956.90s/104330k 4271.08s/20493k

and without contained-zone elimination are in Table 3. In
the 12 cases, 5 (Fischer’s with Fw, CSMA/CD with Fw,
Pathos with Fw, Pathos with Bk, and lbound with Bk)
show that the contained-zone elimination option gives us

a significant performance boost. In all the other cases, the
option either does not improve much or charges us a little
for the overhead (case lbound with Fw). This set of data
suggests that it is worthwhile to use the option always.

94 F. Wang: Efficient verification of timed automata with BDD-like data structures

10.3 Performance with respect to timing constant
magnitude complexity

The performance of some previous technologies, e.g.,
NDD and RED, does not scale very well to the magnitude

Table 7. Performance comparison with other tools with respect to number of processes

Benchmarks m #clocks Kronos UPPAAL red 4.2
2.4.5 3.2.4 Fw+DRC Bk+DRC

Fischer’s 3 3 0.02s 0.01s 0.18s/21k 0.15s/15k
mutual 4 4 0.15s 0.09s 0.94s/86k 0.75s/32k
exclusion 5 5 0.95s 2.97s 6.63s/416k 2.62s/70k
(m 6 6 O/M 292.56s 87.70s/2116k 7.38s/126k
processes 7 7 O/M O/M 947.16s/13459k 18.87s/206k
) 8 8 O/M O/M 11736.05s/97037k 42.81s/312k

9 9 O/M O/M O/M 95.51s/445k
10 10 O/M O/M O/M 194.32s/610k
11 11 O/M O/M O/M 372.00s/1171k
12 12 O/M O/M O/M 717.62s/2440k
13 13 O/M O/M O/M 1339.85s/5186k

CSMA/CD 3 4 0.01s 0.01s 0.29s/74k 0.06s/49k
(1 bus+ 4 5 0.04s 0.04s 2.15s/344k 0.17s/82k
m senders 5 6 0.26s 0.46s 26.10s/1861k 0.41s/166k
) 6 7 1.91s 13.87s 328.73s/10865k 0.92s/310k

7 8 O/M 752.42s 4962.52s/68209k 2.05s/617k
8 9 O/M O/M O/M 4.59s/1424k
9 10 O/M O/M O/M 11.06s/3280k
10 11 O/M O/M O/M 26.46s/7485k
11 12 O/M O/M O/M 67.76s/16973k
12 13 O/M O/M O/M 204.11s/38197k

FDDI 11 23 72.61s 30.96s 0.38s/136k 0.17s/84k
token-ring 12 25 O/M 118.35s 0.54s/139k 0.30s/139k
passing 20 41 O/M O/M 2.03s/503k 0.68s/258k
(1 ring+ 30 61 O/M O/M 7.18s/1317k 1.96s/618k
m 40 81 O/M O/M 18.34s/1746k 15.67s/1746k
stations 50 101 O/M O/M 36.59s/2934k 38.36s/2934k
) 60 121 O/M O/M 67.82s/4539k 81.57s/4539k

70 141 O/M O/M 106.41s/6599k 150.71s/6599k

Pathos 3 6 0.0s 0.01s 0.28s/60k 0.04s/17k
(m 4 8 O/M 0.11s 5.10s/450k 0.15s/36k
processes 5 10 O/M 8.02s 163.61s/5150k 0.53s/70k
) 6 12 O/M O/M 5515.89s/81757k 1.97s/133k

7 14 O/M O/M O/M 9.88s/375k
8 16 O/M O/M O/M 51.86s/1112k
9 18 O/M O/M O/M 265.04s/3361k
10 20 O/M O/M O/M 1291.95s/10238k
11 22 O/M O/M O/M 6251.12s/31204k

Leader 3 3 0.13s 0.00s 0.03s/22k 0.05s/32k
(m 4 4 4.88s 0.01s 0.09s/37k 0.16s/72k
processes 5 5 O/M 0.09s 0.21s/55k 0.52s/139k
) 6 6 O/M 0.74s 0.42s/73k 1.66s/243k

7 7 O/M 3.34s 0.75s/93k 5.61s/395k
8 8 O/M O/M 1.43s/123k 19.26s/606k
9 9 O/M O/M 2.30s/163k 51.73s/891k
10 10 O/M O/M 3.60s/212k 123.80s/1261k
11 11 O/M O/M 5.47s/270k 260.82s/1758k
12 12 O/M O/M 7.79s/340k 532.21s/2816k
13 13 O/M O/M 11.39s/420k 1028.42s/4732k
14 14 O/M O/M 16.03s/513k 1893.06s/7927k

lbound 3 4 0.13s 0.00s 0.20s/104k 0.12s/39k
(m 4 5 4.88s 0.02s 1.43s/157k 0.98s/102k
processes 5 6 O/M 0.08s 11.07s/465k 6.79s/308k
) 6 7 O/M 0.65s 80.43s/1452k 44.95s/934k

7 8 O/M 3.14s 477.76s/5305k 228.41s/2714k
8 9 O/M O/M 3053.32s/17741k 1017.41s/7593k
9 10 O/M O/M 19793.96s/7213k 4271.08s/20493k

of the timing constant. The data in Table 4 are collected
by runnning Kronos, UPPAAL2k, and Red 4.2 with
strategy Bk+DRC+F. Against Fischer’s mutual exclu-
sion algorithm with various timing constant magnitudes.
The performance data are in Table 4. The table suggests

F. Wang: Efficient verification of timed automata with BDD-like data structures 95

that CRD is at least as good as DBM technology as far as
performance scalability with respect to timing constant
complexity is concerned.

10.4 Performance with representation fragmentation

To observe the effect of the representation fragmenta-
tion phenomenon of CDD, we have endeavored to im-
plement some CDD manipulation routines. This enables
us to collect data, shown in Table 5, of sizes of reach-
able state space representations in CDD and CRD for the
six benchmarks. The state space representation of bench-
mark leader-election safeness and liveness are very similar
except that one more global clock is used for the live-
ness benchmark. From the table we observe that CDD
demonstrates exponential blowup for two of the bench-
marks (Fischer’s, pathos) in comparison with CRD. For
the FDDI benchmark, it seems a blowup is ongoing. For
the other three benchmarks (CSMA/CD, leader election
safeness, liveness), CDD performs better than CRD with
a nearly constant factor. This is understandable because
in CDD, both lowerbound and upperbound are specified
with the same CDD decision atom, while in CRD two sep-
arate decision atoms have to be used. For instance, the
constraint of 3 < x1−x2 < 5 can be specified with one
decision atom in CDD. But in CRD, it is specified with
two decision atoms as x1−x2 < 5∧x2−x1 < −3. This
explains why, when CDD performs better, it does so by
a constant factor.

10.5 Performance with respect to evaluation ordering

We compare the performance of Red 4.2 with respect
to the evaluation orderings discussed in Sect. 8. The per-
formance data in Table 6 are very compatible with the
traditional experience with BDD-like data structures.
That is, decision atoms with a strong relation should be
placed near each other.

10.6 Comparison with other tools

We choose to compare the performance of RedwithKro-
nos [5, 10, 25] (version 2.4, release 5) and UPPAAL2k [6,
15] (version 3.2.4), which are perhaps the two best-known
model checkers for real-time systems with DBM tech-
nology. Comparison with these two tools also gives us
some rough feeling about how well CRD technology per-
forms against DBM technology with both forward analy-
sis (used in UPPAAL2k) and backward analysis (default
in Kronos). The performance data are shown in Table 7.
Except for the FDDI benchmark, UPPAAL2k runs with
options “-aS0WD”. For the FDDI benchmark, UPPAAL2k
runs with options “-S0TDda”. Kronos is invoked with
backward analysis.
The performance data show that CRD technology is

more space efficient and scales better with respect to the

number of clocks than the DBM implementation used
in Kronos and UPPAAL2k. For time complexities, CRD
with backward analysis and DRC are outperformed only
by DBM technologies with a small number of clocks. This
shows that DBM technology generally has good time
complexities for small systems with its cubic complex-
ity all-pair shortest-path algorithm on matrices. But for
systems with high concurrency, Red 4.2 with backward
analysis and DRC normal form outperform the other tar-
gets. Thus the reasoning behind the design of CRD seems
justified.
Also, for forward analysis, in general, CRD technol-

ogy shows greater space efficiency than DBM technology
with forward analysis as represented by UPPAAL2k. But
in time complexity, DBM technology is better. In our ex-
perience, BDD-like data structures can create a lot of in-
termediate data structures only to be garbage-collected.
For example, in our CSMA/CD benchmark, we usually
observed that the maximum memory consumption in the
model checking process is 100 times the memory require-
ment for the final reachable state space representation.
This may imply that with better garbage-collection tech-
niques, we can further improve the performance of CRD
technology. In comparison, DBM manipulation usually
does not incur any intermediate space consumption. You
basically just work on the same two-dimensional matrix.

11 Conclusion

Efficient model-checking of TAs requires a deep under-
standing of the subtle interaction between data struc-
tures and algorithms. We believe that earlier BDD-like
data structures did not perform as well as DBM because
such subtlety has not been paid proper attention. We
have identified some of the issues in the design of efficient
BDD-like data structures and manipulation algorithms
for TA state spaces.We have carried out extensive experi-
ments to justify our arguments. We have also developed
techniques for the DRC form. We believe the experience
reported in this paper will be very valuable in the imple-
mentation of industry-usable model checkers for real-time
systems.
In the future, it will be interesting to see if the CRD

technology can be further improved. We suggest the fol-
lowing two approaches.

• Better garbage-collection mechanism.Garbage-collecting
intermediate structures is not only complicated but
also very time consuming. At this moment, we use
a stack to keep those CRDs that are temporarily used.
The garbage-collection procedure is invoked between
major steps of the weakest precondition calculation.
We believe that space usage can be more efficient if
a more complicated and proactive garbage-collector,
specially tailored for CRDs, is designed and used.
• More canonical form choices. Although we have tried
six different choices of canonical forms in the last

96 F. Wang: Efficient verification of timed automata with BDD-like data structures

2 years, we believe that more canonical forms and their
construction algorithms can still be investigated. More
experiments with new choices may lead to an even bet-
ter balance between the depth and width of BDD-like
data structures.

Acknowledgements. The author would like to thank Ms. Yu-Feng
Chen, Mr. Geng-Dian Huang, and Mr. Fang Yu, who helped in
collecting the huge set of experimental data.

References

1. Asarin E, Bozga M, Kerbrat A, Maler O, Pnueli A, Rasse
A (1997) Data-structures for the verification of timed auto-
mata. In: Proceedings of HART’97 (International Workshop
on Hybrid And Real-Time Systems) 1997. Lecture notes in
computer science, vol 1201. Springer, Berlin Heidelberg New
York

2. Alur R, Courcoubetis C, Dill DL (1990) Model checking for
real-time systems. IEEE LICS (5th International Symposium
on Logics in Computer Science), June 1990, Philadelphia,
USA, IEEE Computer Society, pp 414–425

3. Balarin F (1996) Approximate reachability analysis of timed
automata. IEEE RTSS (17th IEEE Real-Time Sytems Sym-
posium), December 1996, Washington D.C., USA, IEEE Com-
puter Society, pp 52–61

4. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ
(1990) Symbolic model checking: 1020 states and beyond.
IEEE LICS (5th International Symposium on Logics in Com-
puter Science), June 1990, Philadelphia, USA, IEEE Com-
puter Society, pp 428–439

5. Bozga M, Daws C, Maler O (1998) Kronos: a model-checking
tool for real-time systems. In: Proceedings of the 10th con-
ference on computer-aided verification (CAV’98), June/July
1998. Lecture notes in computer science, vol 1427. Springer,
Berlin Heidelberg New York

6. Bengtsson J, Larsen K, Larsson F, Pettersson P, Wang Y
(1996) UPPAAL – a tool suite for automatic verification of
real-time systems. In: Proceedings of the hybrid control sys-
tem symposium, 1996. Lecture notes in computer science.
Springer, Berlin Heidelberg New York

7. Behrmann G, Larsen KG, Pearson J, Weise C, Wang Y (1999)
Efficient timed reachability analysis using clock difference di-
agrams. In: Proceedings of the conference on computer-aided
verification (CAV’99), Trento, Italy, July 1999. Lecture notes
in computer science, vol 1633. Springer, Berlin Heidelberg
New York

8. Bryant RE (1986) Graph-based algorithms for Boolean func-
tion manipulation. IEEE Trans Comput C-35(8)

9. Dill DL (1989) Timing assumptions and verification of finite-
state concurrent systems. In: Proceedings of the conference
on computer-aided verification (CAV’89), 1989. Lecture notes
in computer science, vol 407. Springer, Berlin Heidelberg New
York

10. Daws C, Olivero A, Tripakis S, Yovine S (1996) The tool
KRONOS. In: Proceedings of the 3rd conference on hybrid
systems, 1996. Lecture notes in computer science, vol 1066.
Springer, Berlin Heidelberg New York

11. Henzinger TA, Nicollin X, Sifakis J, Yovine S (1992) Symbolic
model checking for real-time systems. IEEE LICS (7th Inter-
national Symposium on Logics in Computer Science), Santa
Cruz, USA, IEEE Computer Society, June 1992, pp 394–406

12. Larsen KG, Larsson F, Pettersson P, Wang Y (1998) Effi-
cient verification of real-time systems: compact data-structure
and state-space reduction. IEEE RTSS (19th IEEE Real-Time
Systems Symposium), Madrid, Spain, IEEE Computer Soci-
ety, December 1998

13. Moller J, Lichtenberg J, Andersen HR, Hulgaard H (1999)
Difference decision diagrams. In: Proceedings of the annual
conference of the European Association for Computer Science
Logic (CSL), September 1999, Madrid, Spain

14. Moller J, Lichtenberg J, Andersen HR, Hulgaard H (1999)
Fully symbolic model-checking of timed systems using differ-
ence decision diagrams. In: Proceedings of the workshop on
symbolic model-checking (SMC), July 1999, Trento, Italy

15. Pettersson P, Larsen KG (2000) UPPAAL2k. Bull Eur Assoc
Theor Comput Sci 70:40–44

16. Wang F (2000a) Efficient data-structure for fully symbolic
verification of real-time software systems. In: Proceedings of
the conference on tools and algorithms for the construction
and analysis of systems (TACAS 2000), March 2000, Berlin.
Lecture notes in computer science, vol 1785. Springer, Berlin
Heidelberg New York

17. Wang F (2000b) Region encoding diagram for fully symbolic
verification of real-time systems. In: Proceedings of the the
24th COMPSAC (24th Computer Software and Applications
Conference), October 2000, Taipei, Taiwan, ROC. IEEE Com-
puter Society, IEEE Press, New York, pp 509–515

18. Wang F (2001a) RED: Model-checker for timed automata
with clock-restriction diagram. In: Proceedings of the work-
shop on real-time tools, August 2001. Technical Report 2001-
014, ISSN 1404-3203, Department of Information Technology,
Uppsala University, Uppsala, Sweden

19. Wang F (2001b) Symbolic verification of complex real-time
systems with clock-restriction diagram. In: Proceedings of
FORTE’2001 (21st IFIP International Conference on Formal
Techniques for Networked and Distributed Systems), August
2001, Cheju Island, Korea. Kluwer, Dordrecht, pp 235–250

20. Wang F (2003) Symbolic parametric analysis of linear hybrid
systems with BDD-like data-structures. ACM CoRR (Com-
puting Research Repository, http://www.acm.org/corr/),
user:cs.DS/0306113

21. Wang F, Hsiung P-A (2002) Efficient and user-friendly verifi-
cation. IEEE Trans Comput

22. Wang F, Mok A, Emerson EA (1993) Symbolic model-
checking for distributed real-time systems. In: Proceedings of
the FME (1st International Symposium of Formal Methods
Europe), April 1993, Odense, Denmark. Lecture notes in com-
puter science, vol 670. Springer, Berlin Heidelberg New York,
pp 632–651

23. Wang F, Hwang G-D, Yu F (2003a) TCTL inevitability analy-
sis of dense-time systems. In: Proceedings of the 8th confer-
ence on implementation and application of automata (CIAA),
July 2003, Santa Barbara, CA. Lecture notes in computer sci-
ence, vol 2759. Springer, Berlin Heidelberg New York

24. Wang F, Hwang G-D, Yu F (2003b) Numerical coverage es-
timation for the symbolic simulation of real-time systems.
To appear in the proceedings of FORTE’2003 (23rd IFIP In-
ternational Conference on Formal Techniques for Networked
and Distributed Systems), September–October 2003, Berlin.
Lecture notes in computer science, vol 2767. Springer, Berlin
Heidelberg New York, pp 160–176

25. Yovine S (1997) Kronos: a verification tool for real-time sys-
tems. Int J Softw Tools Technol Transfer 1(1/2)

Appendix : Definitions of the three
evaluation orderings

Here we consider the evaluation ordering of decision
atoms of systems with concurrent processes with local
and global system variables. For nonclock system vari-
ables, the same variable names are used as the BDD
decision atom names in the CRD+BDD. For clock sys-
tem variables x, x′ ∈ {0}∪X, the relevant decision atoms
in the CRD+BDD are CRD decision atoms with names
like x−x′. Given a TA A, we let ∆A be the set of BDD
decision atoms and ΓA the set of CRD decision atoms.
The input language of our implementation allows the

declaration of processes with corresponding local sys-
tem variables. The processes are labeled with identifier

F. Wang: Efficient verification of timed automata with BDD-like data structures 97

1 . . .m. For each local system variable u, we let proc(u) be
the identifier of the process to which u (or x) is local. For
each global variable u, we let proc(u) = 0. Also, proc(0) =
0. Given a CRD decision atom x−x′ in a CRD+BDD,
we let proc(x−x′) = max(proc(x),proc(x′)). We here
extend the meaning of evaluation index Ω() in Sect. 4
to both CRD decision atoms and BDD decision atoms.
For any two decision atoms w,w′ ∈∆A ∪ΓA, we write
w ≺Ω w′ to denote that w precedes w′ in evaluation
ordering Ω.
According to the ordering in which a system variable

is declared in the input, we also define attribute offset().
Given two system variables u, u′, offset(u)< offset(u′) iff
u is declared before u′ in the input file. Given a CRD de-
cision atom x−x′, we let offset(x−x′) = max(offset(x),
offset(x′)).
We have general rules and special rules for the decision

of precedence relations among decision atoms. There are
two general rules applied to all three of these orderings.

• For every two distinct clocks x, x′, we put a CRD de-
cision atom like x′−x immediately next to x−x′ in
the evaluation ordering. This arrangement allows us to
efficiently check for some trivial negative cycles.
• Given two decision atoms w,w′, if the evaluation or-
dering cannot be determined by the following special
rules, then w ≺Ω w′ iff offset(w) < offset(w′) for all
Ω ∈ {B,H,F}.

Given a CRD decision atom x−x′ in a CRD+BDD,
we let procmin(x−x

′) = min(proc(x),proc(x′)). Also,
offsetmin(x−x′) =min(offset(x), offset(x′)). For BDD de-
cision atom w, procmin(w) = proc(w) and offsetmin(w) =
offset(w). Given two decision atoms v and v′, we write
v � v′ iff one of the following four conditions is true: (1)
if proc(v) < proc(v′), (2) else if procmin(v)< procmin(v

′),
(3) else if offset(v)< offset(v′), or (4) else if offsetmin(v)<
offsetmin(v

′). Intuitively, v � v′ means that v precedes
v′ according to the process ordering and the declaration
ordering.

The special rules are as follows.

B: (1) ∀u ∈∆A∀x−x′ ∈ ΓA(u≺B x−x′), i.e., BDD de-
cision atoms precede CRD decision atoms.
(2) ∀x−x′, y− y′ ∈ ΓA(x−x′ ≺B y− y′ iff x−x′ �
y−y′).

H: (1) ∀u ∈∆A∀x−x′ ∈ ΓA s.t. x = 0 or x′ = 0(u ≺H
x−x′ iff proc(u)≤ proc(x−x′)).
(2) ∀x−0, 0−x, y−y′ ∈ ΓA s.t. 0
∈ {y, y′}(x−0≺H
y−y′∧0−x≺H y−y′).
(3) ∀x−x′, y−y′ ∈ ΓA s.t. 0
∈ {x, x′, y, y′}(x−x′ ≺H
y−y′ iff x−x′ � y−y′).

F: (1) ∀u ∈ ∆A∀x−x′ ∈ ΓA(u ≺F x−x′ iff proc(u) ≤
proc(x−x′)).
(2) ∀x−x′, y− y′ ∈ ΓA(x−x′ ≺F y− y′ iff x−x′ �
y−y′).

