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Abstract. SAT based Bounded Model Checking (BMC) is an efficient method for
detecting logical errors in finite-state transition systems. Given a transition system,
an LTL property, and a user defined bound k, a bounded model checker generates
a propositional formula that is satisfiable if and only if a counterexample to the
property of length up to k exists. Standard SAT checkers can be used to check this
formula. BMC is complete ifk is larger than some pre-computed threshold. It is still
unknown how to compute this threshold for general properties. We show that the
longest initialized loop-free path in the state graph, also known as the recurrence
diameter, is sufficient for Fp properties. The recurrence diameter is also a known
over-approximation for the threshold of simple safety properties (Gp). We discuss
various techniques to compute the recurrence diameter efficiently and provide
experimental results that demonstrate the benefits of using the new approach.

1 Introduction

SAT-based Bounded Model Checking (BMC)[1] was introduced several years ago as a
complementary technique for the more traditional BDD-based symbolic model checking
[2]. The basic idea of BMC is to search for a counterexample in traces whose length is
bounded by some integer k. If no bug is found then the bound k is increased until either
a bug is found, the problem becomes intractable, or some pre-computed Completeness
Threshold CT is reached1. If the completeness threshold is reached without finding a
bug, it is implied that the property holds in the given model. The BMC problem can be
efficiently reduced to a propositional satisfiability problem, and can therefore be solved
by standard SAT methods.

Knowing the completeness threshold CT is essential for making BMC complete.
Without it, there is no way of knowing whether the property holds or rather the bound is
not sufficiently high. The value of CT depends on the model M , the temporal property p,
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and the exact translation scheme used for obtaining the SAT instances. In this paper we
refer to the original LTL translation of Biere et al.[3]. For this translation and Gp (where
p is a non-temporal expression) formulas, they show that CT is equal to d, the longest
shortest-path from the initial state (the ‘diameter’, or, because the path has to start from
an initial state, the ‘radius’ of the model [4]). For a given model and a number k, finding
whether d > k can be done by solving a Quantified Boolean Formula (QBF). Thus,
finding d amounts to solving a sequence of QBF formulas with increasing k, which is
computationally very expansive.

There are several approaches for making this process more efficient. Baumgartner
et al. [5] perform an analysis of the circuit structure on the netlist level and identify
frequently occurring components with pre-known diameters. The overall diameter of
the circuit is then defined recursively over its individual components. With this analysis
they found a large number of cases were the diameter can be computed in a short amount
of time, and, more importantly, the diameter itself is relatively very small (less than 20
in many cases). Mneimneh and Sakallh[6] suggest a method for simplifying the QBF
formulas: while normally one has to check whether each state that is reachable in k
steps can be reached sooner, they observe that it is sufficient to check whether it can be
reached within k − 1 steps, if the initial state has a self loop (such a loop can always
be added without affecting the value of the diameter). In [3], Biere et al. suggest to
over-approximate the diameter with the recurrence diameter r, which is the longest
loop-free path between two states. Since every shortest-path is a loop-free path, then
obviously d ≤ r. The recurrence diameter can be computed by solving a series of SAT
instances, rather than QBF instances, and it is therefore typically easier to compute.
The recurrence diameter is important not only as an over-approximation of d, but also
because r characterizes the completeness threshold for Fp properties.

In section 2 we suggest several refinements to the original definition of r that result
in shorter paths that are still larger or equal than CT . In section 4.1 we present an
efficient way of computing r, based on sorting networks. While the currently known
technique for computing it requires solving a SAT instance of size quadratic in k, our
method requires solving a formula of size O(k log k). With these improvements we were
able to compute the recurrence diameter in several cases that were otherwise impossible
to compute with the original method. We provide experimental results to quantify the
performance impact of our method.

2 The Completeness Threshold for Simple Properties

We begin with some notation and definitions:

1. A finite transition system M = 〈S, I, T 〉 is defined by a finite set of states S, an
initial-state predicate I , and a transition relation T . States are defined by valuations
of the state variables st and input variables in. For simplicity we assume that these
are the only type of variables in M .

2. Given a finite transition system M and an LTL property p, we write M |= p if p
holds for M , and M |=k p if p holds for M up to cycle k. Each ‘cycle’ corresponds
to a single application of the transition function, or, in other words, an exploration
of the immediate successor states.
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3. The predicate R(t, n), t ∈ S, n ∈ N, is true if and only if t is reachable within n
steps from an initial state:

R(t, n) def= ∃s0 . . . sn. I(s0) ∧
n−1∧

i=0

T (si, si+1) ∧ sn = t

4. The predicate Ro(t, n) denotes that a state t is reachable in n steps from an initial
state and cannot be reached via a shorter path.

Ro(t, n) def= R(t, n)∧ �∃m, m < n. R(t, m)

5. The predicate R(t), t ∈ S, is true if and only if t is reachable from an initial state:

R(t) def= ∃n. R(t, n)

We use this terminology in our definition of the completeness threshold CT with respect
to a model M and an LTL formula ϕ:

Definition 1 (Completeness threshold). The completeness threshold of a finite transi-
tion system M and a property ϕ, denoted by CT (M, ϕ) is the minimal number such that
if ϕ holds up to cycle CT (M, ϕ), it holds globally. Formally:

CT (M, ϕ)
def
= min{i | M |=i ϕ → M |= ϕ} (1)

Note that CT (M, ϕ) can be arbitrarily large, because ϕ can specify an arbitrarily long
path. The most widely used properties in practice are unnested formulas like Gp and Fp,
where p is a non-temporal expression (most safety properties can be reduced to Gp). This
is the only type of formula for which a method for computing CT (M, ϕ) is currently
known. The completeness threshold for Gp formulas is the reachability diameter2:

Definition 2 (Reachability Diameter). The reachability diameter rd(M) is the mini-
mal number of steps required for reaching all reachable states:

rd(M)
def
= min{i | ∀t, t ∈ S. ∃j, j ≤ i. R(t) → R(t, j)} (2)

It is easy to see why the reachability diameter is sufficient for Gp formulas. A coun-
terexample to Gp is a path to a state that contradicts p. Since all states can be reached
through paths of length rd(M) or less, checking paths whose length is bounded by
rd(M) is sufficient for finding all reachable states that contradict p. On the other hand,
the reachability diameter is not sufficient for finding all counterexamples to Fp formulas.
A counterexample for such a formula is a path ending in a back-loop, where all the states
on the path satisfy ¬p. Figure 2 demonstrates such a path. While the top path is the
shortest counterexample (of length four), all states are reachable through paths of length
two or less (i.e. rd(M) = 2).
Thus, in order to find a counterexample to Fp it is not sufficient to check all paths of length
smaller or equal to rd(M). For this type of formulas we need to look for the longest
loop-free path from an initial state, or, in other words, for the reachability recurrence
diameter [1], which is defined as follows:

2 This definition is equivalent to the ‘radius’ in [4].
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¬p ¬p¬p¬p

p

Fig. 1. While the reachability diameter rd(M) in this model is equal to two, the shortest coun-
terexample to the property Fp is of length four.

Definition 3 (Reachability Recurrence Diameter). The Reachability Recurrence Di-
ameter with respect to a model M , denoted by rrd(M), is the longest loop-free path in
M starting from an initial state:

rrd(M)
def
= max{i| ∃s0 . . . si. I(s0) ∧

i−1∧

j=0

T (sj , sj+1) ∧
i−1∧

j=0

i∧

k=j+1

sj �= sk} (3)

The difference between rd(M) and rrd(M) is demonstrated in the drawing below.
It shows a structure in which the reachability diameter rd(M) is three, because all states
are reachable from the initial state through paths of length three, while rrd(M), the
maximal loop-free path starting from an initial state, is equal to four.

s3 s2

s1s0

The recurrence diameter was originally suggested in [1] as an over-approximation to
the completeness threshold of Gp formulas. The reachability diameter, which is smaller
but sufficient for this type of formulas, is too hard to compute because it is a QBF, as was
mentioned in the introduction. Restricting the first state to an initial state, as definition
3 requires, is still conservative with respect to Gp, because clearly any shortest path
to a ¬p state is a loop-free path starting from an initial state. Thus, to summarize this
section, the reachability recurrence diameter rrd(M) is useful for both computing the
completeness threshold for Fp and for over-approximating it in the case of Gp formulas.

From now on we will only refer to formulas of the form Gp and Fp, and therefore,
for conciseness, omit the word ‘reachability’.

3 A Shorter Recurrence Diameter

Definitions 1–3 refer to states without explicitly saying by which variables these states
are defined. Normally a state is defined to be the product of the valuation of all variables.
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In subsections 3.1 and 3.2 we show that by ignoring the input variables and variables that
are not in the bounded cone of influence of the property, we can find shorter thresholds.
Although we prove the correctness of these improvements with respect to the recurrence
diameter, they apply to the reachability diameter as well. We will use the following
additional notation:

1. The value of a variable v in a state s ∈ S is denoted by s(v).
2. Let ŝ be the set of variables that define the state s. Given a set of variables v, sv is the

projection of s to variables that appear both in v and ŝ, i.e., if {v1 . . . vp} ⊆ v ∩ ŝ,
sv = (s(v1), ..., s(vp)).

3. If v is some subset of ŝ, then we denote the recurrence diameter for reachability
(as defined in equation 3) by rrd(M, v), when the states are restricted to sv . Thus,
rrd(M) of equation 3 can be written as rrd(M, ŝ).

4. We use superscripts for cycle numbers and subscripts for variable indices. For ex-
ample, ink

0 . . . ink
n can represent n + 1 input variables in cycle k.

3.1 Ignoring the Inputs

In this section we show that there is no need to consider input variables when comparing
states, and, consequently, that it is possible to find smaller completeness thresholds. In
other words, when computing the recurrence diameter, we will treat all states that are
equal modulo their input variables as a single state. Consider, for example, the transition
system in Fig. 2. The system has one state variable x and n inputs. If we consider the
inputs, from the right state (x = 1) we can progress to a 2n − 1 long loop-free path
while maintaining x = 1 (all possible assignments to the input variables, except the one
that assigns them all 0). Thus, the fact that we do not distinguish between these states
shortens the recurrence diameter from O(2n) to 2.

input var i0 . . . in: boolean;
var x: boolean;

init(x) := 0;
next(x) := i0 ∨ . . . ∨ in;

x=0 x=1

(a) (b)

Fig. 2.A transition system (a) and its corresponding Kripke structure (b). When considering inputs,
the calculated recurrence diameter of this system is O(2n) long.

Definition 4 (State variables recurrence diameter). The state variables recurrence
diameter with respect to a model M , denoted by rrd(M, st), is the longest loop-free
path in M starting from an initial state, where two states are considered as equal if their
state variables have the same value:

rrd(M, st)
def
= max{i| ∃s0 . . . si. I(s0) ∧

i−1∧

j=0

T (sj , sj+1) ∧
i−1∧

j=0

i∧

k=j+1

sst
j �= sst

k } (4)
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Note that other than the way that states are compared to one another, rrd(M, st) is
defined exactly as the recurrence diameter rrd(M).

It is not obvious that inputs can be ignored when computing CT , because the property
may refer to inputs. Thus, two states that can only be distinguished by their input variables
are not equivalent with respect to a counterexample trace. The following lemma states
that nevertheless, ignoring the inputs is safe:

Lemma 1. If there exists a counterexample to Fp of length greater than rrd(M, st)
(where the length is defined by the number of distinct states in the path), then there exists
another counterexample to Fp of length smaller or equal to rrd(M, st).

Proof. Assume that there exists a path π ending with a back-loop s.t. |π| > rrd(M, st)
and every state in π satisfies ¬p. Further, assume that π is the shortest path with this
property. π must have at least two states that are equal in all state bits. Let sl, sr be such
two states, where sl is the state on the left (closer to the initial state). Given an assignment
α that satisfies this path, we construct a new assignment α′ as follows. First, α′ is equal
to α in all states to the left of sl, and equal to α in sl itself with respect to the state
variables. Second, α′ assigns the inputs of sl the same values that α assigns to the inputs
of sr. Now α′ satisfies α′(sl) = α(sr), and we can therefore proceed from sl to sr+1.
Thus, the third stage of the construction shifts the assignment of α to states sr+1 . . . s|π|
to states sl+1 . . . s|π|−(r−l). Now α′ corresponds to a path shorter than π that satisfies
¬p in all of its states. The existence of such a path contradicts our assumption. �


Although Lemma 1 refers explicitly to Fp formulas, it is clear that inputs can be ignored
also when computing an over-approximation to Gp formulas. Baumgartner et al. [5]
ignore the inputs as well when they compute the reachability diameter.

3.2 Ignoring Variables That Do Not Affect the Property

It was observed in [5] that the reachability diameter should be computed while consid-
ering only the cone of influence of the property. We now show that this observation can
be extended to the bounded cone of influence. Bounded cone of influence (BCOI) [7]
is a reduction method that operates in two stages. First, it identifies the variables that
affect the property at (or up to) the cycle bounding the search; second, it simplifies the
formula by assuming an arbitrary value for the rest of the variables. For example, in the
following transition system, the value of the state variables x1 and x2 affect the property
with a delay of one and two cycles, respectively.

var x0, x1, x2: boolean;

init(x0) = 0; init(x1) = 0; init(x2) = 0;
next(x2) := !x2;
next(x1) := x2
next(x0) := x1
SPEC AG(! x0)
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Consequently, when checking the property at cycle k, we can ignore the value of x2 in
cycles k and k − 1, and ignore the value of x1 in cycle k. The same idea can be used for
finding a smaller completeness threshold.

Let Bk(i), i ≤ k be the set of variables such that their value in cycle i affect the
property at cycle k. Since Bk(i) can include different variables for each cycle i, we need
to redefine ‘comparison’between two states. We define two states si, sj , j > i to be equal
if and only if they are equal in all variables in Bk(j), i.e., ∀v ∈ Bk(j), si(v) = sj(v).
Given this definition, we now redefine the recurrence diameter:

rrdb(M) def= max{i| ∃s0 . . . si. I(s0) ∧
i−1∧

j=0

T (sj , sj+1) ∧
i−1∧

j=0

i∧

k=j+1

s
Bi(j)
j �= s

Bi(k)
k }

(5)
To combine the improvement of section 3.1 with this definition, we can restrict

the comparison further to state variables only (that is, each state sj is restricted to
Bi(j) ∩ st), and denote the result of this restriction by rrdb(M, st). For simplicity,
however, we assume from here on that all variables in the bounded cone of influence are
state variables.

Lemma 2. If there exists a state t1 that contradicts the property such that Ro(t1, n1),
n1 > rrdb(M), then there exists a state t2 that contradicts the property as well and
Ro(t2, n2), n2 ≤ rrdb(M).

Proof. Assume the contrary. By Equation 5 and Lemma 1, this implies that in the path to
t1 there exists two states, say si and sj , j > i, that are equal in their Bn1(j) variables but
different in at least one other variable. A state equal to sj+1 in all Bn1(j + 1) variables
can be reached in one step from si. Let si+1 denote this state. Then, a state equal to sj+2
in all Bn1(j + 2) can be reached from si+1, and so forth. Thus, a sequence of states
which is equivalent to the path from sj to t1 in all variables relevant to the property can
be reached in one step from si, which means that we can reach a state contradicting the
property in less than n1 steps. This contradicts our assumption. �


As an example of where the restriction to BCOI variables can shorten the computed
recurrence diameter, consider the diagram in Fig. 3, and a property Gp. The states in
this diagram are defined by two state variables, say v1 and v2. The variables that affect
p in cycle 4 (according to a BCOI analysis) are underlined. The states s1 and s2 are
considered different if we consider all variables, but equal if we consider only variables
that affect the property. Taking the second option implies that s0 → s1 → s3 is the
longest loop free path, and hence the threshold is reduced from four to three. Note that
the path from s2 to a state that contradicts p implies that there must exist such a state
that can be reached in one step from s1, possibly s3 itself. This is because the value of
p depends only on v1, and we know that this variable has the same value in s1 and s2.
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0,0 0,11,0 ¬p

s0 s1 s2 s3

Fig. 3. Two possible paths, where the variables affecting the property p are underlined.

4 Finding the Recurrence Diameter with Sorting Networks

4.1 Sorting Networks for Loop Detection

The currently used technique [1] for computing the recurrence diameter (either rrd(M)
or rrd(M, st)) compares all pairs of states, as implied by Equations 3 and 4. The size
of the resulting formula is therefore quadratic in the length of the path k.

We propose the following alternative: first, we generate an equation that represents
the same set of states but in a sorted order; second, we compare the neighbors in the
sorted sequence. Since we have to generate the equation without any actual knowledge
of the states, the sequence of comparisons performed must be the same for all possible
states. This is known as the Bose-Nelson sorting problem. A circuit that solves this
problem is called a sorting network (see Knuth [8] for a survey).

Ajtai, Kolmós, Szemerédi [9] show that sorting networks for n inputs can be built with
size O(n log n). However, there is a very high constant (several thousands) hidden in this
complexity result that makes it impractical for our purpose. We therefore use a variant
of a bitonic sorting network as described by Batcher [10], which has an asymptotic
size of O(n log2 n). Bitonic sorting networks have a recursive structure (see Fig. 4).
The inputs are split into two parts that are sorted independently and then merged. This
means that the sorting blocks can be replaced by any other sorting network. While for
an arbitrary input size the minimal size of the sorting network is unknown, for small
numbers there are known optimal or near optimal solutions. For these cases, we replace
the bitonic sorting network with these known small sorting networks. Figure 5 shows a
simple sorting network for three input states.

0

merge(2l)

sort(n − 2l−1)

sort(2l−1)
n inputs

Fig. 4. Block diagram for a bitonic sorting network with n inputs and l = �log2 n�. If n is not a
power of two, the smallest element (denoted by 0) is used for merging.

Let s0 . . . sn−1 denote the n states of the path. Using the sorting network, we obtain
an ordered permutation of these states s′

0 ≥ s′
1 . . . ≥ s′

n−1. It is obvious that a sequence
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Fig. 5. Sorting network for three inputs. i0..i2 are the input unsorted states, and i′0..i
′
2 are the

output sorted states.

of states contains two equal states if and only if its corresponding sorted sequence
contains two equal neighboring states, or, formally:

∃i : s′
i = s′

i+1 ⇐⇒ ∃l, j : l �= j ∧ sl = sj (6)

Thus, we now only have to compare all neighbors in this sequence. This can be done
with n − 1 comparisons.

4.2 Ordering and Swapping

All sorting networks require a compare and swap operation. Two elements a and b are
compared and, if a > b, are swapped. We implement the ordering operator by computing
the last carry bit of the sum a + (−b). Let a denote a bit vector of length β, and let ai,
0 ≤ i < β denote the i-th component of a. Let b denote the inverted vector b. Since
b + 1 is equal to −b, we can compute a + (−b) by computing a + b + 1. The first carry
bit c0 of this sum is:

c0 := a0 ∨ b0 (7)

The i-th carry bit of this sum with i ≥ 1 is:

ci := (ai ∧ bi) ∨ (ai ∧ ci−1) ∨ (bi ∧ ci−1) (8)

The value of the last carry bit cβ−1 determines whether we swap a and b. Let b′ denote
the new value (after swapping) of b. The equation for a′ follows the same pattern.

b′
i = ai ∧ cβ−1 ∨ bi ∧ cβ−1 (9)

Equation 7 is transformed into CNF using 1 new literal and 3 clauses, equation 8 requires
1 new literal and 6 clauses, and equation 9 requires 1 new literal and 4 clauses. The
swapping has to be done for both a and b. Thus, the total cost of one compare/swap
operation with β bits is 4β literals and 17β clauses.
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5 Experimental Results

We experimented with several circuits from the ISCAS’89 benchmark netlists. First,
we checked the influence of considering only state variables when comparing states. We
were able to compute rrd(M, st) (the reachability recurrence diameter of state variables)
of 6 out of the 35 instances in the benchmark (see top 6 circuits in figure 6). On the other
hand we could not compute rrd(M) for any of them using a one hour time limit3.

We also tried several other circuits. The recurrence diameter for the arithmetic circuits
div8 and mult8, and the serial bus controller circuit IIC is computed easily (see the bottom
part of figure 6).

Circuit rrd(M, st) time (rrd(M, st)) time(rrd(M, st) + 1) rrd(M) time(rrd(M))
(SAT) (UNSAT) (SAT)

s27 5 < 1s. < 1s. ? *
s386 11 < 1s. < 1s. ? *
s510 46 < 1s. < 1s. ? *
s832 17 < 1s. 1 s. ? *
s820 17 < 1s. < 1s. ? *
s208.1 255 2.58 s. 3.35 s. ? *
div8 11 < 1s. 2.28 s ? *
mult8 9 < 1s. < 1s ? *
IIC 31 < 1s. < 1s ? *

Fig. 6. Ignoring the inputs while comparing states shortens the diameter, and hence makes it easier
to compute.

To check the efficiency of sorting networks versus the previously known all-pair
method, we generated the CNF files of the s27 benchmark circuit with both methods for
an increasing bound k. Figure 7 depicts our results. It shows that for k larger than about
50, the CNF file that is generated with sorting networks is smaller, both with respect to
the number of variables, and the the number of clauses (the break-even point depends
on the number of state-bits. This point is smaller if there are less state bits). Although
the size of the CNF does not directly predict the time it takes to solve it, it does give
some estimation of how hard the problem is, especially when the difference in size is
significant.

6 Conclusions and Directions for Future Work

Finding the recurrence diameter of designs with respect to a given property is important
for achieving completeness in Bounded Model Checking. We have presented several
techniques for making this calculation easier than previously known techniques. Since

3 We reached k = 300 with most of these files, but the recurrence diameter is apparently much
higher.
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Fig. 7. Comparison of the CNF size (number of literals and clauses) with pairwise comparison
and with sorting network

the recurrence diameter is typically very high (it can be exponential in the number of
state variables), in many cases it is still impractical to find, let alone perform bounded
model checking with such a high bound. Thus, finding more efficient ways to calculate
the recurrence diameter is still an important research topic. The question of how to find
the completeness threshold for a general LTL property is still open.
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