
HAL Id: hal-00019914
https://hal.science/hal-00019914

Submitted on 1 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-Way Tree Automata Solving Pushdown Games
Thierry Cachat

To cite this version:
Thierry Cachat. Two-Way Tree Automata Solving Pushdown Games. Automata, Logics, and Infinite
Games, 2002, Germany. pp.303-317. �hal-00019914�

https://hal.science/hal-00019914
https://hal.archives-ouvertes.fr

17 Two-way Tree Automata Solving
Pushdown Games

Thierry Cachat

Lehrstuhl für Informatik VII
RWTH Aachen

17.1 Introduction

Parity games (where the winner is determined by the parity of the maximal
priority appearing infinitely often) were presented in Chapter 2 and algorithms
solving parity games for the case of finite graphs in Chapter 7. In this paper we
study parity games on a simple class of infinite graphs: the pushdown (transition)
graphs. In [106], Kupferman and Vardi have given a very powerful method for the
µ-calculus model checking of these graphs: the formalism of two-way alternating
tree automata. This is a generalization of the (one-way) tree automata presented
in Chapters 8 and 9.

The transition graph of the pushdown automaton defines the arena: the graph
of the play and the partition of the vertex set needed to specify the parity winning
condition. We know from Chapter 6 that such games are determined and that
each of both players has a memoryless winning strategy on his winning region.
The aim of this paper is to show how to compute effectively the winning region
of Player 0 and a memoryless winning strategy. The idea of [106] is to simulate
the pushdown system in the full W -tree, where W is a finite set of directions,
and to use the expressive power of alternating two-way tree automata to answer
these questions. Finally it is necessary to translate the 2-way tree automaton into
an equivalent nondeterministic one-way tree automaton, with the construction
from [190].

In the next section we define two-way alternating automata and the effective
construction from [190] of equivalent one-way nondeterministic automata. In
Section 17.3 we apply these results to solve parity games over pushdown graphs
and to compute winning strategies. Section 17.4 presents an example. Some
extensions and modifications are discussed in Section 17.5.

17.2 Reduction 2-way to 1-way

The formalism of alternating two-way parity tree automata is very “power-
ful”, but we cannot handle directly these automata to answer our questions
of nonemptiness (for the winning region) and strategy synthesis. We need the
reduction presented in this section, which constructs step by step a one-way
nondeterministic tree automaton that is equivalent to a given two-way alternat-
ing automaton A, in the sense that they accept the same set of trees (finite or
infinite).

308 Thierry Cachat

17.2.1 Definition of Two-way Automata

Given a finite set W of directions, a W -tree is a prefix closed set T ⊆ W ∗,
i.e., if x.d ∈ T , where x ∈ W ∗ and d ∈ W , then also x ∈ T . We will sometimes
forget the “.” of the concatenation. The elements of T are called nodes, the
empty word ε is the root of T . For every x.d ∈ T, d ∈ W the node x is the
unique parent of x.d, and x.d is a child of x. The direction of a node x.d
(6= ε) is d. The full infinite tree is T = W ∗. A path (branch) of a tree T is
a sequence β ∈ T∞ such that β = u0u1 · · ·un or β = u0u1u2 · · · , u0 = ε and
∀i < n, ∃d ∈W,ui+1 = ui.d. A path can be finite or infinite.

Given two finite alphabets W and Σ, a Σ-labeled W -tree is a pair 〈T, l〉
where T is a W -tree and l : T −→ Σ maps each node of T to a letter in Σ. When
W and Σ are not important or clear from the context, we call 〈T, l〉 a labeled
tree.

We recall that for a finite setX, B+(X) is the set of positive Boolean formulas
over X (i.e., Boolean formulas built from elements in X using only ∧ and ∨),
where we also allow the formulas 〈true〉 and 〈false〉. For a set Y ⊆ X and a
formula θ ∈ B+(X), we say that Y satisfies θ iff assigning 〈true〉 to elements in
Y and 〈false〉 to elements in X\Y makes θ true.

To navigate through the tree let ext(W) := W ·∪ {ε, ↑} be the extension of
W : The symbol ↑ means “go to parent node” and ε means “stay on the present
node”. To simplify the notation we define ∀u ∈W ∗, d ∈W,u.ε = u and ud↑= u.
The node ε↑ is not defined.

An alternating two-way automaton over Σ-labeled W -trees is a tuple
A := (Q,Σ, δ, qI,Acc) where

Q is a finite set of states,

Σ is the input alphabet,

δ : Q×Σ −→ B+(ext(W)×Q) is the transition function,

qI is the initial state, and

Acc is the acceptance condition.

The idea of a transition δ(q, l1) = (↑, q′) ∧ (d, q′′) is the following: if the au-

x

q
xA

xAB q’’

q’

xA

Fig. 17.1. Example of a transition δ(q,A) = (↑, q′)∧ (B, q′′), with the convention that
the label is equal to the last letter of the node

tomaton A is in state q on the node x of the labeled tree 〈T, l〉 and reads the

17 Two-way Tree Automata Solving Pushdown Games 309

input l1 = l(x), it will send a “copy” of A in state q′ to the parent node of x
and another copy in state q′′ to xd. See Figure 17.1. After that the two copies
are running independently. They may come again to the same node with two
different states.

More precisely a run of an alternating two-way automaton A over a labeled
tree 〈W ∗, l〉 is another labeled tree 〈Tr, r〉 in which every node is labeled by an
element of W ∗×Q. The latter tree is like the unfolding of the run, its structure
is quite different from W ∗. A node in Tr, labeled by (x, q), describes a “copy”
of the automaton that is in state q and is situated at the node x of W ∗. Note
that many nodes of Tr can correspond to the same node of W ∗, because the
automaton can come back to a previously visited node. The label of a node
and its successors have to satisfy the transition function. Formally, a run 〈Tr, r〉
is a Σr-labeled Γ -tree, for some (almost arbitrary) set Γ of directions, where
Σr := W ∗ ×Q and 〈Tr, r〉 satisfies the following conditions:

(a) ε ∈ Tr and r(ε) = (ε, qI)
(b) Consider y ∈ Tr with r(y) = (x, q) and δ(q, l(x)) = θ. Then there is a

(possibly empty) set Y ⊆ ext(W) × Q, such that Y satisfies θ, and for all
〈d, q′〉 ∈ Y , there is γ ∈ Γ such that y.γ ∈ Tr and the following holds:
r(y.γ) = (x.d, q′).

Remember that x.d can be x.ε or x.↑, and the latter is defined only if x 6= ε. So
the run cannot go up from the root of the input tree. Note that it cannot use a
transition δ(q, l(x)) = 〈false〉 since the formula 〈false〉 cannot be satisfied.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance con-
dition Acc (the finite paths of a run end with a transition θ = 〈true〉, which is
viewed as successful termination). We consider here only parity acceptance con-
ditions (see previous chapters): Acc is given by a priority function Ω : Q −→ [m].
An infinite path β ∈ Trω satisfies the acceptance condition iff the smallest prior-
ity appearing infinitely often in this path is even: min Inf(Ω(r(β))) is even. Such
a path in the run consists of following only one “copy” of the automaton. An
automaton accepts a labeled tree if and only if there exists a run that accepts it.
The tree language accepted by an automaton A is denoted L(A). Two automata
are equivalent if they accept the same tree language.

The automaton A = (Q,Σ, δ, qI, Ω) and the input tree 〈T, l〉 are now fixed
for the rest of the Section 17.2. In the next subsections we will study how the
automaton A can accept the given tree. The strategy for A will give information
about the transitions used by A (because A is not deterministic). Then the
annotation will store the priorities seen during the detours of A. With all these
auxiliary tools, it is possible to construct a one-way tree automaton that checks
whether A accepts a tree.

17.2.2 Strategy

In the same way as in Chapters 6, 4 and 8 of this book, A itself (as an alternating
automaton) is equivalent to a two-player parity game. The initial configuration

310 Thierry Cachat

of this game is (ε, qI) (= r(ε)). From a configuration (x, q), x ∈ T, q ∈ Q, Player
0 chooses a set Y ⊆ ext(W) × Q that satisfies δ(q, l(x)), then Player 1 chooses
〈d, q′〉 ∈ Y , the new configuration is (x.d, q′) and so on. If x.d is not defined or
δ(q, l(x)) = 〈false〉 then Player 1 wins immediately. If Y is empty (δ(q, l(x)) =
〈true〉) then Player 0 wins immediately. If the play is infinite, then Player 0 wins
iff the parity condition is satisfied. So Player 0 is trying to show that A accepts
the input tree, and Player 1 is trying to challenge that.

Player 0 has a memoryless winning strategy iff A has an accepting run (see
Chapter 6). In other words, if A has an accepting run, then it has an accepting
run using a memoryless winning strategy: choosing always the same “transitions”
from the same node and state. We decompose the run of A using this strategy.

Definition 17.1. A strategy for A and a given tree is a mapping

τ : W ∗ −→ �
(Q× ext(W)×Q).

Intuitively (q, d, q′) ∈ τ(x) means that if A is in state q on the node x, it has to
send a copy in state q′ to node xd. It is memoryless because it depends only on
x. Note that the strategy does not read the labels, but it is defined for a fixed
tree 〈T, l〉. See an example on Figure 17.2.

q1

q2 q4

q5

{(q1,A,q2),(q3,B,q4)}q3

 (q2,B,q5)}
{(q2,|,q3),^

Fig. 17.2. Part of a run and the corresponding strategy

In this subsection we want to verify with a one-way automaton some simple
conditions on the strategy τ of an alternating two way tree automaton A. The
first condition for a strategy to be correct (at node x) is to satisfy the transition
of A. The second condition is that the strategy can be followed: if (q, d, q′) ∈ τ(x)
then the strategy τ(xd) has to be defined in xd for the state q′, such that the
run can continue. Formally, both conditions are:

∀x ∈W ∗, ∀(q, d, q′) ∈ τ(x) :

{ (d2, q2) | (q, d2, q2) ∈ τ(x) } satisfies δ(q, l(x)), and (17.1)

∃d1, q1, (q
′, d1, q1) ∈ τ(xd) or ∅ satisfies δ(q′, l(xd)), (17.2)

and for the root:

∃d1, q1, (qI, d1, q1) ∈ τ(ε) or ∅ satisfies δ(qI, l(ε)). (17.3)

17 Two-way Tree Automata Solving Pushdown Games 311

Considering St :=
�

(Q × ext(W) × Q) as an alphabet, a (St × Σ)-labeled
tree defines a memoryless strategy on the corresponding Σ-labeled tree. We
will construct a one-way automaton B that checks that this strategy is correct
according to the previous requirements. For (q, d, q′) ∈ τ(x), if d ∈W it has just
to check in the direction d downwards that the strategy is well defined for q′,
but if d =↑, he must have remembered that the strategy was defined for q′ in the
parent-node. The states of B are pairs 〈Q1, Q2〉 ∈

�
(Q)× �

(Q), where q′ ∈ Q1

means that B has to check (down) that the strategy can be followed for q′, and
q′′ ∈ Q2 means that q′′ is already allowed at the parent node.

B := (
�

(Q)× �
(Q), St×Σ, δB, 〈{qI}, ∅〉 , 〈true〉) where (17.4)

δB(〈Q1, Q2〉 , 〈τ1, l1〉) :=

IF ∀q ∈ Q1, { (d2, q2) | (q, d2, q2) ∈ τ1 } satisfies δ(q, l1), and (17.5)

∀(q′, ε, q) ∈ τ1, { (d2, q2) | (q, d2, q2) ∈ τ1 } satisfies δ(q, l1), and (17.6)

∀(q, ↑, q′) ∈ τ1, q′ ∈ Q2 (17.7)

THEN
∧

d∈W

(
d, 〈{ q′ | ∃ (q, d, q′) ∈ τ1 }, Q′

2〉
)

(17.8)

with Q′
2 := { q′′ | ∃ d1, q1, (q′′, d1, q1) ∈ τ1 or ∅ satisfies δ(q′′, l1) }, (17.9)

ELSE 〈false〉. (17.10)

The acceptance condition is easy to enunciate: it just requires that each path of
B is infinite (i.e., the transition is possible at each node). Note that although we
have used the formalism of alternating automata, B is a deterministic one-way
automaton: B sends exactly one copy to each son of the current node. It has 4|Q|

states.
In condition (17.5) there is no requirement on the q 6∈ Q1, that’s why the

condition (17.1) above is stronger. This is not a problem for the following, as we
are searching some winning strategy (one could define the minimal valid strategy
as in [190]). If A follows the strategy, its run is “deterministic” on the input tree
labeled by St×Σ.

A path β in a strategy (tree) τ is a sequence (u0, q0), (u1, q1), (u2, q2), · · ·
of pairs from W ∗ × Q such that (u0, q0) = (ε, qI) and for all i > 0, there is
some ci ∈ ext(W) such that (qi, ci, qi+1) ∈ τ(ui) and ui+1 = uici. Thus, β just
follows (nondeterministically) the “transitions” of τ . The parity condition for β
is defined exactly the same way as for a path of (a run of) A. We say that τ is
accepting if all infinite paths in τ are accepting.

Proposition 17.2. A two-way alternating parity automaton accepts an input
tree iff it has an accepting strategy tree over the input tree.

With the help of a so called annotation, we will check in the following subsections
whether a strategy is accepting.

17.2.3 Annotation

The previous automaton B just checks that the strategy can be followed (ad
infinitum) but forgets the priorities of A. To check the acceptance condition, it

312 Thierry Cachat

is necessary to follow each path of A up and down, and remember the priorities
appearing. Such a path can be decomposed into a downwards path and several
finite detours from the path, that come back to their origin (in a loop). Because
each node has a unique parent and A starts at the root, we consider only down-
wards detour (each move ↑ is in a detour). That is to say, if a node is visited
more than once by a run β, we know that the first time it was visited, the run
came from above. To keep track of these finite detours, we use the following
annotation.

Definition 17.3. An annotation for A and a given tree is a mapping

η : W ∗ −→ �
(Q× [m]×Q). (17.11)

q1

q2 q4

{(q1,2,q3)}q3

Fig. 17.3. Part of a run and the corresponding annotation, assuming that Ω(q2) =
2, Ω(q3) = 3

Intuitively (q, f, q′) ∈ η(x) means that from node x and state q there is a
detour that comes back to x with state q′ and the smallest priority seen along
this detour is f . Figure 17.3 presents an example. By definition, the following
conditions are required for the annotation η of a given strategy τ :

∀ q, q′ ∈ Q, x ∈W ∗, d ∈W, f, f ′ ∈ [m] :

(q, ε, q′) ∈ τ(x)⇒ (q,Ω(q′), q′) ∈ η(x), (17.12)

(q1, f, q2) ∈ η(x), (q2, f ′, q3) ∈ η(x)⇒ (q1,min(f, f ′), q3) ∈ η(x), (17.13)

(q, d, q1) ∈ τ(x), (q1, ↑, q′) ∈ τ(xd)⇒ (q,min(Ω(q1), Ω(q′)), q′) ∈ η(x),
(17.14)

(q, d, q1) ∈ τ(x), (q1, f, q2) ∈ η(xd), (q2, ↑, q′) ∈ τ(xd)
⇒ (q,min(Ω(q1), f, Ω(q′)), q′) ∈ η(x). (17.15)

Considering An :=
�

(Q × [m] × Q) as an alphabet, the aim is to construct a
one-way automaton C on (An×St)-labeled trees that checks that the annotation
satisfies these requirements. The conditions 17.12 and 17.13 above can be checked
in each node (independently) without memory. For the last two, the automaton
has to remember the whole η(x) from the parent node x, and the part of τ(x)
leading to the current node.

C := (An× �
(Q×Q), An× St, δC, 〈∅, ∅〉 , 〈true〉),

17 Two-way Tree Automata Solving Pushdown Games 313

where

δC(〈η0, α〉 , 〈η1, τ1〉) :=

IF conditions 17.12 and 17.13 hold for η1 and τ1 AND

∀(q, q1) ∈ α, (q1, ↑, q′) ∈ τ1 ⇒ (q,min(Ω(q1), Ω(q′)), q′) ∈ η0
∀(q, q1) ∈ α, (q1, f, q2) ∈ η1, (q2, ↑, q′) ∈ τ1

⇒ (q,min(Ω(q1), f, Ω(q′)), q′) ∈ η0
THEN

∧

d∈W

(
d, 〈η1, { (q, q1) | ∃ (q, d, q1) ∈ τ1 }〉

)

ELSE 〈false〉.

Similarly to B, C is a deterministic one-way automaton with 2|Q|2m · 2|Q|2 =
2|Q|2(m+1) states, and the acceptance condition is very simple: each path has to
be infinite. Note that if a part of the tree is not visited by the original automaton
A, the strategy and annotation can be empty on this part. The automaton C does
not check that the annotation is minimal, but this is not a problem. With the
help of the annotation one can determine if a path of A respects the acceptance
condition or not, as showed in the next subsection.

17.2.4 Parity Acceptance

Up to now the automata B and C together just check that the strategy and
annotation for the run of A are correct, but do not verify that the run of A
is accepting, i.e., that each path is valid. With the help of the annotation we
can “simulate” (follow) a path of A with a one-way automaton, and determine
the parity condition for this path. This one-way automaton does not go into the
detours, but reads the smallest priority appearing in them.

D := (Q× [m], An× St, δD, 〈qI, 0〉 , Ω0),

δD(〈q, i〉 , 〈η1, τ1〉) :=
∨

(q,d,q′)∈τ1,d∈W
(d, 〈q′, Ω(q′)〉) ∨

∨

(q,f,q′)∈η1
(ε, 〈q′, f〉).

At each step D either goes down following the strategy, or simulates a detour
with an ε-move and the corresponding priority. The second component ([m])
of the states of D just remembers the last priority seen. We can transform D
into a nondeterministic one-way automaton D′ without ε-moves with the same
state space. Note that D can possibly stay forever in the same node by using
ε-transitions, either in an accepting run or not. This possibility can be checked
by D′ just by reading the current annotation, with a transition 〈true〉 or 〈false〉.

We will use D and D′ to find the invalid paths of the run of A, just by
changing the acceptance condition: Ω0(〈q, i〉) := i+ 1.

Proposition 17.4. The one-way tree automaton D′ accepts a (An×St)-labeled
tree iff the corresponding run of A is not accepting.

314 Thierry Cachat

But D′ is not deterministic, and accepts a tree if D′ has some accepting run.
We can view D′ as a word automaton: it follows just a branch of the tree. For
this reason it is possible to co-determinize it: determinize and complement it
in a singly exponential construction (see Chapter 8 and 9) to construct the
automaton D that accepts those of the (An × St)-labeled trees that represent
the accepting runs of A.

We will define the product E := B × C × D of the previous automata, that
accepts a (An × St × Σ)-labeled input tree iff the corresponding run of A is
accepting. Let

E := (QB ×QC ×QD, An× St×Σ, δE , qI,E ,Acc),

δE(〈qB, qC , qD〉, 〈η1, τ1, l1〉) :=

〈δB(qB, 〈τ1, l1〉), δC(qC , 〈η1, τ1〉), δD(qD, 〈η1, τ1〉)〉 ,

where QB is the state space of B, and so on. The acceptance condition of E is
then exactly the one of D.

We define the automaton E ′ to be the “projection” of E on the input al-
phabet Σ: E ′ nondeterministically guesses the labels from An × St. Finally
E ′ is a nondeterministic one-way tree-automaton on Σ-labeled trees that is
equivalent to A: it accepts the same trees. The strategy and annotation de-
pended on the input tree, now after the projection, E ′ can search the run
of A for each input tree. The automaton E is deterministic and has (like E ′)
4|Q| · 2|Q|2(m+1) · 2c|Q|m = 2|Q|2(m+1) · 2|Q|(2+cm) states.

Theorem 17.5 ([190]). To every alternating two-way parity tree automaton A
there exists an equivalent nondeterministic one-way tree automaton E, in the
sense that they recognize the same tree language: L(A) = L(E).

Corollary 17.6 ([190]). The emptiness problem for alternating two-way tree
automata is in Exptime.

17.3 Application: Pushdown Games

We use alternating two-way automata to solve parity games on pushdown graphs.
Thanks to the previous section the results are effective.

17.3.1 Definition of the Game

We first recall the definition of two player parity games. The arena A :=
(V0, V1, E) is a graph, composed of two disjoint sets of vertices, V0 and V1,
and a set of edges E ⊆ V × V , where V = V0 ·∪ V1. To define a parity game
G := (A, ΩG) we need a mapping ΩG : V −→ [m],m < ω which assigns a priority
to each vertex. Then the initialized game (G, vI) is given with an initial vertex
vI ∈ V .

A play of (G, vI) proceeds as follows:

17 Two-way Tree Automata Solving Pushdown Games 315

(a) v0 = vI is the first “current state” of the play,
(b) from state vi, i > 0, if vi ∈ V0 (resp. vi ∈ V1) then Player 0 (resp. Player 1)

chooses a successor vi+1 ∈ viE, which is the new current state.

The play is then the sequence π = v0v1 · · · ∈ V∞. This sequence is maximal: it
is finite only if no more move is possible. We consider min-parity games:

Player 0 wins π iff min Inf(ΩG(π)) is even.

These definitions are essentially the same for finite and infinite arena. We con-
sider now pushdown graphs: (V,E) is the (possibly infinite) transition graph of
a pushdown system, which is an unlabeled pushdown automaton.

Definition 17.7. A pushdown system (PDS) is a tuple Z := (P,W,∆)
where:

(a) P is a finite set of (control) states,
(b) W is a finite (stack) alphabet,
(c) ∆ ⊆ P ×W × P ×W ∗ is a finite transition relation.

A stack content is a word from W ∗. Unlike standard notation we write the top
of the stack at the right of the word (we are considering suffix rewriting as in
Chapter 15). A configuration is a stack content and a control state: (w, p),
shortly wp, where w ∈ W ∗, p ∈ P . The transition graph of Z is (V,E) where
V = W ∗P is the whole set of configurations and ∀u,w ∈W ∗, ∀a ∈W, ∀p, p′ ∈ P

(uap)E(uwp′)⇔ (p, a, p′, w) ∈ ∆.

This defines a vertex labeled graph: each vertex is labeled by his name, the
edges have no label. We use the name pushdown system, like in [61] because
the transitions are not labeled: we are not interested in the language recognized
by the pushdown automaton but in the underlying transition graph. To obtain
a parity game, it remains to define the sets V0 and V1, associating the vertices
to the two players, and the priorities of the configurations. One fixes a disjoint
union P = P0 ·∪ P1, then V0 = W ∗P0 and V1 = W ∗P1. The mapping ΩG is first
defined on P , then ΩG(wp) = ΩG(p), ∀w ∈W ∗ and p ∈ P . So the player and the
priority only depend on the control states of Z, like in [196] and [198]. These
restrictions will be discussed later in Section 17.5.1.

The pushdown game is completely defined if we also fix an initial configu-
ration vI ∈ V : vI = wIpI.

17.3.2 Winning Region

We construct an alternating two-way automaton A that determines if Player
0 can win the game (G, vI), i.e., wins every play, whatever Player 1 does. The
automaton A will simulate the transitions of the pushdown system Z on the full
W -tree, guess nondeterministically the best moves of Player 0 and follow each
possible move of Player 1 using alternation.

316 Thierry Cachat

As an example, the transition (p, a, p′, bc) ∈ ∆ from a configuration uap of
the pushdown system can be simulated by a two-way automaton over the full
W -tree from the node ua by the following sequence of moves: ↑, b, c because
ua↑bc = ubc. We have chosen suffix rewriting rather than prefix to conform with
the notation of the tree. The control states of Z are represented in the states of
A.

For our particular application, we simplify the definition of two-way automata
a little. The full W -tree will not be labeled by an input alphabet Σ, and the
automaton will “read” the last letter of the node, almost the same way as a
pushdown automaton (as remarked in [106], another solution is to check that
each label is equal to the last letter of its node).

To simulate with many steps a transition of Z, A has to remember in its
states the letters it has to write (see Figure 17.4). Let

tails(∆) := {u ∈W ∗ | ∃v, a, p, p′ (p, a, p′, vu) ∈ ∆ ∨ vu = vI },
A := (P × tails(∆),W, δ, 〈pI, vI〉 , Ω),

∀ b, l1 ∈W,x ∈W ∗, p ∈ P :

δA(〈p, b.x〉 , l1) := (b, 〈p, x〉), (17.16)

δA(〈p, ε〉 , l1) :=
∨

(p,l1,p′,w)∈∆
(↑, 〈p′, w〉) if p ∈ P0, (17.17)

δA(〈p, ε〉 , l1) :=
∧

(p,l1,p′,w)∈∆
(↑, 〈p′, w〉) if p ∈ P1. (17.18)

x

xA xE

xEB

<q,EB>

<q,B>

<q, >ε

ε<p, >

Fig. 17.4. Transition (p,A, q,EB) of the PDS (long arrow) simulated by the two-way
automaton

From a state 〈p, bx〉 (bx 6= ε because b ∈ W) the automaton goes down
in direction b, that is to say writes b, whatever it reads, and remembers the
(sub)word x it still has to write and the state p of the pushdown system. These
intermediate states just simulate a transition of Z, they do not correspond to
a particular configuration of the game. Only a state 〈p, ε〉 on a node w ∈ W ∗

corresponds to a configuration wp of the game. If p ∈ P1 then wp ∈ V1 and A
executes all the possible moves of Player 1, to ensure that Player 0 can win after
each of these moves. But if p ∈ P0, A chooses nondeterministically a move of
Player 0 and tries to make Player 0 win.

17 Two-way Tree Automata Solving Pushdown Games 317

The “winning” condition of A is almost the same as the one of G: Ω(〈p, x〉) =
ΩG(p). The initial state of A causes it to go “deterministically” to the initial
configuration of the game.

Theorem 17.8. Player 0 has a winning strategy in (G, vI) iff A accepts the full
infinite tree W ∗.

Proof. By definition, A accepts W ∗ iff there exists an accepting run 〈Tr, r〉. Each
path in 〈Tr, r〉 describes a play of the game, with the same winning condition. If
each path is accepting, then each play is winning for Player 0, and every possible
answer of Player 1 is in 〈Tr, r〉. That describes a winning strategy for Player 0.
Conversely a winning strategy for Player 0 determines a tree of all the plays that
follow it, which is an accepting run for A.

These strategies are not necessarily memoryless as presented, but the result of
Chapter 6 holds for both formalisms: there is a memoryless winning strategy if
there is a winning strategy.

17.3.3 Winning Strategy

Once the automaton E of Theorem 17.5 is defined, we know from Chapter 8,
Theorem 8.19, that we can solve the emptiness problem and generate a regular
tree in L(E) if L(E) 6= ∅. Implicitly in that tree the states of E describe a strategy
for A (Section 17.2.2), i.e., for the game (G, vI). If we follow a path (branch) of
that tree, E corresponds to a deterministic word automaton F that can output
the moves of Player 0. Finally F defines a memoryless winning strategy for
Player 0 in (G, vI) under the assumption that L(E) 6= ∅, i.e., if Player 0 wins the
game.

More precisely F accepts all configurations in the winning region connected
to vI and each final state of F is labeled by a move of player 0, such that the
strategy defined in this way is winning. This result from [106] is stronger (and
more general, see Section 17.5.2) than the result of [196] that prove the existence
of a pushdown strategy. The finite automaton F can easily be simulated with a
pushdown automaton that defines a strategy like in [196].

Since we have considered an initial configuration vI, the previous results do
not define the memoryless winning strategy over the whole winning region of
Player 0, but only over the nodes that can be reached by the play starting from
vI.

17.4 Example

We present here a simple example of pushdown game to illustrate the results of
this chapter. Using notations of section 17.3, let

W = {a,⊥}, P0 = {p0}, P1 = {p1, p3},
∆ = {(p1,⊥, p1,⊥a), (p1, a, p1, aa), (p1, a, p0, a), (p0, a, p0, ε), (p0,⊥, p1,⊥),

(p0,⊥, p3,⊥), (p3,⊥, p3,⊥)},
ΩG(p1) = 0, ΩG(p0) = ΩG(p3) = 1.

318 Thierry Cachat

The game graph looks as follows:

⊥p1 /0 ⊥p0 /1 ⊥p3 /1

⊥ap1 /0 ⊥ap0 /1

⊥aap1 /0 ⊥aap0 /1

· · · · · ·
We consider the initial position qI = 〈pI, vI〉 = 〈p1,⊥〉. For the automaton A we
get tails(∆) = {ε,⊥,⊥a, a, aa}. Transitions are

δA(〈p1, ε〉 , a) := (↑, 〈p1, aa〉) ∧ (↑, 〈p0, a〉), (Player 1)

δA(〈p0, ε〉 ,⊥) := (↑, 〈p3,⊥〉) ∨ (↑, 〈p1,⊥〉). (Player 0)

As a shortcut we consider

δA(〈p1, ε〉 , a) := (ε, 〈p1, a〉) ∧ (ε, 〈p0, ε〉),
δA(〈p0, ε〉 ,⊥) := (ε, 〈p3, ε〉) ∨ (ε, 〈p1, ε〉).

Other transition rules are straightforward. The strategy τ is only relevant at
the node ⊥p0, where Player 0 has a real choice: he must go to ⊥p1, otherwise
Player 1 wins. We put

τ(⊥) = {(p0, ε, p1), (p1, a, p1), (p3, ε, p3)}.
Other values are forced:

∀i > 0, τ(⊥ai) = {(p1, a, p1), (p1, ε, p0), (p0, ↑, p0)}.
Following the rules for the annotation we get for all i ≥ 0:

(p0, ε, p1) ∈ τ(⊥)⇒ (p0, 0, p1) ∈ η(⊥) cf 17.12

(p1, ε, p0) ∈ τ(⊥ai+1)⇒ (p1, 1, p0) ∈ η(⊥ai+1) cf 17.12

(p1, a, p1) ∈ τ(⊥ai), (p1, 1, p0) ∈ η(⊥ai+1), (p0, ↑, p0) ∈ τ(⊥ai+1)

⇒ (p1,min(0, 1, 1), p0) ∈ η(⊥ai)⇒ (p1, 0, p0) ∈ η(⊥ai) cf 17.15

(p1, 0, p0) ∈ η(⊥), (p0, 0, p1) ∈ η(⊥)

⇒ (p0, 0, p0) ∈ η(⊥), (p1, 0, p1) ∈ η(⊥) cf 17.13

Now we can see that D can not find an accepting path, i.e., a winning path for
Player 1. Player 0 win the game from qI, provided he never moves to the vertex
⊥p3. Unlike finite graphs, we can have here arbitrary long paths with (minimal)
priority 1, but no infinite path winning for Player 1.

17 Two-way Tree Automata Solving Pushdown Games 319

Exercise 17.1. Complete the solution of this example, and compute the strategy
according to section 17.3.3.

17.5 Discussion, Extension

We discuss here some conventions and hypotheses we have made, sometimes
implicitly.

17.5.1 Discussion on the Conventions

We have assumed that the priority of a configuration depends only on the con-
trol state. Another possibility is to define regular set of states for each priority,
or equivalently a finite automaton with output (over the alphabet W ·∪ P) that
accepts each configuration and outputs its priority. That wouldn’t be more gen-
eral: this automaton can be simulated by the states of the one-way automaton
E (or by A with new labels on the tree). Otherwise it can be simulated by Z by
extending the stack alphabet. The same ideas apply for the definition of V0 and
V1 in V .

A usual convention for an arena (V0, V1, E) is that E ⊆ V0 × V1 ∪ V1 × V0,
i.e., Player 0 and 1 alternate. This convention may clarify the situation but is
not essential for us. If a pushdown system Z does not satisfy it, we can add
“dummy” states to obtain a new pushdown game Z ′ which is equivalent to Z
and satisfies the condition that in the new states there is only one possible move
(choice).

The usual convention is also that a player who cannot move has lost. This is
convenient with our formalism if we consider (see equations 17.17 and 17.18) that
an empty disjunction is false and an empty conjunction is true (analogously it
agrees with the definitions of � and ♦ in µ-calculus). With pushdown games we
can simulate another convention. We know in which configuration no transition
is possible: if the stack is empty, or if there are no q′, u with (q, a, q′, u) ∈ ∆.
We can add new transitions to a particular state for the second case, and for
the first case we can use a new symbol as the “bottom” of the stack, that can
neither be put nor removed, and new transitions for this symbol.

17.5.2 Extensions

One can easily extend the results presented in this paper to any suffix (resp.
prefix) rewrite system, either by simulating it with a pushdown automaton (up
to bisimilarity) or by adapting our construction to allow A to go up along a
fixed word (stored in its memory). In contrast one could restrict the pushdown
system so that a transition consists just of pushing or popping one letter, which
is equivalent to the general model.

In [106] other results are obtained with the help of two-way automata: the
model checking procedure is extended to any µ-calculus formula (Theorem 2)
over any context-free or even prefix recognizable graph (Theorem 5). In the

320 Thierry Cachat

present paper we have just considered the problem of solving parity games. On
the other hand, each µ-calculus formula on a pushdown system is equivalent to
a parity game. To simulate the prefix recognizable rewrite rules (see Chapter
15), the two-way automaton simulates the finite automata that recognize the
different parts of the word (the prefix, the old suffix and the new suffix) using
alternation and guessing the correct rule.

17.6 Conclusion

After some technical work to make the two-way automata “usable”, it was pos-
sible to compute winning regions and winning strategies. This formalism is very
powerful and hopefully comprehensible.

Its expressive power is the same as the µ-calculus on trees and on the tran-
sition systems that can be simulated on trees: pushdown systems and prefix
recognizable graphs.

Chapter 15 of this book deals with another result about model checking: it
is shown that Monadic Second Order logic (MSO) is decidable on prefix rec-
ognizable graphs. It is well known (see Chapter 14) that MSO is at least as
expressive as µ-calculus, so implicitly the model-checking problem for µ-calculus
on prefix-recognizable graphs was already solved by Caucal in [28]. It is natural
to define parity games on prefix-recognizable graphs the same way as we have
done: a configuration (node of the game graph) is a word, for clarity we suppose
that the priority and the player (V0 and V1) are given by the first letter of the
word. In fact we can define in MSO the winning region of Player 0 (resp. Player
1).

But if we compare both approaches in more detail, important differences
show up: the MSO formula describes the whole winning region: the decision
procedure gives a finite automaton that recognizes the whole set of winning
vertices of Player 0 (resp. 1). On the contrary, the construction presented in the
present chapter just checks one at a time if a given “initial” configuration is in
the winning region. On the other hand, it is proved in [106] that his technique
generates a winning strategy for this initialized game, represented by a finite
automaton.

A similar result could be obtained by the methods introduced in Chapter
15, if a strategy could be defined in MSO. Unfortunately, this is not possible
over the given arena. Indeed, a strategy is a binary relation, or a function from
the vertices to the vertices, and it is not allowed in MSO to quantify about
(non monadic) relations. Note that a strategy provides more information than
a winning region does. It is possible to stay forever in the winning region and
not win (never reach the “goal”). One cannot quantify about paths: they are not
uniquely defined by their set of nodes. Finally, if the prefix-recognizable graph
is a directed tree, and the game played from the root (top-down), the situation
is much simpler: the strategy is a subtree with some good conditions, and is
MSO-definable. (This gives an answer to a question of [180].) But in general
the unraveling tree of a prefix-recognizable graph from a given vertex is not a

17 Two-way Tree Automata Solving Pushdown Games 321

prefix-recognizable graph (it is an algebraic tree, but this is outside the scope of
this book).

